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Finite Volume Implementation
of Non-Dispersive, Non-Hydrostatic
Shallow Water Equations

Vincent Guinot, Didier Clamond and Denys Dutykh

Abstract A shock-capturing, finite volume implementation of recently proposed
non-hydrostatic two-dimensional shallow water equations, is proposed. The dis-
cretization of the equations in conservation form implies the modification of the
time derivative of the conserved variable, in the form of a mass/inertia matrix, and
extra terms in the flux functions. The effect of this matrix is to slow down wave
propagation in the presence of significant bottom slopes. The proposed model is
first derived in conservation form using mass and momentum balance principles.
Its finite volume implementation is then presented. The additional terms to the
shallow water equations can be discretized very easily via a simple time-stepping
procedure. Two application examples are presented. These examples seem to
indicate that the proposed model does not exhibit strong differences with the
classical hydrostatic shallow water model under steady-state conditions, but that
its behavior is significantly different when transients are involved.
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1 Introduction

Among the many available tools for water wave model formulation (see [1] for an
overview), the variational formulation has proved a powerful one [2, 3]. Recently,
the Lagrangian variational approach has been used to derive a family of free
surface flow models [1, 4]. This approach allows the classical shallow water
equations, the Serre equations, the Boussinesq equations, and many others, to be
derived as particular cases [1].

The purpose of this communication is to show how a non-hydrostatic shallow
water model, presented in [4] under the assumption of non-negligible flow vertical
acceleration, can be implemented in a simple way within a classical, Godunov-
type algorithm. This model has the interesting property that the system of gov-
erning equations remains hyperbolic, thus making standard numerical techniques
easily applicable.

In Sect. 2, the governing equations are derived in conservation form, not using
the variational approach, but using the more classical integral form for mass and
momentum balances that are more widely accepted by the hydraulic community.
In Sect. 3, an overview of the numerical implementation is given. Section 4 is
devoted to computational examples and Sect. 5 to the conclusions.

2 Assumptions and Governing Equations

2.1 Notation—Assumptions

The following notation is used (Fig. 1). The water depth is denoted by h, and the
vertical averages of the x- and y-components of the flow velocity are denoted,
respectively, by u and v. The bottom and free surface elevations are denoted,
respectively, by zb and zs, and zs = zb ? h. The unit discharge in the x- and y-
directions is denoted, respectively, by q = hu and r = hv. The bottom slopes in
the x- and y- directions are denoted, respectively, by S0,x and S0,y. u ¼ u; v;w½ �T is
the flow velocity vector. The restriction of the velocity vector to the horizontal
plane is defined as uh = [u, v].

T

The classical shallow water equations are based on the following assumptions:
(A1) the water in incompressible,
(A2) the flow velocity is uniform over the depth,
(A3) the pressure distribution is hydrostatic over the vertical,
(A4) the bottom slope is negligible.
In the modified shallow water equations, assumptions (A1–3) are retained, but

assumption (A4) is replaced with the following one:
(A5) the bottom slope may not be negligible, and the flow velocity vector is

collinear to the bottom tangent vector.
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Assumption (A4) may be translated mathematically as follows:

~w x; y; z; tð Þ ¼ w x; y; tð Þ ¼ uh x; y; tð Þ:rzb ¼ ffiu x; y; tð ÞS0;x ffi v x; y; tð ÞS0;y 8z
2 zb; zs½ � ð1Þ

where ~w x; y; z; tð Þ is the vertical component of the flow velocity vector. Equation (1)
has important consequences on the momentum source term in the conservation
form of the equations.

2.2 Conservation Form

In [1, 4], the governing equations are derived using variational principles. Owing
to the non-uniqueness of weak solutions (see [5] for the example of the shallow
water equations), it is not clear whether the conservation form established in [1, 4]
using variational principles remains valid in the presence of flow discontinuities.
For this reason, the governing equations are derived using the integral form of
mass and momentum balances over a control volume hereafter.

The continuity equation is derived by carrying out a mass balance over a
cylindrical control volume X, extending from the bottom to the free surface
(Fig. 2).

The boundary C of the control volume being vertical, its normal unit vector
n (oriented outwards) lies in the (x, y) plane. Mass conservation with assumption
(A1) gives, after simplification by the (constant) water density,

ot

Z
X

dXþ
Z
C

u:n dC ¼ 0 ð2Þ

Since the boundary is vertical, dC ¼ h ds, where s is the curvilinear coordinate
along the boundary, and dX ¼ h dA, where dA is the infinitesimal area in plan
view. Introducing these definitions into (2) yields

x

z

S0,x

1 h

zs 

z b

y

z

S0,y

1 h

z s 

z b

x

y

u

v u

Fig. 1 Notation vertical cross-section in the (x, z) plane (left), in the (y, z) plane (middle), and in
the (x, y) plane (right)
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ot

Z
X

h dAþ
Z
C

hu:n ds ¼ 0 ð3Þ

which yields the well-known differential form

othþr: huhð Þ ¼ 0 ð4Þ

where uh is the restriction of u to the horizontal plane.
The momentum equation is obtained from Euler’s theorem:

ot

Z
X

hudAþ
Z
C

u:nð Þhu ds ¼
Z
X

ghdAffi
Z
C

g

2
h2n dsþ R ð5Þ

where g = [0, 0, -g]T is the gravitational acceleration and R = [Rx, Ry, Rz]
T is the

reaction of the bottom. A major difference with the classical shallow water
equations is that owing to assumption (A5), the terms Rx and Ry in Eq. (5) are
modified. Projecting (5) onto the three axes, using the fact that R is collinear to the
normal unit vector to the bottom yields:

ot

Z
X

hudAþ
Z
C

qnu ds ¼ ffi
Z
C

g

2
h2nx dsþ RzS0;x ð6Þ

ot

Z
X

hvdAþ
Z
C

qnv ds ¼ ffi
Z
C

g

2
h2ny dsþ RzS0;y ð7Þ

ot

Z
X

hwdAþ
Z
C

qn uh:rzbð Þ ds ¼
Z
X

ffigh dAþ Rz ð8Þ

where qn is the normal unit discharge to the boundary. Equations (1) and (8) lead
to the following expression for Rz:

h

ds
dΓ

dA

dΩ

Fig. 2 Definition sketch for
the integration control
volume
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Rz ¼
Z
X

otðhwÞ þ ghð Þ dAþ
Z
C

qn uh:rzbð Þ ds

¼
Z
X

ghþ otðhuhÞ:rzbð Þ dAþ
Z
C

qn uh:rzbð Þ ds ð9Þ

It is easy to see from Eq. (9) that the assumption of a non-negligible bottom
slope introduces an additional vertical acceleration, thus yielding a modification in
the apparent gravitational acceleration. Substituting Eq. (9) into (6–7) leads to

ot

Z
X

h uþ uh:rzbS0;x
� �

dAþ
Z
C

uþ uh:rzbS0;x
� �

qn ds

¼ ffi
Z
C

g

2
h2nx dsþ

Z
X

ghS0;xdA ð10Þ

ot

Z
X

h vþ uþ uh:rzbS0;y
� �

dAþ
Z
C

vþ uh:rzbS0;y
� �

qn ds

¼ ffi
Z
C

g

2
h2ny ds

Z
X

ghS0;ydA ð11Þ

thus yielding the following system in differential conservation form:

otMUþ oxFx þ oyFy ¼ S ð12Þ

U �
h

q

r

2
64
3
75;Fx �

q

q2=hþ gh2=2þ uh:rzbS0;x
� �

q

qr=hþ uh:rzbS0;x
� �

r

2
64

3
75;Fy �

r

qr=hþ uh:rzbS0;y
� �

q

r2=hþ gh2=2þ uh:rzbS0;y
� �

r

2
64

3
75;

S �
0

ghS0;x

ghS0;y

2
64

3
75;M �

1 0 0

0 1þ S2
0;x S0;xS0;y

0 S0;xS0;y 1þ S2
0;y

2
64

3
75

ð13Þ

The appearance of the mass (or inertia) matrix M and two additional flux terms
is worth noting. It is responsible for the modification in the wave propagation
speeds as identified in [1, 4].

3 Shock-Capturing Finite Volume Discretization

The governing equations in conservation form (12–13) were implemented into a
shock-capturing, finite volume-based computational code for shallow water sim-
ulations, the SW2D platform. This platform may be used to solve the shallow
water equations with single porosity [6, 7] and multiple porosity [8], as well as the
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two-dimensional shallow water sensitivity equations [9]. The Godunov-based
solution techniques implemented in this implementation use MUSCL-based
reconstructions [10] over unstructured grids. For the sake of computational
rapidity, the eigenvector-based reconstruction [11] is used. It allows second-order
time integration within a single timestep. The fluxes are computed using a mod-
ified HLLC [12] solver [7].

In a first step, the classical shallow water equations are solved:

otUþ oxFSW
x þ oyFSW

y ¼ S ð14Þ

where FSW
x ¼ q; q2=hþ gh2=2; qr=h½ �T and FSW

y � r; qr=h; r2=hþ gh2=2½ �T are the
classical shallow water fluxes. The discretization technique is a standard one and
will not be described here for the sake of conciseness (see e.g., [13] for an
overview).

In a second step, the additional terms in the fluxes are accounted for

otUþ oxFNH
x þ oyFNH

y ¼ 0 ð15Þ

where FNH
x ¼ 0; uh:rzbS0;xq; uh:rzbS0;xr

ffl �T
and FNH

y ¼ 0; uh:rzbS0;yq; uh:
ffl

rzbS0;yr�T are the additional fluxes arising from the non-hydrostatic assumption.
Since these fluxes account for advection of the scalar quantity uh:rzb, a simple
upwind flux formula is used, with the mass flux computed in step 1 using the
modified Riemann solver.

In a third step, the influence of the inertia matrix is incorporated. This is done as
follows: denoted by Un

i the average cell value of U over the cell i at the time
level n. Solving Eqs. (14–15) over the timestep Dt yields a provisional solution

U
nþ1; 1ð Þ
i at the time level n. The final solution Unþ1

i at the end of the timestep (thus,
at time level n ? 1) is given by

Unþ1
i � Un

i þ Dt otU � Un
i þMffi1 U

nþ1;ð1Þ
i ffi Un

i

ffi �
ð16Þ

4 Application Examples

4.1 Steady-State Simulation

A steady-state experiment was carried out using the experimental facilities at the
SupAgro’Montpellier engineering school. A Venturi flume with variable bottom
was placed in a channel, and a constant discharge was prescribed upstream
(Fig. 3).

The Venturi flume was operated under undrowned conditions, so that the flow
velocity (hence the accelerations) be maximum. A constant discharge
Q = 40 L s-1 was prescribed, and the free surface elevation was measured every

202 V. Guinot et al.



5 cm along the Venturi flume and up to 50 cm upstream (the free surface elevation
was measured horizontally upstream of this distance).

Figure 4 (left) shows the longitudinal profile of the spectral radius of M, that is,
1þ S2

0;x (because S0,y = 0). Note that this profile, which is computed using an
approximation of the Venturi bottom slope between two measurement points, is an
experimental profile. It can bee seen that 1þ S2

0;x is significantly larger than unity
upstream of the narrow section. The free surface elevation profile may thus be
expected to be significantly different from that given by the classical shallow water
equations in the upstream part of the Venturi flume, while no significant difference
should be expected in the narrow and downstream parts.

The numerical solutions computed by solving both the classical and modified
shallow water equations are compared to the experimental free surface profiles in
Fig. 4 (right). It can be seen that under steady conditions, very little difference is
observed between the two numerical solutions. The difference between the sim-
ulated and computed free surface elevations in the narrow section of the Venturi

0,67 m

0,067 m

0,10 m

0,33 m

0,44 m

Fig. 3 Geometry of the Venturi flume used in the experiment. Top plan view. Bottom bird’s eye
view with a vertical scale magnified by a factor 5
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Fig. 4 Venturi flume. Left spectral radius of the mass/inertia matrix M as a function of the
longitudinal coordinate. Right bottom and free surface profiles for a steady discharge
Q = 40 L s-1
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flume is clearly due to non-hydrostatic pressure distribution stemming from the
strong vertical accelerations. However, these accelerations are mainly due to the
curvature of the free surface, not to the bottom gradient.

4.2 Transient Propagation over Undulated Bottom

In this test, a transient propagates into still water over a sawtooth-shaped bottom
(Fig. 5). The length and height of the bottom undulations are, respectively, 10 and
5 m, which means that the bottom slope is ± 45�. At t = 0, zs = 10 m and
u = v = 0 m s-1. At t [ 0, a constant unit discharge qb = 1 m2 s-1 is injected at
the left-hand boundary of the model. This creates a moving bore that propagates to
the right along the x-direction. When the bore reaches the sawtooth-shaped bottom,
part of the transient continues to the right, while part of it is reflected back to the
left. In simulating this type of transient (shock wave), a proper formulation of the
equations in conservation form is essential.

Figure 6 shows the simulated free surface elevations at various times using the
classical, hydrostatic, and non-hydrostatic shallow water Eq. (11). As predicted in
[1, 4], the two models are equivalent as long as the transient propagates over zero
bottom slopes (which is the case for x \ 0 m and t \ 5 s), while the non-hydro-
static model exhibits slower wave propagation speeds when the bottom slope is
non-zero; hence; the larger free surface elevations are observed compared to the
hydrostatic shallow water model.

5 Conclusions

A shock-capturing, finite volume implementation, has been presented for the non-
hydrostatic shallow water equations of [1, 4]. The governing equations in con-
servation form are easy to implement in the framework of classical time-stepping
procedures.

0.00

10.00

-25 0 25 50 75 100

z (m)

x (m)

Initial free surface

Bottom 

Fig. 5 Transient propagation
over undulated bottom.
Longitudinal profile of the
bottom and initial free surface
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Computational applications seem to indicate that the non-hydrostatic model
does not bring significant differences compared to the hydrostatic model when
steady flows are involved. In contrast, transient propagation seems to be more
strongly influenced by the hydrostatic/non-hydrostatic assumption. Experimental
validation is obviously needed to confirm the added value brought by this model.
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Fig. 6 Transient propagation over sawtooth-shaped bottom. Simulated water depths at various
times
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