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Abstract

max independent set is a paradigmatic problem in theoretical computer science and
numerous studies tackle its resolution by exact algorithms with non-trivial worst-case com-
plexity. The best such complexity is, to our knowledge, the O∗(1.1889n) algorithm claimed
by (J. M. Robson, Finding a maximum independent set in time O(2n/4), Technical Report
1251-01, LaBRI, Université de Bordeaux I, 2001) in his unpublished technical report. We
also quote the O∗(1.2210n) algorithm by (F. V. Fomin, F. Grandoni and D. Kratsch, Mea-

sure and conquer: a simple O(20.288n) independent set algorithm, Proc. SODA’06, pages
18–25, 2006), that is the best published result about max independent set. In this paper
we settle max independent set in (connected) graphs with “small” average degree, more
precisely with average degree at most 3, 4, 5 and 6. Dealing with exact computation of max

independent set in graphs of average degree at most 3, the best bound known is the re-
cent O∗(1.0977n) bound by (N. Bourgeois, B. Escoffier and V. Th. Paschos, An O∗(1.0977n)
exact algorithm for max independent set in sparse graphs, Proc. IWPEC’08, LNCS 5018,
pages 55–65, 2008). Here we improve this result down to O∗(1.0854n) by proposing finer
and more powerful reduction rules. We then propose a generic method showing how im-
provement of the worst-case complexity for max independent set in graphs of average
degree d entails improvement of it in any graph of average degree greater than d and, based
upon it, we tackle max independent set in graphs of average degree 4, 5 and 6. For
max independent set in graphs with average degree 4, we provide an upper complexity
bound of O∗(1.1571n), obviously still valid for graphs of maximum degree 4, that outper-
forms the best known bound of O∗(1.1713n) by (R. Beigel, Finding maximum independent

sets in sparse and general graphs, Proc. SODA’99, pages 856–857, 1999). For max indepen-

dent set in graphs of average degree at most 5 and 6, we provide bounds of O∗(1.1969n)
and O∗(1.2149n), respectively, that improve upon the corresponding bounds of O∗(1.2023n)
and O∗(1.2172n) in graphs of maximum degree 5 and 6 by (Fomin et al., 2006). Let us re-
mark that in the cases of graphs of average degree at most 3 and 4, our bounds outerperform
the O∗(1.1889n) claimed by (Robson, 2001).

1 Introduction

Very active research has been recently conducted around the development of optimal algorithms
for NP-hard problems with non-trivial worst-case complexity (see the seminal paper by [9] for a
survey on both methods used and results obtained). Among the problems studied in this field,
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max independent set (and particular versions of it) is one of those that have received a very
particular attention and made much effort spent.

Given a graph G = (V,E), max independent set consists of finding a maximum-size subset
V ′ ⊆ V such that for any (vi, vj) ∈ V ′ × V ′, (vi, vj) /∈ E. For this problem the best worst-case
complexity bound is, to our knowledge, the O∗(1.1889n) bound claimed by [8] in his unpublished
technical report. We also quote the O∗(1.2210n) algorithm by [5], that is the best published
result about max independent set.

Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers. In what follows,
using notations in [9], for an integer n, we express running-time bounds of the form p(n) · T (n)
as O∗(T (n)), the star meaning that we ignore polynomial factors. We denote by T (n) the worst-
case time required to exactly solve the considered combinatorial optimization problem on an
instance of size n. We recall (see, for instance, [4]) that, if it is possible to bound above T (n) by
a recurrence expression of the type T (n) 6

∑

T (n−ri)+O(p(n)), we have
∑

T (n−ri)+O(p(n)) =
O∗(α(r1, r2, . . .)

n) where α(r1, r2, . . .) is the largest root of the function f(x) = 1 − ∑

x−ri .
In this paper we settle max independent set in (connected) graphs with “small” average

degree, more precisely with average degree at most 3, 4, 5 and 6. Let us denote by max

independent set-3, -4, -5 and -6, the restrictions of max independent set to graphs of
maximum degree 3, 4, 5 and 6, respectively.

For max independent set-3, several algorithms have been devised, successively improv-
ing its worst case complexity. Let us quote the O∗(1.1259n) algorithm by [1], the O∗(1.1254)
algorithm by [3], the O∗(1.1120) algorithm by [6], the O∗(1.1034n) algorithm by [7] and, finally,
the recent O∗(1.0977n) algorithm by [2]. As a first result, in this article we improve the bound
of [2] down to O∗(1.0854n) by proposing finer and more powerful reduction rules (Section 2).
Our result remains valid also for graphs of average degree bounded by 3.

We then propose a generic method extending improvements of the worst-case complexity
for max independent set in graphs of average degree d to graphs of average degree greater
than d. This “bottom-up” method of carrying improvements of time-bounds for restrictive cases
of a problem to less restrictive ones (the latter including the former) is, as far as we know, a new
method that can be very useful for strengthening time-bounds not only for max independent

set but also for other graph-problems where local worst configurations appear when maximum
degree is small. For instance, when tackling max independent set in graphs of maximum
degree, say, at least 10, a simple tree-search based algorithm with a branching rule of the form
either don’t take a vertex of degree 10, or take it and remove it as well as its neighbors (in this
case 11 vertices are removed in total) guarantees an upper time-bound of O∗(1.1842n) dominating
so the bound by [8].

In order to informally sketch the method, suppose that one knows how to solve the problem
on graphs with average degree d in time O∗(γn

d ). Solving the problem on graphs with average
degree d′ > d is based upon two ideas: we first look for complexity expression of the form αmβn,
where α and β depend both on the input graph, (namely on its average degree) and on the
value γd (see for instance Section 3). In other words, the form of the complexity we look for is
parameterized by what we already know on graphs with smaller average degrees. Next, according
to this form, we identify particular values di (not necessarily integer, see for instance Section 5)
of the average degree that ensure that a “good” branching occurs. This allows to find a good
complexity for increasing values of the average degree. Note also that a particular interest of this
method lies in the fact that any improvement on the worst-case complexity on graphs of average
degree 3 immediately yields improvements for higher average degrees.

Using this method, for max independent set in graphs with average degree 4, we provide
an upper complexity bound of O∗(1.1571n) (Section 3). This bound remains valid for max

independent set-4 outperforming the best known bound of O∗(1.1713n) by [1].
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For max independent set in graphs of average degree 5 we provide a bound of O∗(1.1969n)
(Section 5) holding also for max independent set-5 and improving the O∗(1.2023n) bound
by [5] while, for average degree 6 we obtain a bound of O∗(1.2149n) (Section 5) also improving
the O∗(1.2172n) bound by [5]. Note that for degrees 5 and 6, the results are obtained by a direct
application of the method, without a long case by case branching analysis.

Let us remark that in the cases of max independent set in graphs of average degree 3
and 4, our bounds outperform the O∗(1.1889n) claimed by [8].

2 Graphs of average degree at most 3

We propose a branch and reduce algorithm for the maximum independent set problem on
graphs of average degree at most three. By local reduction rules and branching, vertices of the
input graph are assigned to be in the computed independent set or not. When a vertex is decided
to be not in the independent set it is removed from the problem instance, and when a vertex is
decided to be in the independent set it is removed together with all its neighbors.

Given a vertex v, we denote d(v) its degree, N(v) its neighborhood (v 6∈ N(v)), and N [v] =
N(v) ∪ {v}.

2.1 Simple reduction rules

Before branching our algorithm applies the following simple reduction rules.

• If the graph is not connected, recursively solve the problem on each connected component.
This solves connected components of constant size in constant time.

• Put isolated vertices in the independent set.

• Also put any degree 1 vertex in the independent set: any independent set containing its
neighbor can be modified in one containing the degree 1 vertex of the same size.

• If for any two adjacent vertices u, v: N(u) ⊆ N(v), then we say that u dominates v and we
remove v. Any maximum independent set containing v can be transformed into another
maximum independent set by replacing v by u.

• If there is a vertex v of degree 2 with neighbors u,w, we remove v and merge u and w.
This results in a new, possibly higher degree, vertex x. We refer to this process as vertex
folding. If x is in the computed independent set I, then return (I \ {x}) ∪ {u,w}, else
return (I \ {x}) ∪ {v}. This rule is justified by the fact that if we put any single neighbor
of v in I we could equally well have put v itself in I.

These reduction rules have been thoroughly described in many publications ([6, 2] for instance)
and therefore need no further explanation.

2.2 Small separators

Following the approach by [6] we add additional reduction rules that deal with separators of
size 1 and 2. To prove the worst case time bound we only need these small separators when one
component is of constant size. In this case the recursive call to the smallest component can be
done in constant time.

Let v be an articulation point of G and let C ⊂ V be the vertices of the smallest component
(vertices in C only have edges to v or to other vertices in C). If the algorithm finds such an
articulation point v it recursively computes a maximum independent set I6v in the subgraph G[C]
and Iv in the subgraph G[C ∪ {v}]. Notice that |Iv| can be at most 1 larger than |I 6v|, and if
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this is the case then v ∈ Iv. If these sizes are the same, the algorithm recursively computes the
maximum independent set I in G[V \ (C ∪ {v})] and returns I ∪ I 6v. This is correct since taking
v in the independent set restricts the possibilities in G[V \ (C ∪ {v})] more, while it does not
increase the maximum independent set in C ∪ {v}. And if |Iv | = 1 + |I 6v|, then the algorithm
computes the maximum independent set I in G[V \ C] and returns I ∪ (Iv \ {v}). This is also
correct since adding v to C increases the size of the maximum independent set in G[C] by 1, and
this choice is left to the recursive call on G[V \ C].

If the algorithm finds a two separator {u, v} of a constant size component C ⊂ V , then it
computes a maximum independent set in the four subgraphs induced by C and any combination
of vertices from the separator. Let I6v, 6u be the computed maximum independent set in G[C], Iv, 6u

the computed maximum independent set in G[C∪{v}], I 6v,u the computed maximum independent
set in G[C∪{u}], and Iv,u the computed maximum independent set in G[C∪{u, v}]. Now consider
the following possible cases:

• |Iv,u| = |I 6v, 6u| + 2, and hence |Iv, 6u| = |I 6v,u| = |I 6v, 6u| + 1. The algorithm now computes
a maximum independent set in G[V \ C] and returns I ∪ J where J is the set from
{I6v, 6u, Iv, 6u, I6v,u, Iv,u} which agrees with I on u and v.

• |Iv, 6u| = |I6v,u| = |Iv,u| = |I6v, 6u|+ 1. Let G′ be G[V \C] with an extra edge added between u
and v. Similar to the previous case, the algorithm computes a maximum independent set
in G′ and returns I ∪ J , where J is one of the four possible independent sets that agree on
u and v.

• |Iv, 6u| = |I 6v, 6u| and |I 6v,u| = |Iv,u| = |I 6v, 6u| + 1 (and the symmetric case). v can now safely
be discarded since it does not help increasing the size of the independent set in C ∪ {v}.
The algorithm recursively computes maximum independent set I in G[V \ (C ∪ {v}] and
returns I ∪ J , where J is the independent set from {I 6v, 6u, I6v,u} that agrees on u.

• |I 6v,u| = |Iv, 6u| = |I6v, 6u| and |Iv,u| = |I 6v, 6u| + 1. Let G′ be G[V \ C] with u and v merged into
a single vertex w. The algorithm makes a recursive call on G′ returning I. If w ∈ I then
we return 9I \ {w}) ∪ Iv,u and otherwise we return I ∪ I6v, 6u.

• |Iv,u| = |I 6v,u| = |Iv, 6u| = |I 6v, 6u|. Now it is safe to use I6v, 6u. We make a recursive call on
G[V \ (C ∪ {u, v})] resulting in I and return I ∪ I 6v, 6u.

In each case we decide whether discarding u and/or v is optimal. If they cannot be discarded,
we let the recursive call on the larger component decide on their membership of the maximum
independent set.

2.3 Measuring progress

Let G = (V,E) be a graph with n vertices and m edges. We use k = m − n as a measure
of complexity of the subproblems generated by our branching algorithm. This means that if
our algorithm runs in O∗(γm−n) time, this implies an O∗(γn/2) algorithm on connected average
degree 3 graphs. Actually, the graph does not need to be connected; it is just not allowed to
have too much connected components with a negative m−n value. Therefore, the result applies
to any average degree at most three graph that does not have connected components that are
trees. Also notice that none of the reduction rules (except removing isolated vertices) increase
this complexity measure.

Local configurations of the input graph are considered in order to decide on the branching.
In each branch, a subgraph G′ = (V ′, E′) of G is considered to be removed from the graph after
which the reduction rules are applied again. Let m′ be the number of edges in G′, n′ be the
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number of vertices in G′, and e be the number of end points in G′ of edges incident to vertices
of G′ but that are not in G′ themselves. In the analysis, we will refer to these last edges as
external edges. Note that G′ is not necessarily the subgraph induced by V ′, i.e., external edges
may be adjacent either to one or to two vertices in G′. Removing G′ results in a reduction of the
complexity measure by at least m′ + f(e) − n′. In the ideal case f(e) = e but a few exceptions
to this rule exist, which have to be checked at each branching. In each case we look at the
number of external edges e that lead to an overall reduction of the complexity measure. Suppose
for example that we want to take in the solution a vertex v1 which is adjacent to two degree 3
vertices v2 and v3. V ′ = {v1, v2, v3} and E′ = {(v1v2), (v1v3)} (the edges that we know for sure).
Since v2 and v3 have degree 3, e = 4. If v2 is not adjacent to v3 then f(e) = 4 more edges are
removed when deleting V ′. On the other hand, if v2 is adjacent to v3, then only f(e) = 3 more
edges are removed.

• Some external edges are incident to two vertices in G′. We refer to this as an extra adja-
cency. This can only occur when looking at local configurations larger than a single vertex
and its neighborhood (including edges). Adding these edges to G′ results in e being reduced
by 2, while the complexity measure only decreases by 1.

• After removing G′ from G, a number of connected components arise some of which are
trees. A tree has complexity −1 and is completely removed by the reduction rules. Let t
be the number of external edges incident to such a tree (t > 3 since reduction rules produce
a graph of minimum degree at least 3). For each tree that we add to G′ we decrease e by t
while increasing the complexity measure by only t − 1. So in the worst case e is decreased
by 3 and the complexity measure is decreased by 2.

• A special case arises when G′ is the neighborhood of a vertex v and there are no 4-cycles
in the graph. In this case there can be no induced trees because after the removal of G′ all
vertices are of degree at least two and hence f(e) = e.

2.4 Induced trees

In order to prevent tree components from being created, we add some additional reduction rules
and discuss some cases in which no trees can arise.

When discarding a single vertex, no tree can be created since vertex folding causes all vertices
in the instance graph to be of degree at least three. When taking a single vertex v in the
independent set and discarding all its neighbors, several cases can arise. If v is of degree more
than three, these cases are handled with the description of the branching. In this section, we
treat the cases where v is of degree 3 in a maximum degree 4 graph and distinguish on the
number of vertices in an induced tree.

Let a, b, c be the neighbors of v and notice that they all have at least one edge not incident
to v or the tree T (otherwise there exists a small separator). If the tree T consists of a number
of vertices equal to:

1. T is a single degree 3 vertex. We consider the following possibilities:

• There is an edge in N(v). It is now optimal to take v and T in the independent
set. We can take only two from a, b or c from which any one causes v and T to be
discarded, while taking v and T poses less restrictions on the remaining graph.

• Notice that either we take only two vertices among a, b, c, v, t and in this case taking
v and T is optimal, or we take three vertices and the only possibility is to take a, b
and c. We postpone this choice, but reduce the instance by removing v and T and
merging a, b and c to a single vertex.

5



2. T consists of two adjacent degree 3 vertices. Now at least one vertex is adjacent to both
tree vertices. Let this be a; now b and c are adjacent to one or both tree vertices.

• b and/or c is adjacent to both tree vertices. In this case, one of the tree vertices
dominates the other and this reduction rule fires.

• b and c are of degree 3. This generalizes the 1-tree case: after taking a it is optimal
to take b and c, and after discarding a it is optimal to take v and any one vertex of
T . Hence, we again remove v and T and merge a, b and c to a single vertex.

3. T consists of three vertices. At least two neighbors of v, say a and b, have two tree
neighbors (Figure 1). Consider the the maximum independent set I ′ in G[N [v] ∪ T ]. If
a ∈ I ′ and hence it’s neighbors are not, only b, c and one vertex from T remain from
which by adjacencies to T only two can be in I ′. The same goes with a and b switched.
And if we discard a and b, it is clear that it is optimal to pick v and two vertices from T
while discarding c. Over all three cases, the last never gives a smaller independent set in
G[N [v] ∪ T ], while posing the fewest restrictions on the rest of the graph; therefore we let
our algorithm pick these vertices.

b

v

T

c a

Figure 1: T consists of three vertices and at least two neighbors of v, a and b, have two tree
neighbors.

4. T consists of four vertices. Now all neighbors of v are of degree 4. By a similar argument,
it is optimal to pick v and a maximum independent set from G[T ]. Depending on the shape
of G[T ], this independent set can be of size two or three.

In a maximum degree 4 graph, the only remaining cases are when v has multiple non-adjacent
degree 4 neighbors and these trees consist of one or two vertices. In these cases, the creation of
trees is handled with the description of the branching.

We will later refer to a created tree components consisting of k vertices as a k-tree.

2.5 Branching on non-3-regular graphs

The worst case of our algorithm arises when the graph G is 3-regular. In this section, we
describe the branching of our algorithm when this is not the case. Observe that vertex folding
can produce non-3-regular graphs after deciding for a vertex v in a 3-regular graph whether v
goes in the maximum independent set or not. This observation is used later. Therefore, we need
the following lemma.

Lemma 1. Let T (k) be the number of subproblems generated when branching on a graph G of
complexity k. If G is not 3-regular then either:

1. G has a vertex of degree at least five and T (k) 6 T (k − 4) + T (k − 7).

2. G has a vertex of degree 4 that is part of a triangle or 4-cycle also containing at least one
degree 3 vertex, and there are no triangles or 4-cycles containing only degree 3 vertices,
then: T (k) 6 T (k − 5) + T (k − 6) or T (k) 6 2T (k − 8) + 2T (k − 12).
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3. G has a vertex of degree 4 that is part of a triangle containing at least one degree 3 vertex,
and there is no constraint on the degree 3 vertices, then: T (k) 6 T (k − 4) + T (k − 6) or
T (k) 6 2T (k − 8) + 2T (k − 12).

4. G has at least one vertex of degree 4, none of which satisfy the previous case, and T (k) 6

T (k − 3) + T (k − 7).

Or a better branching exists.

When referring to this lemma, often only the branching behavior of its worst case (case 4) is
used in the argument.

Before proving the lemma in a step by step fashion, we need the concept of a mirror ([5]).
A vertex m ∈ V is a mirror of v ∈ V if N(v) \ N(m) forms a clique. Mirrors are exploited by
our algorithm in the following way: whenever we branch on v and discard it at least two of the
neighbors of v should be in the maximum independent set. Namely, if we take only one, we could
equally well have picked v which is done in the other branch. Since we can take only one vertex
form the clique N(v)\N(m), a vertex from N(v)∩N(m) must be in the independent set. Hence
we can safely discard m also without changing the size of the maximum independent set.

Notice that the only 4-cycles in a maximum degree 4 graph in which no degree 3 vertex has
a mirror consists of four degree 4 vertices. These facts are exploited when we try to limit the
number of tree components created by branching.

For the proof we also need the general observation that for any T (k− r1) + T (k− r2) branch
with r1 < r2, a T (k− r1 − c) + T (k− r2 + c) branch is a better branch as long as r1 + c 6 r2 − c.

The proof will be divided over several subsections corresponding to the various local config-
urations to which the lemma applies.

2.5.1 Vertices of degree at least five

Let v be a vertex of degree at least five (Figure 2). Our algorithm branches by either taking v in
the independent set and discarding N(v) or discarding v. If v is discarded, one vertex is removed
and at least five edges are removed forming a subproblem of complexity no more than k− 4. If v
is put in the independent set, N [v] is removed. In the worst case all neighbors of v have degree
3. By domination all vertices in N(v) have at least one neighbor outside of N [v]. Together this
leads to at most two edges in G[N(v)] and at least six external edges. If no trees are created
these 6 edges and the 7 edges in G[N [v]] minus 6 vertices lead to the required size reduction of
k − 7. And if any neighbor of v has degree 4 or more, or there are fewer edges in G[N(v)], then
the number of external edges is large enough to guarantee this size reduction of k − 7.

t

v

Figure 2: Vertices of degree at least five.

What remains is to handle the special case where all vertices in N(v) are of degree 3, there
are six external edges, and a tree is created. This tree will be a single degree 3 vertex t, since
otherwise there exists a two separator in N(v). Notice that v is a mirror of t. We branch on
t. Taking t leads to the removal of 4 vertices and 9 edges: T (k − 5). And discarding t and v
leads to the removal of 8 edges and two vertices: T (k − 6). In the last case there again can
be trees, but this implies that the entire component is of constant size. This branching with
T (k) 6 T (k − 5) + T (k − 6) is better than the required T (k) 6 T (k − 4) + T (k − 7).
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2.5.2 Triangles with two degree 4 vertices and a degree 3 vertex

Let x, y, w be a triangle (3-cycle) in the graph with d(x) = d(y) = 4 and d(w) = 3, also let v
be the third neighbor of w. Notice that discarding v causes domination which results in w being
taken in the maximum independent set. Our goal is to show that there always exist an efficient
enough branching.

If v is of degree 4, discarding v and taking w leads to the removal 11 edges and 4 vertices:
T (k−7). Notice that tree components cannot be created because these would have been removed
by the preprocessing since there is an edge in G[N(w)]. Taking v and removing N [v] results in
the removal of 3 edges incident to w and at least 8 more edges and 5 vertices. If in this last case
all neighbors of v are of degree 3, then there are at most 6 external edges and hence there can be
at most one tree. Otherwise any degree 4 neighbors of v cause even more edges to be removed,
compensating for any possible tree. This results in T (k − 5): k − 6 with a +1 for the tree.

If v is of degree 3 (Figure 3), discarding v and taking w leads to the removal of of at least
10 edges and 4 vertices: T (k − 6). Now if also v is not part of any triangle or has a degree 4
neighbor (case 2 of the lemma) taking v removes 9 edges and 4 vertices: T (k − 5). And if v
is part of a triangle of degree 3 vertices (case 3 of the lemma) taking v removes 8 edges and 4
vertices T (k − 4).

y

vw

x

Figure 3: Vertex v has degree 3.

2.5.3 Triangles with one degree 4 vertex and two degree 3 vertices

When there is only one degree 4 vertex, the situation gets a lot more complicated. Let x, a and
b be the triangle vertices with d(x) = 4 and d(a) = d(b) = 3, also let v be the third neighbor of
a, and let w be the third neighbor of b (Figure 4). v and w are not adjacent to x and v 6= w
by domination. If v and w are adjacent, we can safely discard x reducing the graph. This
last fact follows from the fact that if we pick v we would also pick b, and if we discard v, its
mirror b is also discarded which results in a being picked. In both cases a neighbor of x is in a
maximum independent set and hence x can safely be discarded. So we assume that v and w are
non-adjacent.

If v or w, say v, is of degree 4, taking v removes at least 11 edges and 5 vertices, but since
there are 6 external edges there can be a tree: T (k − 5). And if there are more external edges
(less edges in N(v)) the number of edges removed increases. Discarding v and by domination
taking a leads to the removal of 10 edges and 4 vertices: T (k− 6). Although in the last case a is
a degree 3 vertex with two degree 4 neighbors, there cannot be any trees since there is an edge
in G[N(a)]: a tree would fire a reduction rule for trees. So from now on we can assume that v
and w are of degree 3.

Consider the case where v or w, say v, has a degree 4 neighbor y (Figure 5). Suppose that y
does not form a triangle with v, then taking v removes at least 10 edges and 4 vertices: T (k−6).
Discarding v and by domination taking a removes at least 9 edges and 4 vertices: T (k − 5). If y
does from a triangle with v we branch on w. If w has a degree 4 neighbor or is not involved in
a triangle (case 2 of the lemma), then taking w results as before in T (k − 5). Discarding w by
domination results in taking b which again by dominating results in taking v. In total 15 edges
are removed from which 7 external edges and 7 vertices. Because of the separators there can
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w

x

v

a b

Figure 4: Triangles with one degree 4 vertex and two degree 3 vertices.

be at most 2 extra adjacencies in the worst case leaving 3 external edges and T (k − 6). Note
that trees are beneficial over extra adjacencies. This leaves the case where w has only degree 3
neighbors with which it forms a triangle (case 3 of the lemma). In this case taking w only leads
to T (k − 4), and T (k) 6 T (k − 4) + T (k − 6) is enough. So we can assume v and w to be of
degree 3 and have no degree 4 neighbors.

y

x

v

a b

w

Figure 5: Vertex v, has a degree 4 neighbor y.

Suppose that v or w, say v, is part of a triangle (Figure 6). Notice that we are now in case
3 of the lemma. We branch on w. If we take w the worst case arises when w is also part of a
triangle; 8 edges and 4 vertices are removed: T (k−4). And if we discard w by domination b and
v are put in the independent set removing a total of at least 14 edges from which 6 external and
7 vertices. Because of the small separator rules, the external edges can form at most one extra
adjacency or tree leading to T (k − 6). So at this point we can also assume that v and w are not
part of any triangle.

a

x

b

w
v

Figure 6: Vertex v is part of a triangle.

Suppose v or w, say w, has a neighbor u 6= a, b that is adjacent to x (Figure 7). We branch
on v and if we discard v, a is picked by domination and we still have T (k − 5). If we take v
we have the situation that b becomes a degree 2 vertex which neighbors x and w are folded to
a single vertex. Notice that both x and w are adjacent to u and hence this folding removes an
additional edge: T (k− 6). The only case in which the above does not holds is when v and w are
both a neighbor of u. We reduce this exceptional case by noting that a tree reduction rule fires
when considering branching on u (without actually branching on u of course). This is the rule
dealing with u having one degree 4 neighbor and a 2-tree {a, b}. Hence, now we can also assume
that v and w have no neighbors besides a and b that are adjacent x.
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Figure 7: Vertex w, has a neighbor u 6= a, b that is adjacent to x.

We conclude this subsection by describing three more branches depending on the number of
vertices in X = (N(w) ∪ N(v)) \ {a, b}.

Assume that there exist two vertices u and u′ such that v and w are adjacent to both of
them (Figure 8). Notice that if we take v in the independent set it is optimal to also pick w and
vice versa. Hence we branch, taking both v and w or discarding both. If we take both v and
w, 11 edges are removed and 6 vertices: T (k − 5). If we discard both v and w we can take a
in the independent set and remove 11 edges and 5 vertices: T (k − 6). When taking both v and
w there can be not trees since there are only 4 external edges. When discarding both v and w
two tree leaves u and u′ are formed, but they cannot form a tree since their adjacency results
in a one separator, and adjacency to the only possibly degree 2 vertices (neighbors of x) results
in a constant size component or a small separator. Also there cannot be any extra adjacencies
because then there exists a small separator.

v

x

u u’

b a

w

Figure 8: Vertices v and w are adjacent to both of u and u′.

If |X| = 3, let u ∈ X be the common neighbor of v and w and let t ∈ X be the third
neighbor of w (Figure 9). We branch on t. If we take t in the independent set we also take b by
domination. This results in the removal of 7 vertices and 15 edges if t has a degree 4 neighbor
or there is no triangle involving t, otherwise only 14 edges are removed. Since there can be at
most 8 external edges with this number of removed edges, and hence at most 2 extra adjacencies
or trees we have T (k − 6) or T (k − 5). If we discard t, 3 edges and 1 vertex are removed and
the folding of w results in a new degree 4 vertex [bu]. This new vertex can be discarded directly
since it is dominated by a resulting in an additional removal of 4 edges and 1 vertex. This leads
to T (k − 5) in total. Furthermore, there cannot be any induced trees since there can be at most
one vertex of degree less than two (adjacent to t and u, but no to w) which cannot become an
isolated vertex. Depending on whether t is in a triangle we are in case 2 or 3 or the lemma and
we have a good enough branching.

If |X| = 4, all neighbors of v and w are disjoint. We branch on v. If we take v, we remove
9 edges and 4 vertices, and if we discard v, we take a and again remove 9 edges and 4 vertices.
Also notice that if we take v, b is folded resulting in a degree four vertex [xw]. And if we take
a, w is folded resulting in the removal of an extra edge if its neighbors have another common
neighbor or also in a degree 4 vertex. In the first case we have T (k) 6 T (k − 5) + T (k − 6), and
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Figure 9: The case |X| = 3.

in the second case we inductively apply our lemma to both generated branches. This leads to
the T (k) 6 2T (k − 8) + 2T (k − 12) in the lemma.

Remark that T (k) 6 T (k − 5) + T (k − 5) has a smaller solution than T (k) 6 2T (k − 8) +
2T (k − 12). However, after a bad branch in a 3-regular graph the second gives a better solution
when applied to one of both branches. This is because it is a composition of three branchings
that are all a lot better than the bad 3-regular graph branching.

2.5.4 4-cycles in which a degree 4 vertex is a mirror of a degree 3 vertex

Let x be the degree 4 vertex that is a mirror of the degree three vertex v, let a and b be their
common neighbors, and let w be the third neighbor of v (Figure 10). If we branch on v and take
v, we remove at least 9 edges and 4 vertices, and when we discard v and also x because it is a
mirror of v, we remove 7 edges and 2 vertices: T (k) 6 T (k− 5)+ T (k− 5). We show that in any
case we can always find an extra complexity reduction in one of both branches leading to the
required result. Notice that if we discard v and x, there can be no trees since the only possible
leaves created are a and b. These two vertices may not be adjacent by dominance. And if they
form a tree with any vertex that used to be adjacent to x or v, there would have existed a small
separator or there is no tree at all. Also, any extra adjacency results in triangles involving degree
3 and four vertices which are handled in the previous subsection.

x

a b

vu u’

Figure 10: Vertex x is a degree 4 vertex that is a mirror of the degree three vertex v.

First assume that a, b or w is of degree 4, then T (k−6) when taking v. Since v is of degree 3
there can only be trees if two or more vertices from {a, b, w} are of degree 4. But in this case even
more edges are removed, because a, b and w are non-adjacent to each other, which compensates
for the creation of a tree. So we can assume that a, b and w are of degree 3.

If both a and b have another common neighbor y 6= v, then the graph can be reduced without
branching. Indeed, among a, b, v, x, y, in an optimum solution either we take 2 vertices (hence
a, b) or three vertices (hence v, x, y). We can replace the subgraph induced by a, b, v, x, y by one
vertex that we link to the other neighbors of v, x, y. So we can assume that a and b do not have
more than two common neighbors.

Let u and u′ be the third neighbors of a and b, respectively. When discarding v and x, both
a and b are taken in the independent set and u and u′ are discarded also. This means that 13
edges form which 7 external edges and 6 vertices are removed. First assume that u and u′ are
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vertices of degree three. The only possible adjacencies are those between u and u′, or u or u′

and v. But there can be only one adjacency because if we take two we have a small separator.
So we end up removing 12 edges from which 5 external edges and 6 vertices which cannot create
trees: T (k− 6). Now suppose that u or u′ is of degree 4 and notice that the extra edges removed
compensate for any possible extra adjacencies or created tree components.

2.5.5 4-cycles that contain degree 3 and 4 vertices, while no degree 4 vertex is a

mirror of a degree 3 vertex

This can only be the case if the cycle consists of two degree 4 vertices x, y and two degree 3
vertices u, v with x and y not adjacent. There are no other adjacencies than the cycle between
these vertices by cases presented in previous subsections.

z

v

u

yx

Figure 11: Vertex v, has a third degree 4 neighbor z.

Suppose that either u or v, say v, has a third degree 4 neighbor z (Figure 11). Notice that
this neighbor cannot be adjacent to x or y. If we branch on v and take v, we remove 12 edges
and 4 vertices, and if we discard v and its mirror u we remove 6 edges and 2 vertices. So if no
trees are created, we have: T (k) 6 T (k − 8) + T (k − 4). Because of the reduction rules a tree
can consist of at most two vertices. Also at most one tree can be formed, otherwise it would be
optimal to pick v and a maximum independent sets in each created tree. Consider both cases:

1. A tree consisting of 1 vertex. Since this one vertex is a degree 3 vertex and a mirror we
assume without loss of generality that it is u. Taking v now leads to T (k − 7), while
discarding it results in T (k − 4) and x, y and z to be of degree 2. If any of these vertices
are in another 4-cycle after discarding u and v, folding causes an additional edge to be
removed: T (k) 6 T (k − 5) + T (k − 7). And if not, degree 4 vertices are created because
x, y and w are non-adjacent. We inductively apply the lemma to this case and obtain
T (k) 6 2T (k − 7) + T (k − 11).

2. Trees consisting of 2 vertices. If any vertex in the tree is of degree 4 it dominates the other.
So both vertices are of degree 3. But then a vertex from x, y and w forms a triangle with
this tree which was covered by branching rules in previous subsections.

All the branching rules described above give a better bound on the running time of our algorithm
than required by the lemma. So we can assume that u and v have no degree 4 neighbors not on
the 4-cycle.

Let w be the degree 3 neighbor of v. It is not adjacent to u since that would imply that x and
y are mirrors of w. Since the w cannot be adjacent to x or y, taking v results in the removal of 11
edges and 4 vertices: T (k−7). Discarding v and u leads to the removal of 6 edges and 2 vertices:
T (k − 4). Because in the last case x and y will be folded and they are not adjacent to other
created degree 2 vertices (then there would be triangles involving degree 3 and four vertices), a
vertex of degree at least four is created or at least one additional edge is removed. This again
leads to T (k) 6 T (k − 5) + T (k − 7) or T (k) 6 2T (k − 7) + T (k − 11) by applying the lemma
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inductively. We do require here that there are no trees created. But If a tree is created we follow
the above reasoning: this can only be a single tree consisting of one vertex (two vertices lead to
triangles with degree and four vertices) and there can be only one such tree. In this case w is
adjacent to the tree and to v and therefore has x and y as a mirror and we refer to the previous
subsection.

2.5.6 A degree 4 vertex that is not involved in any triangle or 4-cycle with any

degree 3 vertex

Let x be this vertex. If all its neighbors are of degree 3, branching on it results in T (k) 6

T (k−7)+T (k−3). In this case there cannot be any created trees for any tree leaf is of degree at
least three before branching and therefore must have at least two neighbors in N(x) to become
a leaf. But in this last case, there exist four cycles with degree 3 and four vertices on it which
contradicts our assumption.

If x has degree 4 neighbors, the number of edges removed increases and there can still be
no trees unless at least three neighbors of x are of degree 4 and every tree leaf vertex originally
was a degree 4 vertex. If x has three neighbors of degree 4 there are at least 13 edges removed,
in which case there are 7 external edges. This can lead to at most one tree and T (k − 7) as
required. If there are more external edges, there will also be more edges removed keeping this
reduction. Finally if x has four degree 4 neighbors, we remove at least 12 edges from which 4
external edges again leading to T (k − 7). Here any tree implies more external edges and hence
more edges removed also keeping this reduction.

Putting all the above together completes the proof of Lemma 1.

2.6 Branching on 3-regular graphs with triangles or 4-cycles

Whenever the algorithm encounters a 3-regular graph that contains triangles or 4-cycles we can
still do better than our worst case. This is settled by a second lemma.

Lemma 2. Let T (k) be the number of subproblems generated when branching on a graph G of
complexity k. If G is 3-regular and contains a triangle or 4-cycle, then T (k) 6 T (k−4)+T (k−5)
or a better branching exists.

We will now prove this lemma.

2.6.1 3-regular graphs that contain a triangle

Let a, b, c be the triangle vertices. Assume that one of these three vertices, say a, has a neighbor v
not in any triangle in the graph. The algorithm branches on v. If v is included in the independent
set, 9 edges and 4 vertices are removed: T (k − 5). And if v is discarded and by domination a is
put in the independent set, 8 edges and 4 vertices are removed: T (k − 4).

This gives the required branching unless all three triangle vertices only have neighbors that
also form triangles. In that case we branch on a. If a is discarded, domination forces v in the
independent set which symmetric to the above resulting in T (k − 4). When a is included in the
independent set, b and c are discarded which by domination results in the third neighbors of b
and c to be put in the independent set. Now a total of 18 edges from which 6 external edges and
10 vertices are removed. Adding the at most one extra adjacency or tree this results in T (k − 7)
which is more than enough.

2.6.2 Triangle free 3-regular graphs that contain a 4-cycle

Let v be a vertex on the 4-cycle. Observe that vertices opposite to v on a 4-cycle are mirrors
of v. If we branch on v, triangle freeness results in the removal of 9 edges and 4 vertices when
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taking v: T (k−5). When discarding v, its mirrors can also be discarded resulting in the removal
of 6 edges and 2 vertices if v has only one mirror and possibly more if v has two or three mirrors:
T (k − 4). Notice that two degree 1 vertices are formed that are not part of a tree. This is
because their adjacency implies domination, and if they are adjacent to degree 2 vertices a small
separator exists. When v has more than one mirror, single vertex trees can be created in N(v).
These extra mirrors compensate more than enough to maintain our T (k − 4).

The proof of Lemma 2 is now completed.

2.7 Branching on 3-regular graphs without triangles or 4-cycles

Having gone through enough preparation, we are now ready for the third lemma on the branching
behavior of our algorithm. Taken together, these lemmata will directly result in the claimed
running time.

Lemma 3. Let T (k) be the number of subproblems generated when branching on a graph G of
complexity k. If G is 3-regular and contains no triangles or 4-cycles, then branching on any
vertex results in T (k) 6 T2(k − 2) + T4(k − 5), where T2 and T4 correspond to situations 2 and
4 from lemma 1, respectively, or a better branching exists.

This leads to the worst case recurrence relation T (k) 6 T (k − 8) + 2T (k − 10) + T (k − 12) +
2T (k − 14) and a running time of O∗(1.17802k).

Taking v in the independent set results in T (k − 5), and discarding v results in T (k − 2).
Clearly this branching is not good enough and we will show that we can always do better.

Before we consider the subcases involved in this lemma, observe what happens when branch-
ing on v. Let x, y, z be the neighbors of v. Because of triangle and 4-cycle freeness they have
disjoint neighbors; let N(x) = {v, a, b}, N(y) = {v, c, d} and N(z) = {v, e, f}. Notice that
there cannot be any adjacencies within these neighborhoods, but there can be adjacencies be-
tween a, . . . , f if they are neighbors of different vertices in N(v). When v is discarded, these
neighborhoods (N(x), N(y) and N(z)) are merged to single vertices. Their degrees and relative
positions in the reduced graph depends on the adjacencies between vertices in these neighbor-
hoods. Consider the different possible number of adjacencies; we number cases to deal with
later:

0. If there is no adjacency between N(x), N(y) and N(z), each neighborhood is merged to a
degree 4 vertex none of which are adjacent in the reduced graph when discarding v (1).

1. If there is one adjacency between N(x), N(y) and N(z), discarding v results in three degree
4 vertices only two of which are adjacent (2).

2. If there are two adjacencies between N(x), N(y) and N(z), these can either be between the
same neighborhoods or involving all three neighborhoods. In the first case, an extra edge
is removed because the merged vertices cannot have two edges between them. This results
in their degrees to be only three, while the other neighborhood is merged to a non-adjacent
degree 4 vertex (4). In the second case, we have three degree 4 vertices from which one is
adjacent to the other two but they do not forming a triangle. We will call this a path of
three degree 4 vertices (3).

3. If there are three adjacencies between N(x), N(y) and N(z), either there are multiple
adjacencies between the neighborhoods as in the previous case resulting in the removal of
an extra edge (5), or a clique of three degree 4 vertices is formed (6).
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4. If there are four adjacencies between N(x), N(y) and N(z), there are either two double
adjacencies resulting in two additional edges being removed and T (k) 6 T (k−4)+T (k−5),
or a single double adjacency and two single adjacencies. In the second case these adjacencies
result in two folded degree 3 vertices forming a triangle with a degree 4 vertex. Here we
can apply case 3 of Lemma 1 obtaining: T (k) 6 T (k − 5) + T (k − 3− 4) + T (k − 3− 6) =
T (k − 5) + T (k − 7) + T (k − 9).

5. If there are five adjacencies between N(x), N(y) and N(z), we have a two separator and
are done.

6. If there are six adjacencies between N(x), N(y) and N(z), we have a constant size com-
ponent and are done too.

Notice that these adjacencies also have meaning when taking v in the independent set. Namely,
if these neighborhoods are non-adjacent, triangle and 4-cycle freeness also ensures the creation
of degree 4 vertices after taking v. However, if for example a and f are adjacent, then taking
v results in these vertices to become two adjacent degree 2 vertices. In this case, these vertices
are merged resulting in nothing more than an edge between their other neighbors replacing the
old edges from these neighbors to a and f . In the case of three adjacencies without double
adjacencies (6), this can very well lead to a new 3-regular graph without triangles or 4-cycles.
In any other case, we can apply Lemma 1 also to the branch in which we take v since a degree
4 vertex is formed This is the T4(k − 5) term in the lemma.

The six numbered cases are handled in more detail in the rest of this section. We know
that in each case the reduced graph after discarding v has at most three degree 4 vertices; all
other vertices are of degree 3. Because the graph is triangle and 4-cycle free before applying this
lemma, a new triangle or 4-cycle created after discarding v must involve the vertices obtained by
folding. And, if any of the degree 4 vertices form a triangle or 4-cycle with any degree 3 vertex,
we apply Lemma 1. If no degree 3 vertices are created by folding, this results in the required
branch of T2(k−2), otherwise at least one extra edge is removed and we need case 3 of Lemma 1
resulting in even better branches: T (k − 3 − 4) + T (k − 3 − 6). Therefore, we can assume that
no triangles nor 4-cycles involving both degree 3 and four vertices exist.

2.7.1 Three non-adjacent degree 4 vertices

Following the reasoning for the general case, we apply Lemma 1 to the case where we take
v. A T (k) 6 T4(k − 3) + T (k − 9) branch applied to the graph of complexity k − 2 after
discarding v, where T4(k − 3) means we apply Lemma’s 1 case 4 also here, leads to T (k) 6

2T (k − 8) + T (k − 11) + 2T (k − 12) which is sufficient.
The T (k) 6 T4(k− 3)+ T (k− 9) branch follows from exploiting a little bit more information

we have about the maximum independent set we need to compute in this branch than just the
reduced graph. This reasoning is quite similar to exploiting mirrors. Namely, if v is discarded we
know that we need to pick at least two of the three neighbors of v: if we pick only one we could
equally well have taken v which is done in the other branch already. This observation becomes
slightly more complicated because we just folded the neighbors of v. Consider the vertex x′ that
is the result of folding vertex x. The original vertex x is taken in the independent set if and only
if x′ is discarded in the reduced graph. So, the fact that we needed to pick at least two vertices
from N(v) results in us being allowed to pick at most one vertex from the three degree 4 vertices
created by folding the neighbors of v. Hence, picking any vertex from the three folded vertices
allows us to discard the other two. The above discussion is illustrated in Figure 12.

Let x′, y′ and z′ be the degree 4 vertices resulting from folding x, y and z, respectively. If we
discard x′, we remove 4 edges and 1 vertex. Moreover, after discarding x′, at least one degree
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Figure 12:

4 vertex remains in the graph resulting in T4(k − 3), or at least one extra edge is removed by
folding resulting in T (k − 4) which in this case is even better.

When we take x′, which has four degree 3 neighbors, we can discard these and both y′ and
z′ resulting in the removal of 20 edges from which 16 external edges and 7 vertices. Because y′

and z′ are non adjacent and they can only be adjacent to a single neighbor of x′ (or a 4-cycle
would exist), there are at most two extra adjacencies. In this case there are 12 external edges
left, but these can only form very specific trees leading to T (k− 20+7+2+2) = T (k− 9). This
is because every tree vertex t can only have neighbors that are distance 3 away from each other
in G[V \ {t}] because of the triangle and 4-cycle freeness. The only 1-trees that can be created
are adjacent to both y′ and z′ and a neighbor of x′ that is not adjacent to either y′ or z′. There
can be at most one such trees, since two 1-trees adjacent to two of the same vertices also create
a 4-cycle. And, it can only exist if y′ and z′ are adjacent to different neighbors of x′. This results
in 9 remaining external edges that because of the small separators can form only one larger tree.
If there is no 1-tree, larger trees use more external edges and hence there can be at most two of
them also resulting in T (k − 9).

If there is at most one extra adjacency, we remove either 19 edges from which 14 external
edges or 20 edges from which 16 external edges and 7 vertices. Since each tree uses at least three
external edges this results in T (k − 9) or better.

2.7.2 Three degree 4 vertices only two of which are adjacent

This argument goes in entirely the same way. Let x′, y′ and z′ be the result of folding x, y and
z after discarding v. Without loss of generality, assume that x′ is adjacent to y′ and that z′ is
not adjacent to any of the other two. Again we can apply Lemma 1 to the case where we take v.
Combined with a T (k) 6 T4(k−3)+T (k−9) branch or an even better T (k) 6 T (k−4)+T (k−9)
branch after discarding v, this leads to a worst case of T (k) 6 2T (k−8)+T (k−11)+2T (k−12).

If we discard x′, we remove 4 edges and 1 vertex. Now, either a degree 4 vertex remains
giving the T4(k−3), or an extra edge is removed by folding giving T (k−4). If we take x′, we can
also discard z′ resulting in the removal of 17 edges from which 13 external edges and 6 vertices.
In the last case there can be at most one extra adjacency, namely between z′ and a degree 3
neighbor of x′. Any tree vertex must again be adjacent to vertices that are distance at least 3
away from each other in this structure. This can only be both z′ and any neighbor of x′. Hence
there cannot be any 1-tree: it would need two neighbors of x′ which causes a 4-cycle. Actually
there can be no tree at all since every tree leaf needs to be adjacent to z′ in order to avoid
4-cycles in N(x′), but this also implies a 4-cycle. Hence we have T (k − 17 + 6 + 1) = T (k − 10).

If there is no extra adjacency, there can again be no 1-tree since it can be adjacent to at most
one neighbor of x′. Larger trees remove enough external edges to prove T (k − 9).

2.7.3 Three degree 4 vertices on a path

Again, we can apply Lemma 1 to the case where we take v which, combined with a T (k) 6 T4(k−
3)+T (k−9) or better branch after discarding v, leads to T (k) 6 2T (k−8)+T (k−11)+2T (k−12).
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Let x′, y′ and z′ be the result of folding x, y and z after discarding v, let y′ be adjacent to both
x′ and z′, and let x′ and z′ be non-adjacent.

If we discard x′, we remove 4 edges and 1 vertex while z′ remains of degree 4 giving the
T4(k − 3). If we take x′, we can also discard z′ resulting in the removal of 16 edges from which
11 external edges and 6 vertices. Notice that in the last branch there cannot be any extra
adjacencies since they imply triangles or 4-cycles. There cannot be any trees consisting of 1 or
2 vertices also because tree leaves can only be adjacent to z′ and a degree 3 neighbor of x′. Any
larger tree decreases the number of external edges enough to obtain T (k−16+6+1) = T (k−9).

2.7.4 Folding results in two degree 3 vertices and a non-adjacent a degree 4 vertex

We now have a graph of complexity k− 3 with two degree 3 vertices y′, z′ and a degree 4 vertex
x′ which are all the result of folding. Furthermore, y′ and z′ are adjacent but not adjacent to x′.
Of these vertices x′ cannot be involved in any triangle or 4-cycle, or we apply Lemma’s 1 case 3
as discussed with the general approach. Different from before, vertices y′ and z′ can be involved
in these local structures.

We branch on x′. This leads to T (k−3−3) when discarding x′. Similar to the above cases, we
can still discard both y′ and z′ when taking x′ in the independent set. Therefore, taking x′ leads
to removing 17 edges from which 12 external edges and 7 vertices. If there is an extra adjacency,
this is between y′ or z′ and a neighbor of x′. In this case, there can be at most one tree since y′

and z′ together have only 3 external edges left and every tree leaf can be adjacent to at most one
neighbor of x′ or a 4-cycle with x′ would exist. This leads to T (k−3−17+7+1+1) = T (k−11).
If there is no extra adjacency, every tree leaf can still be adjacent to no more than one neighbor
of x′, which together with the 4 external edges of y′ and z′ lead to at most 2 trees and T (k−11).

Together with the T (k − 5) branch for taking v, this leads to T (k) 6 T (k − 5) + T (k − 6) +
T (k − 11), which is good enough.

2.7.5 Folding results in two degree 3 vertices adjacent to a degree 4 vertex

We again have a graph of complexity k−3 with two degree 3 vertices y′, z′ and a degree 4 vertex
x′ which are all the result of folding. Furthermore, y′ is adjacent to x′ and z′ while x′ and z′ are
non-adjacent. Of these vertices, x′ cannot be involved in any triangle or 4-cycle since we then
apply Lemma’s 1 case 3 as discussed with the general approach.

Similar to the previous case, we branch on x′ giving T (k − 3 − 3) when discarding x′, and
we allow y′ and z′ to be discarded when taking x′. This leads to the removal of 14 edges and 6
vertices in the second branch and we have T (k) 6 T (k − 5) + T (k − 6) + T (k − 11) as before
unless there are trees.

If there are trees, observe that every tree leaf can again be adjacent to at most one neighbor
of x′, and hence all tree leaves must be adjacent to z′. Also observe that the third neighbor of
y′ cannot be adjacent to x′ or any of its neighbors. Since z′ has only two external edges, this
means the only tree that can exist is a 2-tree with both leaves connected to z′ and a different
neighbor of x′ not equal to y′ (or z dominates a tree vertex). Notice that this implies a triangle
involving the tree and z′. In this case we branch on y′. When taking y′, we remove 10 edges and
4 vertices: T (k − 6). And when discarding y′, the tree forms a triangle in which by dominance
z′ is taken in the independent set. Since we can take at most one of the folded vertices, this also
results in x′ being discarded. In total, this results in the removal of 11 edges and 4 vertices, and
in this very specific structure no trees can exist: T (k − 6).
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2.7.6 Three degree 4 vertices that form a clique

The fact that we can take at most one vertex from x′, y′ and z′ is superfluous information here
since they already form a clique. Also, as we discussed with the general case, we cannot use
Lemma 1 after taking v in the independent set. Hence we cannot apply anything from the
general approach here and this looks like a very hard case. However, this case is easy when
observing the following.

Let v, x, y, z and a, . . . , f be as before. Let without loss of generality b be adjacent to c,
d be adjacent to e, f be adjacent to a, and let non of the vertices in {a, . . . , f} be adjacent to
each other. Notice that when we discard v this leads to the required adjacencies and triangle of
degree 4 vertices. This is caused by the fact that G[N [v] ∪ {a, . . . , f}] consists of three 5-cycles
that overlap on v and 6 external edges.

If there is a vertex u ∈ V with a different local structure than just described, we branch on
this vertex and are done. And, if for every vertex u ∈ V this local structure exists, then G must
equal the dodecahedron which has 20 vertices and can be removed in constant time. The proof
of Lemma 3 is now completed.

2.8 Putting it all together

Lemma 1 described branching on non-3-regular graphs, Lemma 2 described branching on 3-
regular graphs that contain triangles or 4-cycles, and Lemma 3 described branching on other
3-regular graphs. Considering all these branchings we have T (k) 6 T (k − 8) + 2T (k − 10) +
T (k − 12) + 2T (k − 14) in the worst case. This recurrence relation is formed by combining
Lemmata 1 and 3 and leads to a running time of O∗(1.17802k). On average degree 3 graphs this
is O∗(1.17802n/2) = O∗(1.08537n).

Theorem 1. max independent setcan be solved in O∗(1.08537n) in connected graphs of
average degree at most 3.

3 Graphs of average degree at most 4

We deal in this section with (connected) graph of average degree at most 4. When m 6 3n/2,
then we can solve the problem with our previous algorithm in time O∗(γn), where γ = 1.08537.
If m > 3n/2, then we can branch on a vertex of degree at least 4. Then the principle of the
algorithm is simple: we branch on vertices of degree at least four as long as m > 3n/2, and then
we use the algorithm in O∗(γn) in the remaining graph.

In our analysis, we seek an algorithm of complexity O∗(γnym−3n/2), with y as small as
possible. Of course, we can use the previous study (in Lemma 1) on branching of vertices of
degree at least 4, but we can do much better, thanks to our complexity measure. Indeed, we will
see that while branching on a vertex of degree at least 4:

• either m decreases a lot (respect to n) and the branching is good,

• or we are able to remove a lot of vertices and edges while branching; this is also good since,
intuitively, we will have a graph with very few vertices when reaching the case m 6 3n/2.
Applying the O∗(γn) will be ‘very’ fast.

The result is formally described and proved in the following proposition.

Proposition 1. Assume that an algorithm computes a solution to max independent seton
graphs of average degree 3, with running time O∗(γn). Then, it is possible to compute a solution to
max independent seton any graph with running time O∗(γnf(γ)m−3n/2), where f(γ) is defined
by the largest value y verifying a set of appropriate inequalities. In particular, f(1.08537) =
1.13641.
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Corollary 1. It is possible to compute a solution to max independent seton graphs with
maximum (or even average) degree is 4 with running time O∗(1.1571n)

Proof. We prove Proposition 1 by a recurrence on n and m. We seek a complexity of the form
O∗(γnym−3n/2). We know that when m = 3n/2 (or equivalently when the graph is 3-regular,
since vertices of degree less than 2 have been eliminated by the preprocessing), we can solve the
problem in O∗(γn). Now, we assume that our graph has m > 3n/2 edges. In particular, there is
a vertex of degree at least 4.

Assume that we perform a branching that reduces the graph by either ν1 vertices and µ1

edges, or by ν2 vertices and µ2 edges. Then our complexity formula is valid for y being the
largest root of the following equality:

γnym−3n/2 = γn−ν1ym−3n/2−µ1+3ν1/2 + γn−ν2ym−3n/2−µ2+3ν2/2

or, equivalently:
1 = γ−ν1y−µ1+3ν1/2 + γ−ν2y−µ2+3ν2/2 (1)

Then, when m > 3n/2, one of the following two situations occurs:

• Either there is a vertex of degree at least 5: in this case we reduce the graph either by
ν1 = 1 vertex and µ1 = 5 edges, or by ν2 = 6 vertices and µ2 > 13 edges, leading to
y = 1.1226 (or ν1 = 4, µ1 = 9, ν2 = 2, µ2 = 8, which is even better), see Section 2.5.1;

• Or the maximum degree is 4: Lemma 1 gives a set of possible reductions that can be
plugged into Equation (1). As said before, we can do much better now, thanks to our
complexity measure, using the fact that, informally, removing a lot of vertices might be
also good.

In the following, we consider that the graph has maximum degree 4, and we denote u1, u2 u3

and u4 the four neighbors of some vertex v. We call inner edge an edge between two vertices in
N(v) and outer edge an edge between a vertex in N(v) and a vertex not in N [v]. We study 4
cases, depending on the configuration of N(v). Here, we consider that no trees are created while
branching. We deal with trees in Section 4 and show that it is never problematic.

Case 1. All the neighbors of v have degree 4.
This case is easy. Indeed, if there are at least 13 edges incident to vertices in N(v), by

branching on v we get ν1 = 1, µ1 = 4, ν2 = 5 and µ2 > 13. This gives y = 1.1358.
But there is only one possibility with no domination and only 12 edges incident to vertices

in N(v): when u1, u2, u3, u4 is a 4-cycle. This case reduces thanks to the following lemma.

Lemma 4. Assume there exists a vertex v such that the subgraph induced by N(v) is a cycle
u1, u2, u3, u4. Then, it is possible to replace N(v)∪{v} by only two vertices u1u3 and u2u4, such
that u is adjacent to u1u3 (resp. u2u4) if and only if u is adjacent to u1 or u3 (resp. u2 or u4).

Proof. Any optimal solution cannot contain more than two vertices from the cycle. If it
contains only one, replacing it by v does not change its size. Finally, there exist only three
disjoint possibilities: keep u1 and u3, keep u2 and u4 or keep only v, see Figure 13.

Case 2. All the neighbors of v have at least 2 outer edges.
If one of them have degree 4, then there are at least 13 edges removed when taking v, and

we get again ν1 = 1, µ1 = 4, ν2 = 5 and µ2 > 13.
Otherwise,once v is removed, any ui now has degree 2. Note that when folding a vertex of

degree 2, we reduce the graph by 2 vertices and 2 edges (if the vertex dominates another one,

19



u
v

u

u

u1

2

3

4
u u

1 2u u
3 4

Figure 13: G[N(v)] is a 4-cycle

this is even better). Since any 2 vertices ui cannot be adjacent to each other, that means we can
remove 8 vertices and at least 8 edges by folding u1, · · · , u4. Indeed, if for instance u1 dominates
its neighbors (its two neighbors being adjacent), we remove 3 vertices and at least 5 edges which
is even better. Removing 8 vertices and at least 8 edges is very interesting: it gives ν1 = 9,
µ1 = 12, ν2 = 5, µ2 = 12, and y = 1.0856.

Case 3. u1 has degree 3 and only one outer edge.
Then, u1 has one inner edge, say (u1, u2). Let y be the third neighbor of u1. We branch

on y. Suppose at first that u2 has degree 3. If we take y we remove 4 vertices and (at least) 8
edges (there is at most one inner edge in N(y)); if we don’t take y, then we remove also v and
we remove globally 2 vertices and 7 edges.

This is obviously not sufficient. There is an easily improvable case, when a neighbor of y has
degree 4 (or when y itself has degree 4), or when the neighbors of y are not adjacent. Indeed,
in this case there are at least 9 edges in N(y), and we get ν1 = 4, µ1 = 9, ν2 = 2 and µ2 > 7,
leading to y = 1.13641. Now, we can assume that y has degree 3, its 3 neighbors have degree
3. Same for z the neighbor of u2; furthermore, they both are part of a triangle, see Figure 14.
Note that z and y cannot be adjacent or there is a separator of size 2 (v and the third neighbor
or z, y), and z and y cannot have a common neighbor (either this vertex would have degree at
least 4, or they have two degree 3 common vertex but in this case v is a separator 1). At least a
neighbor of say z is neither u3 nor u4. Hence, when discarding y, we take u1, so remove u2 and
then add z to the solution. Eventually, we get ν1 = 4, µ1 = 8, ν2 = 7 and µ2 > 13, leading to
y = 1.1195.

z

vu1 u2
y

Figure 14: Discarding y allows to take u1 and z

Suppose now that u2 has degree 4. Then, when we don’t take y, since we don’t take v, u1

has degree 1. Then, we can take it and remove u2 and its incident edges. Then, when not taking
y, we remove in all 4 vertices and 10 edges. In other words, ν1 = 4, µ1 = 8, ν2 = 4 and µ2 > 10.
This gives y = 1.1325.

Case 4. u1 has degree 4 and only one outer edge.
Since Case 1 does not occur, we can assume that there is a vertex (say u4) of degree 3. Since

Case 3 does not occur, u4 has no inner edge. Hence, u1 is adjacent to u2 and u3. Then, there
are only two possibilities.

If there are no other inner edges, since Case 3 does not occur u2 and u3 have 2 outer edges,
and we have in all 13 edges. This gives once again ν1 = 1, µ1 = 4, ν2 = 5 and µ2 > 13.
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Otherwise, there is an edge between u2 and u3. Then, v, u1, u2, u3 form a 4-clique, see
Figure 15. We branch on u4. If we take u4, we delete ν1 = 4 vertices and (at least) ν2 = 9
edges (v has degree 4 and is not adjacent to other neighbors of u4). If we discard u4, then by
domination we take v, and delete ν2 = 5 vertices and at least µ2 = 12 edges. It gives y = 1.0921.

4
u1

v

u2
u

u

3

Figure 15: v, u1, u2, u3 is a 4-clique

To conclude the proof, we have to verify that removing ν ′
1 vertices and µ′

1 > ν ′
1 edges (with-

out branching) does not increase the running time. Indeed, this may occur when graph reduc-
tions are performed (such as a vertex folding for instance), but also in the previous analysis
of the possible branchings, since it may happen that the real reduction remove ν1 + ν ′

1 ver-
tices and µ1 + µ′

1 vertices, where µ′
1 > ν ′

1. To get the result claimed, we have to verify that
γn−ν′

1ym−µ′

1
−3n/2+3ν′

1
/2 6 γnym−3n/2, or equivalently that y−µ′

1
+3ν′

1
/2 6 γν′

1 . This is trivially
true as soon as y 6 γ2 since ν ′

1 6 µ′
1. In other words, each time we remove ν ′

1 vertices and at
least ν ′

1 edges, we reduce running time with a multiplicative factor cν′

1 where c = (
√

y/γ) < 1.
Similarly, a last issue we have to deal with is what happens if some branching disconnects

our graph. The cases when some trees are created are handled in Section 4. We now assume
only connected components (Ci) each verifying mi > ni have appeared. In order to simplify our
notation we call T̄ the complexity of the connected case. Our running time now verifies:

T (m,n) 6
∑

i

T̄ (mi, ni) =
∑

i

T̄ (m −
∑

j 6=i

mj, n −
∑

j 6=i

nj)

6
∑

i

T̄ (m −
∑

j 6=i

(mj − nj), n)cn−ni 6 T̄ (m,n)cn
∑

i

1

cni

Since c < 1 (and n1 > 1), for n large enough we have cn
∑

i
1

cni
6 1 and eventually T (m,n) 6

T̄ (m,n).

4 Dealing with trees

We show here that creating a tree while branching is never problematic. If we branch on a
vertex of degree 3 (as in Case 3), then no trees are created, or the graph can be reduced without
branching (see Section 2.4).

Now, we consider the case where one or several tree(s) is/are created when branching on a
vertex of degree 4. We denote N the number of edges incident to some vertex in N(v), I (resp.
Ω) the set of edges, called inner edges, that have both endpoints in N(v) (resp. the set of edges
that have only one endpoint in N(v)).

At first, suppose that one of the l > 1 trees created is a single vertex t. Then, t is a mirror
of v: when discarding v, we can also discard t and this removes 2 vertices and (at least) 7 edges.
It is easy to see that no tree are created: indeed, this does not disconnect the graph since at
least 3 ui’s are connected to the remainder of the graph (i.e., the graph after removing v, N(v)
and the trees), each tree is connected to at least one of these 3 ui’s, and the fourth ui has to be
connected either to 2 trees or to some ui (or to the remainder of the graph). When taking v,
we remove 5 vertices and N > |Ω| > 4 + 3 + 3l edges (since there are at least 3 edges per tree,
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and 3 edges to the remainder of the graph). The reduction of the trees allow to delete at worst
l more vertices (actually l + k vertices and k edges, for some k > 0). In all, we have ν1 = 2,
µ1 = 7, ν2 = 5 + l and µ2 = 7 + 3l, which is good for l > 2 (it gives y = 1.1078). If l = 1, then
N > |Ω| + ⌈(12 − |Ω|)/2⌉ > 10 + 1 = 11, hence the reduction we get is ν1 = 2, µ1 = 7, ν2 = 6
and µ2 = 11. It gives y = 1.1299.

Now, if l > 2 and each tree has at least 2 vertices, there are at least 4 edges linking each tree
to N(v). When taking v, we remove 5 vertices and at least 4 + 3 + 4l edges. When reducing the
trees, we remove additional 2l vertices and l edges. In all, we remove 5 + 2l vertices and 7 + 5l
edges. This is of course worse for l = 2, for which we have ν1 = 1, µ1 = 4, ν2 = 9 and µ2 = 19
(and y = 1.1031).

Now, consider the final case where one tree T composed by at least 2 vertices is created while
branching on v. Then, we have at least 4 edges linking N(v) to T , and 3 edges linking N(v) to
the remainder of the graph. Then, N = |Ω| + |I| > 11 + |I|. When taking v, since we reduce a
tree T of at least 2 vertices, we delete at worse 7 vertices and N + 1 edges.

• If all neighbors of v have degree 4, then N > 11+ ⌈(16− 11)/2⌉ = 14. In this case, ν1 = 1,
µ1 = 4, ν2 = 7 and µ2 = 15. It gives y = 1.1315.

• If 1 neighbor of v have degree 3 (and 3 have degree 4), then if there exists at most one
inner edge, then |Ω| > 13 and N > 14. Hence, we get at worse ν1 = 1, µ1 = 4, ν2 = 7 and
µ2 = 15. Now, suppose there are two inner edges (hence the tree has two degree 3 vertices
t1, t2). If a vertex t1 of the tree is a mirror of v, then when discarding v we can discard
t1 also and get ν1 = 2, µ1 = 7 (this does not create tree). With ν2 = 7 and µ2 = 14,
it gives y = 1.0952. Now, there are only three possibilities without mirror. The first two
possibilities occur when the two inner edges are (u1, u2) and (u3, u4). If say u3 is adjacent
to both t1 and t2 (then t1 is adjacent to u1 and t2 to u2), it is never interesting to take u3

(we cannot take 3 vertices if we take u3). The case where t1 is adjacent to (u1, u3) and t2
to (u2, u4) reduces as follows: we can replace the whole subgraph by two adjacent vertices
u1u3 and u2u4 since either we take two vertices v and t1, or we take 3 vertices u1, u3, t2,
or u2, u4, t1. If the inner edges are (u1, u2) and (u2, u3), then to avoid mirror u2 must be
adjacent to say t1, and then t1 has to be adjacent to u4, and t2 to u1 and u3. But, as
previously, this case reduces by replacing the whole graph by two adjacent vertices u1u3

and u2u4.

• If 2 neighbors of v have degree 4, and 2 have degree 3, then there exists at most one inner
edge. If there is no inner edge, then N = |Ω| = 14 and ν1 = 1, µ1 = 4, ν2 = 7 and µ2 = 15.
If there is one inner edge (u1, u2), then if u3 or u4 has degree 3, when discarding v we can
fold two (non adjacent) vertices or degree 2. This gives ν1 = 5, µ1 = 8, ν2 = 7 and µ2 = 14
(y = 1.1244). If u1 and u2 have degree 3, then to avoid separators of size 2 u1 is adjacent
to say t1 and u2 is not adjacent to the tree. Then, t2 is a mirror of v and we get a reduction
ν1 = 2, µ1 = 7, ν2 = 7 and µ2 = 14.

• If one neighbor has degree 4 and the other neighbors of v have degree 3, then there cannot
exist more than one inner edge (because of the degrees). If there is no inner edge, then
N > 13 and, as previously, by folding say the 3 (pairwise non adjacent) vertices of degree
3 when not taking v, we get ν1 = 7, µ1 = 10, ν2 = 7 and µ2 = 14 (y = 1.0946). If there
is one inner edge (u1, u2), then we do not need to branch. Indeed, the tree has only two
vertices t1, t2 of degree 3 (otherwise there would be 12 edges in Ω). If say t1 is adjacent to
both u1 and u2, to avoid domination u1 and u2 have to be adjacent to a fourth edge. If t1
is adjacent to both u3 and u4, then it is never interesting to take t1: indeed, it is impossible
to take t1 plus 2 other vertices, and we can always take v and t2. If t1 is adjacent to u1
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and u3 and t2 to u2 and u3, then at least 2 vertices among u1, u2, u3 have degree 4 since 2
of them must be adjacent to the remainder of the graph. The only remaining case occurs
when t1 is adjacent to u1, u3 and t2 is adjacent to u2, u4. In this case we can replace the
whole subgraph by two adjacent vertices u1u3 and u2u4. Indeed, either we take 2 vertices
(v and t1), or we take 3 vertices (either u1, u3, t2, or u2, u4, t1).

• Eventually, if all neighbors of v have degree 3, since |Ω| > 11, we have |I| = 0, hence
N = |Ω| = 12. In this case, when we do not take v, we have 4 vertices of degree 3 pairwise
non adjacent. We can fold each of them (if there is a domination this is even better) and
delete 8 more vertices and edges. Finally, we get at worse ν1 = 9, µ1 = 12, ν2 = 7 and
µ2 = 14 (y = 1.0386).

5 Graphs of average degree at most 5

We now consider graphs of average degree 5. We use as in the previous section a complexity
measure that is parameterized by the algorithm on average degree 4.

More precisely, we proceed as follows. We first identify in Lemma 5 a property linking the
average degree of the graph to the quality of the branching that is performed. Informally, the
bigger the average degree, the more deleted edges when branching on a (well chosen) vertex.
With this property, we analyze the complexity of our algorithm in a bottom up way as follows.
If we know how to solve the problem in O∗(γn) in graph with average degree d, and that when
the average degree is greater than d a good branching occurs, we seek a complexity of the form
O∗(γnym−dn/2), valid in graph with average degree greater than d. Starting from d = 4, we
identify four critical values for the average degree, leading to a complexity of O∗(1.1969n) in
graphs of average degree at most 5.

Lemma 5. Assume the input graph has maximum degree 5 and average degree 4 or more. Then

T (m,n) 6 T (n − 1,m − 5) + T (n − 6,m − 15)

Or some even better case happens. Furthermore, if it verifies:

• m > 20n/9, then T (n,m) 6 T (n − 1,m − 6) + T (n − 7,m − 16)

• m > 16n/7, then T (n,m) 6 T (n − 1,m − 6) + T (n − 7,m − 17)

• m > 12n/5, then T (n,m) 6 T (n − 1,m − 6) + T (n − 7,m − 18)

Proof. Fix some vertex v0 of degree 5, such that for any vertex v of degree 5 in the graph:

∑

w∈N(v)

d(w) 6
∑

w∈N(v0)

d(w) = δ

For i 6 5, let mi5 be the number of edges in the graph between a vertex of degree i and a vertex
of degree 5. For i 6 4, fix αi = mi5/n5 and α5 = 2m55/n5. In other terms, αi is the average
number of vertices of degree i that are adjacent to a vertex of degree 5. However, we can always
consider αi = 0 for i 6 2. Summing up inequalities on any vertex of degree 5, we get:

∑

i65

iαi 6 δ (2)

∑

i65

αi = 5 (3)
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Fix now ǫ = m/n − 2 ∈]0, 1/2[:

ǫ =
n5 − n3

2(n5 + n4 + n3)

This function is decreasing with n3 and n4. We now use some straightforward properties:

n4 >
m45

4

n3 >
m35

3
5n5 = m35 + m45 + 2m55

That leads to:

ǫ 6
3n5 − m35

6n5 + 3
2m45 + 2m35

6
m45 + 2m55 − 2n5

16n5 − 1
2m45 − 4m55

and, by hypothesis:

ǫ 6
2α4 + 2α5 − 4

32 − α4 − 4α5
(4)

Let µ2 be the minimal number of edges we delete when we add v0 to the solution. Since there are
at least 2d(v0) edges between N(v0) and the remaining of the graph, and thanks to inequalities
(2) and (3), we get:

µ2 > 10 +

⌈

δ − 10

2

⌉

> 10 +

⌈

5 + α4 + 2α5

2

⌉

Notice that ǫ > 0 implies:
α4 + α5 > 2 (5)

If we run min µ2 under constraints (2),(3),(5) and µ2 ∈ N, we find µ2 = 14 as a minimum.
For 1 6 i 6 3, we now consider the following programs (Pi): max ǫ under constraints

(2),(3),(4) and µ2 6 14 + i. In other terms, we determine the maximal value for ǫ such that it
is possible that no vertex in the graph verifies µ2 = 15 + i. The following table summarizes the
results:

worst case for µ2 upper bound for ǫ (α5, α4)

14 2/29 (0, 3)
15 2/9 (0, 5)
16 2/7 (2, 3)
17 2/5 (4, 1)

Notice also that µ2 = 14 implies that at least one neighbor of v0 has degree 3, so we can fold
it after discarding v. In that case, we get ν1 = 3, µ1 = 7, ν2 = 6, µ2 = 14, that is better than
ν1 = 1, µ1 = 5, ν2 = 6, µ2 = 15.

Proposition 2. Assume that an algorithm computes a solution to max independent seton
graphs with average degree at most 4, with running time O∗(γn

0 ). Then, it is possible to compute
a solution to max independent seton any graph with running time:

O∗(γn
0 γ

2n/9
1 γ

4n/63
2 γ

4n/35
3 γ

m−2n/5
4 )

for some appropriate constants (γi)i64. In particular:

γ0 = 1.1571 =⇒















γ1 = 1.0775
γ2 = 1.0696
γ3 = 1.0631
γ4 = 1.0612

(6)
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To be more precise, γi corresponds to the case where our graph is dense enough to state that
µ2 > 15 + i, according to Lemma 5 (the case when there is a vertex of degree at least 6 can be
easily shown to lead to a better reduction).

Proof. We seek a complexity of the form O∗(γnym−(2+ǫi)n), where 2+ ǫi is the lowest ratio m/n
that allows us to use ν1 = 1, µ1 = 6, ν2 = 7 and µ2 = 14 + i in the recurrence equation:

1 = γ−ν1y−µ1+(2+ǫi)ν1 + γ−ν2y−µ2+(2+ǫi)ν2 (7)

According to Lemma 5, (ǫi)i64 = (0, 2/9, 2/7, 2/5). In the worst case this leads to the values
summarized in (6).

Note that a reduction of ν ′
1 vertices and µ′

1 > ν ′
1 edges is not problematic for y 6 γ

1/(1+ǫi)
i .

In order to deal with trees, note also that removing a tree corresponds to a reduction of ν
vertices and ν − 1 edges. This is not problematic as soon as y1.5ν+1 6 γν . This is true for ν > 2.

Otherwise, trees are singletons and there is no separator of size 2 or less. We also get
|Ω| > 5 + 3 + 3l , that means µ2 > 8 + 2l +

⌈

δ−8−3l
2

⌉

. Hence, we see that if l > 1, or if there are
at least 4 edges linking vertices in N(v) to the remainder of the graph, or if our disconnected
vertex t has degree at least 4, we are in a better situation as when no tree is created. Eventually,
assume d(t) = 3 and there is a separator of size 3, namely u3, u4 and u5. t is adjacent to u1,u2

and, say, u3. If u1 and u2 are not adjacent, then it is never interesting to take v (if we take
v we take only t in N(v) ∪ {v, t}, and we can take u1, u2 instead). Otherwise, no more than 3
vertices from N(v) may belong to the optimal (otherwise that would mean for instance N(v)−u1

contains no edge, and thus u1 dominates u2), and there are only 3 different ways to choose 2
vertices among u3, u4, u5. So we can replace the whole subgraph by a clique of size at most 3.

Theorem 2. It is possible to compute a solution to max independent seton graph whose
maximum (or even average) degree is 5 with running time O∗(1.1969n)

Proof. We just apply Proposition 2 with m 6 5n/2

6 Graphs of average degree at most 6

We apply here a technique similar to the case of graphs with average degree at most 6.

Lemma 6. Assume the input graph has maximum degree 6 and average degree 5 or more. Then

T (m,n) 6 T (n − 1,m − 6) + T (n − 7,m − 20)

Furthermore, if it verifies:

• m > 60n/23, then T (n,m) 6 T (n − 1,m − 6) + T (n − 7,m − 21)

• m > 60n/22, then T (n,m) 6 T (n − 1,m − 6) + T (n − 7,m − 22)

• m > 205n/74, then T (n,m) 6 T (n − 1,m − 6) + T (n − 7,m − 23)

• m > 20n/7, then T (n,m) 6 T (n − 1,m − 6) + T (n − 7,m − 24)

Proof. Fix some vertex v0 of degree 6, such that for any vertex of degree 6 in the graph:

∑

w∈N(v)

d(w) 6
∑

w∈N(v0)

d(w) = δ
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For i 6 5, fix αi = mi6/n6 and α6 = 2m66/n6. In other terms, αi is the average number of
vertices of degree i that are adjacent to a vertex of degree 6. However, we can always consider
αi = 0 for i 6 2. Summing up inequalities on any vertex of degree 6, we get:

∑

i66

iαi 6 δ (8)

∑

i66

αi = 6 (9)

Fix ǫ = m/n − 5/2 ∈]0, 1/2[:

ǫ =
n6 − n4 − 2n3

2(n6 + n5 + n4 + n3)

This function is decreasing with n3,n4 and n5. We now use some straightforward properties:

n5 >
m56

5

n4 >
m46

4

n3 >
m36

3
6n6 = m36 + m46 + m56 + 2m66

That leads to:

ǫ 6
60n6 − 15m46 − 40m36

120n5 + 24m56 + 30m46 + 40m36
6

25m46 + 40m56 + 80m66 − 180n6

360n6 − 10m36 − 16m56 − 80m66

and, by hypothesis:

ǫ 6
25α4 + 40α5 + 40α6 − 180

360 − 10α4 − 16α5 − 40α6
(10)

Once again, let µ2 be the minimal number of edges we delete when we add v0 to the solution.
Since there are at least 2d(v0) edges between N(v0) and the remaining of the graph, and thanks
to inequalities (8) and (9), we get:

µ2 > 12 +

⌈

δ − 12

2

⌉

> 15 +

⌈

α4 + 2α5 + 3α6

2

⌉

Notice that ǫ > 0 implies:
5α4 + 8α5 + 8α6 > 36 (11)

If we run min µ2 under constraints (8),(9),(11) and µ2 ∈ N, we find µ2 = 20 as a minimum, that
proves our first claim. (limit case µ = 19 and ǫ = 0 is reached when α6 = 0, α5 = 2 and α4 = 4)

For 1 6 i 6 4, we now consider the following programs (Pi): max ǫ under constraints
(8),(9),(10) and µ2 6 19 + i. In other terms, we determine the maximal value for ǫ such that
it is possible that no vertex of degree 6 in the graph verifies µ2 = 20 + i. The following table
summarizes the results and concludes the proof of the lemma.

Worst case for µ2 Upper bound for ǫ (α6, α5, α4)

20 5/46 (0, 4, 2)
21 5/22 (0, 6, 0)
22 10/37 (2, 4, 0)
23 5/14 (4, 2, 0)
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Proposition 3. Assume that an algorithm computes a solution to max independent seton
graphs with average degree at most 5, with running time O∗(γn

0 ). Then, it is possible to compute
a solution to max independent seton any graph with running time:

O∗(γn
0 γ

5n/46
1 γ

85n/252
2 γ

35n/814
3 γ

45n/518
4 γ

m−5n/14
5 )

for some appropriate constants (γi)i65. In particular:

γ0 = 1.1969 =⇒























γ1 = 1.0356
γ2 = 1.0327
γ3 = 1.0301
γ4 = 1.0278
γ5 = 1.0258

(12)

To be more precise, γi corresponds to the case where our graph is dense enough to state that
µ2 > 19 + i, according to Lemma 6.

Proof. We seek a complexity of the form O∗(γnym−(5/2+ǫi)n), where 5/2 + ǫi is the lowest ratio
m/n that allows us to use ν1 = 1, µ1 = 6, ν2 = 7 and µ2 = 19 + i in the recurrence equation:

1 = γ−ν1y−µ1+(5/2+ǫi)ν1 + γ−ν2y−µ2+(5/2+ǫi)ν2 (13)

According to Lemma 6, (ǫi)i65 = (0, 5/46, 5/22, 10/37, 5/14). In the worst case this leads to
the values summarized in (12). Note that a reduction of ν ′

1 vertices and µ′
1 > ν ′

1 edges is not

problematic for y 6 γ
2/(3+2ǫi)
i .

In order to deal with trees, note also that removing a tree corresponds to a reduction of ν
vertices and ν − 1 edges. This is not problematic as soon as y2.5ν+1 6 γν . This is true for ν > 1.
In other words, removing a tree reduces the global complexity.

Theorem 3. It is possible to compute a solution to max independent seton graph whose
maximum (or even average) degree is 6 with running time O∗(1.2149n).

Proof. We just apply Proposition 3 with m 6 3n.

7 Conclusion

We have tackled in this paper worst-case complexity for max independent set in graphs with
average degree 3, 4, 5 and 6. The results obtained improve upon the best results known for
these problems. Let us note that the cases of average degrees 5 and 6 deserve further refinement.
Indeed, it seems to us that there is enough place for improving them, since our results are got
by using fairly simple combinatorial arguments.

An interesting point of our work is that improvement for the three last cases have been
derived based upon a new method following which any worst-case complexity result for max

independent set in graphs of average degree d can be used for deriving worst-case complexity
bounds in any graph of average degree greater than d. This method works for any average
degree’s value and can be used for any graph-problem where the larger the degree the better the
worst-case time-bound obtained.
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