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Introduction

Very active research has been recently conducted around the development of optimal algorithms for NP-hard problems with non-trivial worst-case complexity (see the seminal paper by [START_REF] Woeginger | Exact algorithms for NP-hard problems: a survey[END_REF] for a survey on both methods used and results obtained). Among the problems studied in this field, max independent set (and particular versions of it) is one of those that have received a very particular attention and made much effort spent.

Given a graph G = (V, E), max independent set consists of finding a maximum-size subset V ′ ⊆ V such that for any (v i , v j ) ∈ V ′ × V ′ , (v i , v j ) / ∈ E. For this problem the best worst-case complexity bound is, to our knowledge, the O * (1.1889 n ) bound claimed by [START_REF] Robson | Finding a maximum independent set in time O(2 n/4 )[END_REF] in his unpublished technical report. We also quote the O * (1.2210 n ) algorithm by [START_REF] Fomin | Measure and conquer: a simple O(2 0.288n ) independent set algorithm[END_REF], that is the best published result about max independent set.

Let T (•) be a super-polynomial and p(•) be a polynomial, both on integers. In what follows, using notations in [START_REF] Woeginger | Exact algorithms for NP-hard problems: a survey[END_REF], for an integer n, we express running-time bounds of the form p(n) • T (n) as O * (T (n)), the star meaning that we ignore polynomial factors. We denote by T (n) the worstcase time required to exactly solve the considered combinatorial optimization problem on an instance of size n. We recall (see, for instance, [START_REF] Eppstein | Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction[END_REF]) that, if it is possible to bound above T (n) by a recurrence expression of the type T (n) T (n-r i )+O(p(n)), we have T (n-r i )+O(p(n)) = O * (α(r 1 , r 2 , . . .) n ) where α(r 1 , r 2 , . . .) is the largest root of the function f (x) = 1x -r i .

In this paper we settle max independent set in (connected) graphs with "small" average degree, more precisely with average degree at most 3, 4, 5 and 6. Let us denote by max independent set-3, -4, -5 and -6, the restrictions of max independent set to graphs of maximum degree 3, 4, 5 and 6, respectively.

For max independent set-3, several algorithms have been devised, successively improving its worst case complexity. Let us quote the O * (1.1259 n ) algorithm by [START_REF] Beigel | Finding maximum independent sets in sparse and general graphs[END_REF], the O * (1.1254) algorithm by [START_REF] Chen | Labeled search trees and amortized analysis: improved upper bounds for NP-hard problems[END_REF], the O * (1.1120) algorithm by [START_REF] Fürer | A faster algorithm for finding maximum independent sets in sparse graphs[END_REF], the O * (1.1034 n ) algorithm by [START_REF] Razgon | A faster solving of the maximum independent set problem for graphs with maximal degree 3[END_REF] and, finally, the recent O * (1.0977 n ) algorithm by [START_REF] Bourgeois | An O * (1.0977 n ) exact algorithm for max independent set in sparse graphs[END_REF]. As a first result, in this article we improve the bound of [START_REF] Bourgeois | An O * (1.0977 n ) exact algorithm for max independent set in sparse graphs[END_REF] down to O * (1.0854 n ) by proposing finer and more powerful reduction rules (Section 2). Our result remains valid also for graphs of average degree bounded by 3.

We then propose a generic method extending improvements of the worst-case complexity for max independent set in graphs of average degree d to graphs of average degree greater than d. This "bottom-up" method of carrying improvements of time-bounds for restrictive cases of a problem to less restrictive ones (the latter including the former) is, as far as we know, a new method that can be very useful for strengthening time-bounds not only for max independent set but also for other graph-problems where local worst configurations appear when maximum degree is small. For instance, when tackling max independent set in graphs of maximum degree, say, at least 10, a simple tree-search based algorithm with a branching rule of the form either don't take a vertex of degree 10, or take it and remove it as well as its neighbors (in this case 11 vertices are removed in total) guarantees an upper time-bound of O * (1.1842 n ) dominating so the bound by [START_REF] Robson | Finding a maximum independent set in time O(2 n/4 )[END_REF].

In order to informally sketch the method, suppose that one knows how to solve the problem on graphs with average degree d in time O * (γ n d ). Solving the problem on graphs with average degree d ′ d is based upon two ideas: we first look for complexity expression of the form α m β n , where α and β depend both on the input graph, (namely on its average degree) and on the value γ d (see for instance Section 3). In other words, the form of the complexity we look for is parameterized by what we already know on graphs with smaller average degrees. Next, according to this form, we identify particular values d i (not necessarily integer, see for instance Section 5) of the average degree that ensure that a "good" branching occurs. This allows to find a good complexity for increasing values of the average degree. Note also that a particular interest of this method lies in the fact that any improvement on the worst-case complexity on graphs of average degree 3 immediately yields improvements for higher average degrees.

Using this method, for max independent set in graphs with average degree 4, we provide an upper complexity bound of O * (1.1571 n ) (Section 3). This bound remains valid for max independent set-4 outperforming the best known bound of O * (1.1713 n ) by [START_REF] Beigel | Finding maximum independent sets in sparse and general graphs[END_REF].

For max independent set in graphs of average degree 5 we provide a bound of O * (1.1969 n ) (Section 5) holding also for max independent set-5 and improving the O * (1.2023 n ) bound by [START_REF] Fomin | Measure and conquer: a simple O(2 0.288n ) independent set algorithm[END_REF] while, for average degree 6 we obtain a bound of O * (1.2149 n ) (Section 5) also improving the O * (1.2172 n ) bound by [START_REF] Fomin | Measure and conquer: a simple O(2 0.288n ) independent set algorithm[END_REF]. Note that for degrees 5 and 6, the results are obtained by a direct application of the method, without a long case by case branching analysis.

Let us remark that in the cases of max independent set in graphs of average degree 3 and 4, our bounds outperform the O * (1.1889 n ) claimed by [START_REF] Robson | Finding a maximum independent set in time O(2 n/4 )[END_REF].

Graphs of average degree at most 3

We propose a branch and reduce algorithm for the maximum independent set problem on graphs of average degree at most three. By local reduction rules and branching, vertices of the input graph are assigned to be in the computed independent set or not. When a vertex is decided to be not in the independent set it is removed from the problem instance, and when a vertex is decided to be in the independent set it is removed together with all its neighbors.

Given a vertex v, we denote d(v) its degree, N (v) its neighborhood (v ∈ N (v)), and N [v] = N (v) ∪ {v}.

Simple reduction rules

Before branching our algorithm applies the following simple reduction rules.

• If the graph is not connected, recursively solve the problem on each connected component.

This solves connected components of constant size in constant time.

• Put isolated vertices in the independent set.

• Also put any degree 1 vertex in the independent set: any independent set containing its neighbor can be modified in one containing the degree 1 vertex of the same size.

• If for any two adjacent vertices u, v: N (u) ⊆ N (v), then we say that u dominates v and we remove v. Any maximum independent set containing v can be transformed into another maximum independent set by replacing v by u.

• If there is a vertex v of degree 2 with neighbors u, w, we remove v and merge u and w. This results in a new, possibly higher degree, vertex x. We refer to this process as vertex folding. If x is in the computed independent set I, then return (I \ {x}) ∪ {u, w}, else return (I \ {x}) ∪ {v}. This rule is justified by the fact that if we put any single neighbor of v in I we could equally well have put v itself in I.

These reduction rules have been thoroughly described in many publications ( [START_REF] Fürer | A faster algorithm for finding maximum independent sets in sparse graphs[END_REF][START_REF] Bourgeois | An O * (1.0977 n ) exact algorithm for max independent set in sparse graphs[END_REF] for instance) and therefore need no further explanation.

Small separators

Following the approach by [START_REF] Fürer | A faster algorithm for finding maximum independent sets in sparse graphs[END_REF] we add additional reduction rules that deal with separators of size 1 and 2. To prove the worst case time bound we only need these small separators when one component is of constant size. In this case the recursive call to the smallest component can be done in constant time. If the algorithm finds a two separator {u, v} of a constant size component C ⊂ V , then it computes a maximum independent set in the four subgraphs induced by C and any combination of vertices from the separator. Let I v, u be the computed maximum independent set in G[C], I v, u the computed maximum independent set in G[C ∪{v}], I v,u the computed maximum independent set in G[C∪{u}], and I v,u the computed maximum independent set in G[C∪{u, v}]. Now consider the following possible cases:

• |I v,u | = |I v, u | + 2, and hence |I v, u | = |I v,u | = |I v, u | + 1.
The algorithm now computes a maximum independent set in G[V \ C] and returns I ∪ J where J is the set from {I v, u , I v, u , I v,u , I v,u } which agrees with I on u and v.

• |I v, u | = |I v,u | = |I v,u | = |I v, u | + 1. Let G ′ be G[V \ C]
with an extra edge added between u and v. Similar to the previous case, the algorithm computes a maximum independent set in G ′ and returns I ∪ J, where J is one of the four possible independent sets that agree on u and v.

• |I v, u | = |I v, u | and |I v,u | = |I v,u | = |I v, u | + 1
(and the symmetric case). v can now safely be discarded since it does not help increasing the size of the independent set in C ∪ {v}.

The algorithm recursively computes maximum independent set I in G[V \ (C ∪ {v}] and returns I ∪ J, where J is the independent set from {I v, u , I v,u } that agrees on u. In each case we decide whether discarding u and/or v is optimal. If they cannot be discarded, we let the recursive call on the larger component decide on their membership of the maximum independent set.

• |I v,u | = |I v, u | = |I v, u | and |I v,u | = |I v, u | + 1. Let G ′ be G[V \ C]

Measuring progress

Let G = (V, E) be a graph with n vertices and m edges. We use k = mn as a measure of complexity of the subproblems generated by our branching algorithm. This means that if our algorithm runs in O * (γ m-n ) time, this implies an O * (γ n/2 ) algorithm on connected average degree 3 graphs. Actually, the graph does not need to be connected; it is just not allowed to have too much connected components with a negative mn value. Therefore, the result applies to any average degree at most three graph that does not have connected components that are trees. Also notice that none of the reduction rules (except removing isolated vertices) increase this complexity measure.

Local configurations of the input graph are considered in order to decide on the branching. In each branch, a subgraph G ′ = (V ′ , E ′ ) of G is considered to be removed from the graph after which the reduction rules are applied again. Let m ′ be the number of edges in G ′ , n ′ be the number of vertices in G ′ , and e be the number of end points in G ′ of edges incident to vertices of G ′ but that are not in G ′ themselves. In the analysis, we will refer to these last edges as external edges. Note that G ′ is not necessarily the subgraph induced by V ′ , i.e., external edges may be adjacent either to one or to two vertices in G ′ . Removing G ′ results in a reduction of the complexity measure by at least m ′ + f (e)n ′ . In the ideal case f (e) = e but a few exceptions to this rule exist, which have to be checked at each branching. In each case we look at the number of external edges e that lead to an overall reduction of the complexity measure. Suppose for example that we want to take in the solution a vertex v 1 which is adjacent to two degree 3 vertices v 2 and v 3 . V ′ = {v 1 , v 2 , v 3 } and E ′ = {(v 1 v 2 ), (v 1 v 3 )} (the edges that we know for sure). Since v 2 and v 3 have degree 3, e = 4. If v 2 is not adjacent to v 3 then f (e) = 4 more edges are removed when deleting V ′ . On the other hand, if v 2 is adjacent to v 3 , then only f (e) = 3 more edges are removed.

• Some external edges are incident to two vertices in G ′ . We refer to this as an extra adjacency. This can only occur when looking at local configurations larger than a single vertex and its neighborhood (including edges). Adding these edges to G ′ results in e being reduced by 2, while the complexity measure only decreases by 1.

• After removing G ′ from G, a number of connected components arise some of which are trees. A tree has complexity -1 and is completely removed by the reduction rules. Let t be the number of external edges incident to such a tree (t 3 since reduction rules produce a graph of minimum degree at least 3). For each tree that we add to G ′ we decrease e by t while increasing the complexity measure by only t -1. So in the worst case e is decreased by 3 and the complexity measure is decreased by 2.

• A special case arises when G ′ is the neighborhood of a vertex v and there are no 4-cycles in the graph. In this case there can be no induced trees because after the removal of G ′ all vertices are of degree at least two and hence f (e) = e.

Induced trees

In order to prevent tree components from being created, we add some additional reduction rules and discuss some cases in which no trees can arise.

When discarding a single vertex, no tree can be created since vertex folding causes all vertices in the instance graph to be of degree at least three. When taking a single vertex v in the independent set and discarding all its neighbors, several cases can arise. If v is of degree more than three, these cases are handled with the description of the branching. In this section, we treat the cases where v is of degree 3 in a maximum degree 4 graph and distinguish on the number of vertices in an induced tree.

Let a, b, c be the neighbors of v and notice that they all have at least one edge not incident to v or the tree T (otherwise there exists a small separator). If the tree T consists of a number of vertices equal to:

1. T is a single degree 3 vertex. We consider the following possibilities:

• There is an edge in N (v). It is now optimal to take v and T in the independent set. We can take only two from a, b or c from which any one causes v and T to be discarded, while taking v and T poses less restrictions on the remaining graph. • Notice that either we take only two vertices among a, b, c, v, t and in this case taking v and T is optimal, or we take three vertices and the only possibility is to take a, b and c. We postpone this choice, but reduce the instance by removing v and T and merging a, b and c to a single vertex.

2. T consists of two adjacent degree 3 vertices. Now at least one vertex is adjacent to both tree vertices. Let this be a; now b and c are adjacent to one or both tree vertices.

• b and/or c is adjacent to both tree vertices. In this case, one of the tree vertices dominates the other and this reduction rule fires.

• b and c are of degree 3. This generalizes the 1-tree case: after taking a it is optimal to take b and c, and after discarding a it is optimal to take v and any one vertex of T . Hence, we again remove v and T and merge a, b and c to a single vertex.

3. T consists of three vertices. At least two neighbors of v, say a and b, have two tree neighbors (Figure 1). Consider the the maximum independent set

I ′ in G[N [v] ∪ T ].
If a ∈ I ′ and hence it's neighbors are not, only b, c and one vertex from T remain from which by adjacencies to T only two can be in I ′ . The same goes with a and b switched.

And if we discard a and b, it is clear that it is optimal to pick v and two vertices from T while discarding c. Over all three cases, the last never gives a smaller independent set in

G[N [v] ∪ T ],
while posing the fewest restrictions on the rest of the graph; therefore we let our algorithm pick these vertices. 4. T consists of four vertices. Now all neighbors of v are of degree 4. By a similar argument, it is optimal to pick v and a maximum independent set from G[T ]. Depending on the shape of G[T ], this independent set can be of size two or three.

In a maximum degree 4 graph, the only remaining cases are when v has multiple non-adjacent degree 4 neighbors and these trees consist of one or two vertices. In these cases, the creation of trees is handled with the description of the branching. We will later refer to a created tree components consisting of k vertices as a k-tree.

Branching on non-3-regular graphs

The worst case of our algorithm arises when the graph G is 3-regular. In this section, we describe the branching of our algorithm when this is not the case. Observe that vertex folding can produce non-3-regular graphs after deciding for a vertex v in a 3-regular graph whether v goes in the maximum independent set or not. This observation is used later. Therefore, we need the following lemma.

Lemma 1. Let T (k) be the number of subproblems generated when branching on a graph G of complexity k. If G is not 3-regular then either:

1. G has a vertex of degree at least five and T (k) T (k -4) + T (k -7).

2. G has a vertex of degree 4 that is part of a triangle or 4-cycle also containing at least one degree 3 vertex, and there are no triangles or 4-cycles containing only degree 3 vertices, then:

T (k) T (k -5) + T (k -6) or T (k) 2T (k -8) + 2T (k -12).
3. G has a vertex of degree 4 that is part of a triangle containing at least one degree 3 vertex, and there is no constraint on the degree 3 vertices, then:

T (k) T (k -4) + T (k -6) or T (k) 2T (k -8) + 2T (k -12).

G has at least one vertex of degree 4, none of which satisfy the previous case, and

T (k) T (k -3) + T (k -7).
Or a better branching exists.

When referring to this lemma, often only the branching behavior of its worst case (case 4) is used in the argument. Before proving the lemma in a step by step fashion, we need the concept of a mirror

([5]). A vertex m ∈ V is a mirror of v ∈ V if N (v) \ N (m) forms a clique.
Mirrors are exploited by our algorithm in the following way: whenever we branch on v and discard it at least two of the neighbors of v should be in the maximum independent set. Namely, if we take only one, we could equally well have picked v which is done in the other branch. Since we can take only one vertex form the clique N (v) \ N (m), a vertex from N (v) ∩ N (m) must be in the independent set. Hence we can safely discard m also without changing the size of the maximum independent set.

Notice that the only 4-cycles in a maximum degree 4 graph in which no degree 3 vertex has a mirror consists of four degree 4 vertices. These facts are exploited when we try to limit the number of tree components created by branching.

For the proof we also need the general observation that for any

T (k -r 1 ) + T (k -r 2 ) branch with r 1 < r 2 , a T (k -r 1 -c) + T (k -r 2 + c) branch is a better branch as long as r 1 + c r 2 -c.
The proof will be divided over several subsections corresponding to the various local configurations to which the lemma applies.

Vertices of degree at least five

Let v be a vertex of degree at least five (Figure 2). Our algorithm branches by either taking v in the independent set and discarding N (v) or discarding v. If v is discarded, one vertex is removed and at least five edges are removed forming a subproblem of complexity no more than k -4. If v is put in the independent set, N [v] is removed. In the worst case all neighbors of v have degree What remains is to handle the special case where all vertices in N (v) are of degree 3, there are six external edges, and a tree is created. This tree will be a single degree 3 vertex t, since otherwise there exists a two separator in N (v). Notice that v is a mirror of t. We branch on t. Taking t leads to the removal of 4 vertices and 9 edges: T (k -5). And discarding t and v leads to the removal of 8 edges and two vertices: T (k -6). In the last case there again can be trees, but this implies that the entire component is of constant size. This branching with

T (k) T (k -5) + T (k -6) is better than the required T (k) T (k -4) + T (k -7).

Triangles with two degree 4 vertices and a degree 3 vertex

Let x, y, w be a triangle (3-cycle) in the graph with d(x) = d(y) = 4 and d(w) = 3, also let v be the third neighbor of w. Notice that discarding v causes domination which results in w being taken in the maximum independent set. Our goal is to show that there always exist an efficient enough branching.

If v is of degree 4, discarding v and taking w leads to the removal 11 edges and 4 vertices: T (k -7). Notice that tree components cannot be created because these would have been removed by the preprocessing since there is an edge in G[N (w)]. Taking v and removing N [v] results in the removal of 3 edges incident to w and at least 8 more edges and 5 vertices. If in this last case all neighbors of v are of degree 3, then there are at most 6 external edges and hence there can be at most one tree. Otherwise any degree 4 neighbors of v cause even more edges to be removed, compensating for any possible tree. This results in T (k -5): k -6 with a +1 for the tree.

If v is of degree 3 (Figure 3), discarding v and taking w leads to the removal of of at least 10 edges and 4 vertices: T (k -6). Now if also v is not part of any triangle or has a degree 4 neighbor (case 2 of the lemma) taking v removes 9 edges and 4 vertices: T (k -5). And if v is part of a triangle of degree 3 vertices (case 3 of the lemma) taking v removes 8 edges and 4 vertices T (k -4). 

Triangles with one degree 4 vertex and two degree 3 vertices

When there is only one degree 4 vertex, the situation gets a lot more complicated. Let x, a and b be the triangle vertices with d(x) = 4 and d(a) = d(b) = 3, also let v be the third neighbor of a, and let w be the third neighbor of b (Figure 4). v and w are not adjacent to x and v = w by domination. If v and w are adjacent, we can safely discard x reducing the graph. This last fact follows from the fact that if we pick v we would also pick b, and if we discard v, its mirror b is also discarded which results in a being picked. In both cases a neighbor of x is in a maximum independent set and hence x can safely be discarded. So we assume that v and w are non-adjacent.

If v or w, say v, is of degree 4, taking v removes at least 11 edges and 5 vertices, but since there are 6 external edges there can be a tree: T (k -5). And if there are more external edges (less edges in N (v)) the number of edges removed increases. Discarding v and by domination taking a leads to the removal of 10 edges and 4 vertices: T (k -6). Although in the last case a is a degree 3 vertex with two degree 4 neighbors, there cannot be any trees since there is an edge in G[N (a)]: a tree would fire a reduction rule for trees. So from now on we can assume that v and w are of degree 3.

Consider the case where v or w, say v, has a degree 4 neighbor y (Figure 5). Suppose that y does not form a triangle with v, then taking v removes at least 10 edges and 4 vertices: T (k -6). Discarding v and by domination taking a removes at least 9 edges and 4 vertices: T (k -5). If y does from a triangle with v we branch on w. If w has a degree 4 neighbor or is not involved in a triangle (case 2 of the lemma), then taking w results as before in T (k -5). Discarding w by domination results in taking b which again by dominating results in taking v. In total 15 edges are removed from which 7 external edges and 7 vertices. Because of the separators there can Suppose that v or w, say v, is part of a triangle (Figure 6). Notice that we are now in case 3 of the lemma. We branch on w. If we take w the worst case arises when w is also part of a triangle; 8 edges and 4 vertices are removed: T (k -4). And if we discard w by domination b and v are put in the independent set removing a total of at least 14 edges from which 6 external and 7 vertices. Because of the small separator rules, the external edges can form at most one extra adjacency or tree leading to T (k -6). So at this point we can also assume that v and w are not part of any triangle. Suppose v or w, say w, has a neighbor u = a, b that is adjacent to x (Figure 7). We branch on v and if we discard v, a is picked by domination and we still have T (k -5). If we take v we have the situation that b becomes a degree 2 vertex which neighbors x and w are folded to a single vertex. Notice that both x and w are adjacent to u and hence this folding removes an additional edge: T (k -6). The only case in which the above does not holds is when v and w are both a neighbor of u. We reduce this exceptional case by noting that a tree reduction rule fires when considering branching on u (without actually branching on u of course). This is the rule dealing with u having one degree 4 neighbor and a 2-tree {a, b}. Hence, now we can also assume that v and w have no neighbors besides a and b that are adjacent x. We conclude this subsection by describing three more branches depending on the number of vertices in X = (N (w) ∪ N (v)) \ {a, b}.

Assume that there exist two vertices u and u ′ such that v and w are adjacent to both of them (Figure 8). Notice that if we take v in the independent set it is optimal to also pick w and vice versa. Hence we branch, taking both v and w or discarding both. If we take both v and w, 11 edges are removed and 6 vertices: T (k -5). If we discard both v and w we can take a in the independent set and remove 11 edges and 5 vertices: T (k -6). When taking both v and w there can be not trees since there are only 4 external edges. When discarding both v and w two tree leaves u and u ′ are formed, but they cannot form a tree since their adjacency results in a one separator, and adjacency to the only possibly degree 2 vertices (neighbors of x) results in a constant size component or a small separator. Also there cannot be any extra adjacencies because then there exists a small separator. If |X| = 3, let u ∈ X be the common neighbor of v and w and let t ∈ X be the third neighbor of w (Figure 9). We branch on t. If we take t in the independent set we also take b by domination. This results in the removal of 7 vertices and 15 edges if t has a degree 4 neighbor or there is no triangle involving t, otherwise only 14 edges are removed. Since there can be at most 8 external edges with this number of removed edges, and hence at most 2 extra adjacencies or trees we have T (k -6) or T (k -5). If we discard t, 3 edges and 1 vertex are removed and the folding of w results in a new degree 4 vertex [bu]. This new vertex can be discarded directly since it is dominated by a resulting in an additional removal of 4 edges and 1 vertex. This leads to T (k -5) in total. Furthermore, there cannot be any induced trees since there can be at most one vertex of degree less than two (adjacent to t and u, but no to w) which cannot become an isolated vertex. Depending on whether t is in a triangle we are in case 2 or 3 or the lemma and we have a good enough branching.

If |X| = 4, all neighbors of v and w are disjoint. We branch on v. If we take v, we remove 9 edges and 4 vertices, and if we discard v, we take a and again remove 9 edges and 4 vertices. Also notice that if we take v, b is folded resulting in a degree four vertex [xw]. And if we take a, w is folded resulting in the removal of an extra edge if its neighbors have another common neighbor or also in a degree 4 vertex. In the first case we have T (k) T (k -5) + T (k -6), and in the second case we inductively apply our lemma to both generated branches. This leads to the

T (k) 2T (k -8) + 2T (k -12) in the lemma. Remark that T (k) T (k -5) + T (k -5) has a smaller solution than T (k) 2T (k -8) + 2T (k -12).
However, after a bad branch in a 3-regular graph the second gives a better solution when applied to one of both branches. This is because it is a composition of three branchings that are all a lot better than the bad 3-regular graph branching.

2.5.4 4-cycles in which a degree 4 vertex is a mirror of a degree 3 vertex Let x be the degree 4 vertex that is a mirror of the degree three vertex v, let a and b be their common neighbors, and let w be the third neighbor of v (Figure 10). If we branch on v and take v, we remove at least 9 edges and 4 vertices, and when we discard v and also x because it is a mirror of v, we remove 7 edges and 2 vertices: T (k) T (k -5) + T (k -5). We show that in any case we can always find an extra complexity reduction in one of both branches leading to the required result. Notice that if we discard v and x, there can be no trees since the only possible leaves created are a and b. These two vertices may not be adjacent by dominance. And if they form a tree with any vertex that used to be adjacent to x or v, there would have existed a small separator or there is no tree at all. Also, any extra adjacency results in triangles involving degree 3 and four vertices which are handled in the previous subsection. First assume that a, b or w is of degree 4, then T (k -6) when taking v. Since v is of degree 3 there can only be trees if two or more vertices from {a, b, w} are of degree 4. But in this case even more edges are removed, because a, b and w are non-adjacent to each other, which compensates for the creation of a tree. So we can assume that a, b and w are of degree 3.

If both a and b have another common neighbor y = v, then the graph can be reduced without branching. Indeed, among a, b, v, x, y, in an optimum solution either we take 2 vertices (hence a, b) or three vertices (hence v, x, y). We can replace the subgraph induced by a, b, v, x, y by one vertex that we link to the other neighbors of v, x, y. So we can assume that a and b do not have more than two common neighbors.

Let u and u ′ be the third neighbors of a and b, respectively. When discarding v and x, both a and b are taken in the independent set and u and u ′ are discarded also. This means that 13 edges form which 7 external edges and 6 vertices are removed. First assume that u and u ′ are vertices of degree three. The only possible adjacencies are those between u and u ′ , or u or u ′ and v. But there can be only one adjacency because if we take two we have a small separator. So we end up removing 12 edges from which 5 external edges and 6 vertices which cannot create trees: T (k -6). Now suppose that u or u ′ is of degree 4 and notice that the extra edges removed compensate for any possible extra adjacencies or created tree components. 2.5.5 4-cycles that contain degree 3 and 4 vertices, while no degree 4 vertex is a mirror of a degree 3 vertex This can only be the case if the cycle consists of two degree 4 vertices x, y and two degree 3 vertices u, v with x and y not adjacent. There are no other adjacencies than the cycle between these vertices by cases presented in previous subsections. Suppose that either u or v, say v, has a third degree 4 neighbor z (Figure 11). Notice that this neighbor cannot be adjacent to x or y. If we branch on v and take v, we remove 12 edges and 4 vertices, and if we discard v and its mirror u we remove 6 edges and 2 vertices. So if no trees are created, we have: T (k) T (k -8) + T (k -4). Because of the reduction rules a tree can consist of at most two vertices. Also at most one tree can be formed, otherwise it would be optimal to pick v and a maximum independent sets in each created tree. Consider both cases:

1. A tree consisting of 1 vertex. Since this one vertex is a degree 3 vertex and a mirror we assume without loss of generality that it is u. Taking v now leads to T (k -7), while discarding it results in T (k -4) and x, y and z to be of degree 2. If any of these vertices are in another 4-cycle after discarding u and v, folding causes an additional edge to be removed: T (k) T (k -5) + T (k -7). And if not, degree 4 vertices are created because x, y and w are non-adjacent. We inductively apply the lemma to this case and obtain

T (k) 2T (k -7) + T (k -11).
2. Trees consisting of 2 vertices. If any vertex in the tree is of degree 4 it dominates the other. So both vertices are of degree 3. But then a vertex from x, y and w forms a triangle with this tree which was covered by branching rules in previous subsections.

All the branching rules described above give a better bound on the running time of our algorithm than required by the lemma. So we can assume that u and v have no degree 4 neighbors not on the 4-cycle.

Let w be the degree 3 neighbor of v. It is not adjacent to u since that would imply that x and y are mirrors of w. Since the w cannot be adjacent to x or y, taking v results in the removal of 11 edges and 4 vertices: T (k -7). Discarding v and u leads to the removal of 6 edges and 2 vertices: T (k -4). Because in the last case x and y will be folded and they are not adjacent to other created degree 2 vertices (then there would be triangles involving degree 3 and four vertices), a vertex of degree at least four is created or at least one additional edge is removed. This again leads to T (k) T (k -5) + T (k -7) or T (k) 2T (k -7) + T (k -11) by applying the lemma inductively. We do require here that there are no trees created. But If a tree is created we follow the above reasoning: this can only be a single tree consisting of one vertex (two vertices lead to triangles with degree and four vertices) and there can be only one such tree. In this case w is adjacent to the tree and to v and therefore has x and y as a mirror and we refer to the previous subsection.

2.5.6 A degree 4 vertex that is not involved in any triangle or 4-cycle with any degree 3 vertex Let x be this vertex. If all its neighbors are of degree 3, branching on it results in T (k) T (k -7) + T (k -3). In this case there cannot be any created trees for any tree leaf is of degree at least three before branching and therefore must have at least two neighbors in N (x) to become a leaf. But in this last case, there exist four cycles with degree 3 and four vertices on it which contradicts our assumption.

If x has degree 4 neighbors, the number of edges removed increases and there can still be no trees unless at least three neighbors of x are of degree 4 and every tree leaf vertex originally was a degree 4 vertex. If x has three neighbors of degree 4 there are at least 13 edges removed, in which case there are 7 external edges. This can lead to at most one tree and T (k -7) as required. If there are more external edges, there will also be more edges removed keeping this reduction. Finally if x has four degree 4 neighbors, we remove at least 12 edges from which 4 external edges again leading to T (k -7). Here any tree implies more external edges and hence more edges removed also keeping this reduction.

Putting all the above together completes the proof of Lemma 1.

Branching on 3-regular graphs with triangles or 4-cycles

Whenever the algorithm encounters a 3-regular graph that contains triangles or 4-cycles we can still do better than our worst case. This is settled by a second lemma.

Lemma 2. Let T (k) be the number of subproblems generated when branching on a graph G of complexity k. If G is 3-regular and contains a triangle or 4-cycle, then T (k) T (k -4)+T (k -5) or a better branching exists.

We will now prove this lemma.

3-regular graphs that contain a triangle

Let a, b, c be the triangle vertices. Assume that one of these three vertices, say a, has a neighbor v not in any triangle in the graph. The algorithm branches on v. If v is included in the independent set, 9 edges and 4 vertices are removed: T (k -5). And if v is discarded and by domination a is put in the independent set, 8 edges and 4 vertices are removed: T (k -4). This gives the required branching unless all three triangle vertices only have neighbors that also form triangles. In that case we branch on a. If a is discarded, domination forces v in the independent set which symmetric to the above resulting in T (k -4). When a is included in the independent set, b and c are discarded which by domination results in the third neighbors of b and c to be put in the independent set. Now a total of 18 edges from which 6 external edges and 10 vertices are removed. Adding the at most one extra adjacency or tree this results in T (k -7) which is more than enough.

Triangle free 3-regular graphs that contain a 4-cycle

Let v be a vertex on the 4-cycle. Observe that vertices opposite to v on a 4-cycle are mirrors of v. If we branch on v, triangle freeness results in the removal of 9 edges and 4 vertices when taking v: T (k -5). When discarding v, its mirrors can also be discarded resulting in the removal of 6 edges and 2 vertices if v has only one mirror and possibly more if v has two or three mirrors: T (k -4). Notice that two degree 1 vertices are formed that are not part of a tree. This is because their adjacency implies domination, and if they are adjacent to degree 2 vertices a small separator exists. When v has more than one mirror, single vertex trees can be created in N (v). These extra mirrors compensate more than enough to maintain our T (k -4).

The proof of Lemma 2 is now completed.

Branching on 3-regular graphs without triangles or 4-cycles

Having gone through enough preparation, we are now ready for the third lemma on the branching behavior of our algorithm. Taken together, these lemmata will directly result in the claimed running time. Taking v in the independent set results in T (k -5), and discarding v results in T (k -2). Clearly this branching is not good enough and we will show that we can always do better.

Before we consider the subcases involved in this lemma, observe what happens when branching on v. Let x, y, z be the neighbors of v. Because of triangle and 4-cycle freeness they have disjoint neighbors; let N (x) = {v, a, b}, N (y) = {v, c, d} and N (z) = {v, e, f }. Notice that there cannot be any adjacencies within these neighborhoods, but there can be adjacencies between a, . . . , f if they are neighbors of different vertices in N (v). When v is discarded, these neighborhoods (N (x), N (y) and N (z)) are merged to single vertices. Their degrees and relative positions in the reduced graph depends on the adjacencies between vertices in these neighborhoods. Consider the different possible number of adjacencies; we number cases to deal with later: 0. If there is no adjacency between N (x), N (y) and N (z), each neighborhood is merged to a degree 4 vertex none of which are adjacent in the reduced graph when discarding v (1).

1. If there is one adjacency between N (x), N (y) and N (z), discarding v results in three degree 4 vertices only two of which are adjacent (2).

2. If there are two adjacencies between N (x), N (y) and N (z), these can either be between the same neighborhoods or involving all three neighborhoods. In the first case, an extra edge is removed because the merged vertices cannot have two edges between them. This results in their degrees to be only three, while the other neighborhood is merged to a non-adjacent degree 4 vertex (4). In the second case, we have three degree 4 vertices from which one is adjacent to the other two but they do not forming a triangle. We will call this a path of three degree 4 vertices (3).

3. If there are three adjacencies between N (x), N (y) and N (z), either there are multiple adjacencies between the neighborhoods as in the previous case resulting in the removal of an extra edge [START_REF] Fomin | Measure and conquer: a simple O(2 0.288n ) independent set algorithm[END_REF], or a clique of three degree 4 vertices is formed (6).

4. If there are four adjacencies between N (x), N (y) and N (z), there are either two double adjacencies resulting in two additional edges being removed and T (k) T (k-4)+T (k-5), or a single double adjacency and two single adjacencies. In the second case these adjacencies result in two folded degree 3 vertices forming a triangle with a degree 4 vertex. Here we can apply case 3 of Lemma 1 obtaining:

T (k) T (k -5) + T (k -3 -4) + T (k -3 -6) = T (k -5) + T (k -7) + T (k -9).
5. If there are five adjacencies between N (x), N (y) and N (z), we have a two separator and are done.

6. If there are six adjacencies between N (x), N (y) and N (z), we have a constant size component and are done too.

Notice that these adjacencies also have meaning when taking v in the independent set. Namely, if these neighborhoods are non-adjacent, triangle and 4-cycle freeness also ensures the creation of degree 4 vertices after taking v. However, if for example a and f are adjacent, then taking v results in these vertices to become two adjacent degree 2 vertices. In this case, these vertices are merged resulting in nothing more than an edge between their other neighbors replacing the old edges from these neighbors to a and f . In the case of three adjacencies without double adjacencies [START_REF] Fürer | A faster algorithm for finding maximum independent sets in sparse graphs[END_REF], this can very well lead to a new 3-regular graph without triangles or 4-cycles.

In any other case, we can apply Lemma 1 also to the branch in which we take v since a degree 4 vertex is formed This is the T 4 (k -5) term in the lemma.

The six numbered cases are handled in more detail in the rest of this section. We know that in each case the reduced graph after discarding v has at most three degree 4 vertices; all other vertices are of degree 3. Because the graph is triangle and 4-cycle free before applying this lemma, a new triangle or 4-cycle created after discarding v must involve the vertices obtained by folding. And, if any of the degree 4 vertices form a triangle or 4-cycle with any degree 3 vertex, we apply Lemma 1. If no degree 3 vertices are created by folding, this results in the required branch of T 2 (k -2), otherwise at least one extra edge is removed and we need case 3 of Lemma 1 resulting in even better branches: T (k -3 -4) + T (k -3 -6). Therefore, we can assume that no triangles nor 4-cycles involving both degree 3 and four vertices exist.

Three non-adjacent degree 4 vertices

Following the reasoning for the general case, we apply Lemma 1 to the case where we take v. A T (k)

T 4 (k -3) + T (k -9) branch applied to the graph of complexity k -2 after discarding v, where T 4 (k -3) means we apply Lemma's 1 case 4 also here, leads to T (k) 2T (k -8) + T (k -11) + 2T (k -12) which is sufficient.

The T (k) T 4 (k -3) + T (k -9) branch follows from exploiting a little bit more information we have about the maximum independent set we need to compute in this branch than just the reduced graph. This reasoning is quite similar to exploiting mirrors. Namely, if v is discarded we know that we need to pick at least two of the three neighbors of v: if we pick only one we could equally well have taken v which is done in the other branch already. This observation becomes slightly more complicated because we just folded the neighbors of v. Consider the vertex x ′ that is the result of folding vertex x. The original vertex x is taken in the independent set if and only if x ′ is discarded in the reduced graph. So, the fact that we needed to pick at least two vertices from N (v) results in us being allowed to pick at most one vertex from the three degree 4 vertices created by folding the neighbors of v. Hence, picking any vertex from the three folded vertices allows us to discard the other two. The above discussion is illustrated in Figure 12.

Let x ′ , y ′ and z ′ be the degree 4 vertices resulting from folding x, y and z, respectively. If we discard x ′ , we remove 4 edges and 1 vertex. Moreover, after discarding x ′ , at least one degree 4 vertex remains in the graph resulting in T 4 (k -3), or at least one extra edge is removed by folding resulting in T (k -4) which in this case is even better. When we take x ′ , which has four degree 3 neighbors, we can discard these and both y ′ and z ′ resulting in the removal of 20 edges from which 16 external edges and 7 vertices. Because y ′ and z ′ are non adjacent and they can only be adjacent to a single neighbor of x ′ (or a 4-cycle would exist), there are at most two extra adjacencies. In this case there are 12 external edges left, but these can only form very specific trees leading to T (k -20 + 7 + 2 + 2) = T (k -9). This is because every tree vertex t can only have neighbors that are distance 3 away from each other in G[V \ {t}] because of the triangle and 4-cycle freeness. The only 1-trees that can be created are adjacent to both y ′ and z ′ and a neighbor of x ′ that is not adjacent to either y ′ or z ′ . There can be at most one such trees, since two 1-trees adjacent to two of the same vertices also create a 4-cycle. And, it can only exist if y ′ and z ′ are adjacent to different neighbors of x ′ . This results in 9 remaining external edges that because of the small separators can form only one larger tree. If there is no 1-tree, larger trees use more external edges and hence there can be at most two of them also resulting in T (k -9).

If there is at most one extra adjacency, we remove either 19 edges from which 14 external edges or 20 edges from which 16 external edges and 7 vertices. Since each tree uses at least three external edges this results in T (k -9) or better.

Three degree 4 vertices only two of which are adjacent

This argument goes in entirely the same way. Let x ′ , y ′ and z ′ be the result of folding x, y and z after discarding v. Without loss of generality, assume that x ′ is adjacent to y ′ and that z ′ is not adjacent to any of the other two. Again we can apply Lemma 1 to the case where we take v. Combined with a T (k) T 4 (k -3)+T (k -9) branch or an even better T (k) T (k -4)+T (k -9) branch after discarding v, this leads to a worst case of T (k) 2T (k -8) + T (k -11) + 2T (k -12).

If we discard x ′ , we remove 4 edges and 1 vertex. Now, either a degree 4 vertex remains giving the T 4 (k -3), or an extra edge is removed by folding giving T (k -4). If we take x ′ , we can also discard z ′ resulting in the removal of 17 edges from which 13 external edges and 6 vertices. In the last case there can be at most one extra adjacency, namely between z ′ and a degree 3 neighbor of x ′ . Any tree vertex must again be adjacent to vertices that are distance at least 3 away from each other in this structure. This can only be both z ′ and any neighbor of x ′ . Hence there cannot be any 1-tree: it would need two neighbors of x ′ which causes a 4-cycle. Actually there can be no tree at all since every tree leaf needs to be adjacent to z ′ in order to avoid 4-cycles in N (x ′ ), but this also implies a 4-cycle. Hence we have T (k

-17 + 6 + 1) = T (k -10).
If there is no extra adjacency, there can again be no 1-tree since it can be adjacent to at most one neighbor of x ′ . Larger trees remove enough external edges to prove T (k -9).

Three degree 4 vertices on a path

Again, we can apply Lemma 1 to the case where we take v which, combined with a T (k) T 4 (k-3)+T (k-9) or better branch after discarding v, leads to T (k) 2T (k-8)+T (k-11)+2T (k-12). Let x ′ , y ′ and z ′ be the result of folding x, y and z after discarding v, let y ′ be adjacent to both x ′ and z ′ , and let x ′ and z ′ be non-adjacent.

If we discard x ′ , we remove 4 edges and 1 vertex while z ′ remains of degree 4 giving the T 4 (k -3). If we take x ′ , we can also discard z ′ resulting in the removal of 16 edges from which 11 external edges and 6 vertices. Notice that in the last branch there cannot be any extra adjacencies since they imply triangles or 4-cycles. There cannot be any trees consisting of 1 or 2 vertices also because tree leaves can only be adjacent to z ′ and a degree 3 neighbor of x ′ . Any larger tree decreases the number of external edges enough to obtain T (k -16 + 6 + 1) = T (k -9).

2.7.4

Folding results in two degree 3 vertices and a non-adjacent a degree 4 vertex We now have a graph of complexity k -3 with two degree 3 vertices y ′ , z ′ and a degree 4 vertex x ′ which are all the result of folding. Furthermore, y ′ and z ′ are adjacent but not adjacent to x ′ . Of these vertices x ′ cannot be involved in any triangle or 4-cycle, or we apply Lemma's 1 case 3 as discussed with the general approach. Different from before, vertices y ′ and z ′ can be involved in these local structures.

We branch on x ′ . This leads to T (k-3-3) when discarding x ′ . Similar to the above cases, we can still discard both y ′ and z ′ when taking x ′ in the independent set. Therefore, taking x ′ leads to removing 17 edges from which 12 external edges and 7 vertices. If there is an extra adjacency, this is between y ′ or z ′ and a neighbor of x ′ . In this case, there can be at most one tree since y ′ and z ′ together have only 3 external edges left and every tree leaf can be adjacent to at most one neighbor of x ′ or a 4-cycle with x ′ would exist. This leads to

T (k -3-17+ 7+ 1+ 1) = T (k -11).
If there is no extra adjacency, every tree leaf can still be adjacent to no more than one neighbor of x ′ , which together with the 4 external edges of y ′ and z ′ lead to at most 2 trees and T (k -11).

Together with the T (k -5) branch for taking v, this leads to T (k) T (k -5) + T (k -6) + T (k -11), which is good enough.

Folding results in two degree 3 vertices adjacent to a degree 4 vertex

We again have a graph of complexity k -3 with two degree 3 vertices y ′ , z ′ and a degree 4 vertex x ′ which are all the result of folding. Furthermore, y ′ is adjacent to x ′ and z ′ while x ′ and z ′ are non-adjacent. Of these vertices, x ′ cannot be involved in any triangle or 4-cycle since we then apply Lemma's 1 case 3 as discussed with the general approach.

Similar to the previous case, we branch on x ′ giving T (k -3 -3) when discarding x ′ , and we allow y ′ and z ′ to be discarded when taking x ′ . This leads to the removal of 14 edges and 6 vertices in the second branch and we have T (k) T (k -5) + T (k -6) + T (k -11) as before unless there are trees.

If there are trees, observe that every tree leaf can again be adjacent to at most one neighbor of x ′ , and hence all tree leaves must be adjacent to z ′ . Also observe that the third neighbor of y ′ cannot be adjacent to x ′ or any of its neighbors. Since z ′ has only two external edges, this means the only tree that can exist is a 2-tree with both leaves connected to z ′ and a different neighbor of x ′ not equal to y ′ (or z dominates a tree vertex). Notice that this implies a triangle involving the tree and z ′ . In this case we branch on y ′ . When taking y ′ , we remove 10 edges and 4 vertices: T (k -6). And when discarding y ′ , the tree forms a triangle in which by dominance z ′ is taken in the independent set. Since we can take at most one of the folded vertices, this also results in x ′ being discarded. In total, this results in the removal of 11 edges and 4 vertices, and in this very specific structure no trees can exist: T (k -6).

Three degree 4 vertices that form a clique

The fact that we can take at most one vertex from x ′ , y ′ and z ′ is superfluous information here since they already form a clique. Also, as we discussed with the general case, we cannot use Lemma 1 after taking v in the independent set. Hence we cannot apply anything from the general approach here and this looks like a very hard case. However, this case is easy when observing the following.

Let v, x, y, z and a, . . . , f be as before. Let without loss of generality b be adjacent to c, d be adjacent to e, f be adjacent to a, and let non of the vertices in {a, . . . , f } be adjacent to each other. Notice that when we discard v this leads to the required adjacencies and triangle of degree 4 vertices. This is caused by the fact that G[N [v] ∪ {a, . . . , f }] consists of three 5-cycles that overlap on v and 6 external edges.

If there is a vertex u ∈ V with a different local structure than just described, we branch on this vertex and are done. And, if for every vertex u ∈ V this local structure exists, then G must equal the dodecahedron which has 20 vertices and can be removed in constant time. The proof of Lemma 3 is now completed.

Putting it all together

Lemma 1 described branching on non-3-regular graphs, Lemma 2 described branching 3regular graphs that contain triangles or 4-cycles, and Lemma 3 described branching on other 3-regular graphs. Considering all these branchings we have T (k)

T (k -8) + 2T (k -10) + T (k -12) + 2T (k -14) in the worst case. This recurrence relation is formed by combining Lemmata 1 and 3 and leads to a running time of O * (1.17802 k ). On average degree 3 graphs this is O * (1.17802 n/2 ) = O * (1.08537 n ).

Theorem 1 . max independent setcan be solved in O * (1.08537 n ) in connected graphs of average degree at most 3.

Graphs of average degree at most 4

We deal in this section with (connected) graph of average degree at most 4. When m 3n/2, then we can solve the problem with our previous algorithm in time O * (γ n ), where γ = 1.08537. If m > 3n/2, then we can branch on a vertex of degree at least 4. Then the principle of the algorithm is simple: we branch on vertices of degree at least four as long as m > 3n/2, and then we use the algorithm in O * (γ n ) in the remaining graph.

In our analysis, we seek an algorithm of complexity O * (γ n y m-3n/2 ), with y as small as possible. Of course, we can use the previous study (in Lemma 1) on branching of vertices of degree at least 4, but we can do much better, thanks to our complexity measure. Indeed, we will see that while branching on a vertex of degree at least 4:

• either m decreases a lot (respect to n) and the branching is good,

• or we are able to remove a lot of vertices and edges while branching; this is also good since, intuitively, we will have a graph with very few vertices when reaching the case m 3n/2. Applying the O * (γ n ) will be 'very' fast.

The result is formally described and proved in the following proposition.

Proposition 1. Assume that an algorithm computes a solution to max independent seton graphs of average degree 3, with running time O * (γ n ). Then, it is possible to compute a solution to max independent seton any graph with running time O * (γ n f (γ) m-3n/2 ), where f (γ) is defined by the largest value y verifying a set of appropriate inequalities. In particular, f (1.08537) = 1.13641. Proof. We prove Proposition 1 by a recurrence on n and m. We seek a complexity of the form O * (γ n y m-3n/2 ). We know that when m = 3n/2 (or equivalently when the graph is 3-regular, since vertices of degree less than 2 have been eliminated by the preprocessing), we can solve the problem in O * (γ n ). Now, we assume that our graph has m > 3n/2 edges. In particular, there is a vertex of degree at least 4.

Assume that we perform a branching that reduces the graph by either ν 1 vertices and µ 1 edges, or by ν 2 vertices and µ 2 edges. Then our complexity formula is valid for y being the largest root of the following equality:

γ n y m-3n/2 = γ n-ν 1 y m-3n/2-µ 1 +3ν 1 /2 + γ n-ν 2 y m-3n/2-µ 2 +3ν 2 /2
or, equivalently:

1 = γ -ν 1 y -µ 1 1 /2 + γ -ν 2 y -µ 2 +3ν 2 /2 (1) 
Then, when m > 3n/2, one of the following two situations occurs:

• Either there is a vertex of degree at least 5: in this case we reduce the graph either by ν 1 = 1 vertex and µ 1 = 5 edges, or by ν 2 = 6 vertices and µ 2 13 edges, leading to y = 1.1226 (or ν 1 = 4, µ 1 = 9, ν 2 = 2, µ 2 = 8, which is even better), see Section 2.5.1;

• Or the maximum degree is 4: Lemma 1 gives a set of possible reductions that can be plugged into Equation [START_REF] Beigel | Finding maximum independent sets in sparse and general graphs[END_REF]. As said before, we can do much better now, thanks to our complexity measure, using the fact that, informally, removing a lot of vertices might be also good.

In the following, we consider that the graph has maximum degree 4, and we denote u 1 , u 2 u 3 and u 4 the four neighbors of some vertex v. We call inner edge an edge between two vertices in N (v) and outer edge an edge between a vertex in N (v) and a vertex not in N [v]. We study 4 cases, depending on the configuration of N (v). Here, we consider that no trees are created while branching. We deal with trees in Section 4 and show that it is never problematic.

Case 1. All the neighbors of v have degree 4. This case is easy. Indeed, if there are at least 13 edges incident to vertices in N (v), by branching on v we get ν 1 = 1, µ 1 = 4, ν 2 = 5 and µ 2 13. This gives y = 1.1358.

But there is only one possibility with no domination and only 12 edges incident to vertices in N (v): when u 1 , u 2 , u 3 , u 4 is a 4-cycle. This case reduces thanks to the following lemma. Lemma 4. Assume there exists a vertex v such that the subgraph induced by N (v) is a cycle u 1 , u 2 , u 3 , u 4 . Then, it is possible to replace N (v) ∪ {v} by only two vertices u 1 u 3 and u 2 u 4 , such that u is adjacent to u 1 u 3 (resp. u 2 u 4 ) if and only if u is adjacent to u 1 or u 3 (resp. u 2 or u 4 ).

Proof. Any optimal solution cannot contain more than two vertices from the cycle. If it contains only one, replacing it by v does not change its size. Finally, there exist only three disjoint possibilities: keep u 1 and u 3 , keep u 2 and u 4 or keep only v, see Figure 13. Case 2. All the neighbors of v have at least 2 outer edges.

If one of them have degree 4, then there are at least 13 edges removed when taking v, and we get again ν 1 = 1, µ 1 = 4, ν 2 = 5 and µ 2 13.

Otherwise,once v is removed, any u i now has degree 2. Note that when folding a vertex of degree 2, we reduce the graph by 2 vertices and 2 edges (if the vertex dominates another one, and u 3 and t 2 to u 2 and u 3 , then at least 2 vertices among u 1 , u 2 , u 3 have degree 4 since 2 of them must be adjacent to the remainder of the graph. The only remaining case occurs when t 1 is adjacent to u 1 , u 3 and t 2 is adjacent to u 2 , u 4 . In this case we can replace the whole subgraph by two adjacent vertices u 1 u 3 and u 2 u 4 . Indeed, either we take 2 vertices (v and t 1 ), or we take 3 vertices (either u 1 , u 3 , t 2 , or u 2 , u 4 , t 1 ).

• Eventually, if all neighbors of v have degree 3, since |Ω| 11, we have |I| = 0, hence N = |Ω| = 12. In this case, when we do not take v, we have 4 vertices of degree 3 pairwise non adjacent. We can fold each of them (if there is a domination this is even better) and delete 8 more vertices and edges. Finally, we get at worse ν 1 = 9, µ 1 = 12, ν 2 = 7 and µ 2 = 14 (y = 1.0386).

Graphs of average degree at most 5

We now consider graphs of average degree 5. We use as in the previous section a complexity measure that is parameterized by the algorithm on average degree 4.

More precisely, we proceed as follows. We first identify in Lemma 5 a property linking the average degree of the graph to the quality of the branching that is performed. Informally, the bigger the average degree, the more deleted edges when branching on a (well chosen) vertex.

With this property, we analyze the complexity of our algorithm in a bottom up way as follows. If we know how to solve the problem in O * (γ n ) in graph with average degree d, and that when the average degree is greater than d a good branching occurs, we seek a complexity of the form O * (γ n y m-dn/2 ), valid in graph with average degree greater than d. Starting from d = 4, we identify four critical values for the average degree, leading to a complexity of O * (1.1969 n ) in graphs of average degree at most 5. Or some even better case happens. Furthermore, if it verifies:

• m > 20n/9, then T (n, m) T (n -1, m -6) + T (n -7, m -16) • m > 16n/7, then T (n, m) T (n -1, m -6) + T (n -7, m -17) • m > 12n/5, then T (n, m) T (n -1, m -6) + T (n -7, m -18)
Proof. Fix some vertex v 0 of degree 5, such that for any vertex v of degree 5 in the graph:

w∈N (v) d(w) w∈N (v 0 ) d(w) = δ
For i 5, let m i5 be the number of edges in the graph between a vertex of degree i and a vertex of degree 5. For i 4, fix α i = m i5 /n 5 and α 5 = 2m 55 /n 5 . In other terms, α i is the average number of vertices of degree i that are adjacent to a vertex of degree 5. However, we can always consider α i = 0 for i 2. Summing up inequalities on any vertex of degree 5, we get:

i 5 iα i δ (2) 
i 5

α i = 5 (3) 
Fix now ǫ = m/n -2 ∈]0, 1/2[:

ǫ = n 5 -n 3 2(n 5 + n 4 + n 3 )
This function is decreasing with n 3 and n 4 . We now use some straightforward properties: 

n
Let µ 2 be the minimal number of edges we delete when we add v 0 to the solution. Since there are at least 2d(v 0 ) edges between N (v 0 ) and the remaining of the graph, and thanks to inequalities (2) and (3), we get:

µ 2 10 + δ -10 2 10 + 5 + α 4 + 2α 5 2 
Notice that ǫ > 0 implies:

α 4 + α 5 > 2 (5) 
If we run min µ 2 under constraints (2),( 3),( 5) and µ 2 ∈ N, we find µ 2 = 14 as a minimum. For 1 i 3, we now consider the following programs (P i ): max ǫ under constraints (2),(3),(4) and µ 2 14 + i. In other terms, we determine the maximal value for ǫ such that it is possible that no vertex in the graph verifies µ 2 = 15 + i. Notice also that µ 2 = 14 implies that at least one neighbor of v 0 has degree 3, so we can fold it after discarding v. In that case, we get ν 1 = 3, µ 1 = 7, ν 2 = 6, µ 2 = 14, that is better than

ν 1 = 1, µ 1 = 5, ν 2 = 6, µ 2 = 15.
Proposition 2. Assume that an algorithm computes a solution to max independent seton graphs with average degree at most 4, with running time O * (γ n 0 ). Then, it is possible to compute a solution to max independent seton any graph with running time:

O * (γ n 0 γ 2n/9 1 γ 4n/63 2 γ 4n/35 3 γ m-2n/5 4 
)

for some appropriate constants (γ i ) i 4 . In particular:

γ 0 = 1.1571 =⇒        γ 1 = 1.0775 γ 2 = 1.0696 γ 3 = 1.0631 γ 4 = 1.0612 (6) 
To be more precise, γ i corresponds to the case where our graph is dense enough to state that µ 2 15 + i, according to Lemma 5 (the case when there is a vertex of degree at least 6 can be easily shown to lead to a better reduction).

Proof. We seek a complexity of the form O * (γ n y m-(2+ǫ i )n ), where 2 + ǫ i is the lowest ratio m/n that allows us to use ν 1 = 1, µ 1 = 6, ν 2 = 7 and µ 2 = 14 + i in the recurrence equation:

1 = γ -ν 1 y -µ 1 +(2+ǫ i )ν 1 + γ -ν 2 y -µ 2 +(2+ǫ i )ν 2 (7) 
According to Lemma 5, (ǫ i ) i 4 = (0, 2/9, 2/7, 2/5). In the worst case this leads to the values summarized in [START_REF] Fürer | A faster algorithm for finding maximum independent sets in sparse graphs[END_REF]. Note that a reduction of ν ′ 1 vertices and µ ′ 1 ν ′ 1 edges is not problematic for y γ 1/(1+ǫ i ) i

. In order to deal with trees, note also that removing a tree corresponds to a reduction of ν vertices and ν -1 edges. This is not problematic as soon as y 1.5ν+1 γ ν . This is true for ν 2.

Otherwise, trees are singletons and there is no separator of size 2 or less. We also get |Ω| 5 + 3 + 3l , that means µ 2 8 + 2l + δ-8-3l

2

. Hence, we see that if l > 1, or if there are at least 4 edges linking vertices in N (v) to the remainder of the graph, or if our disconnected vertex t has degree at least 4, we are in a better situation as when no tree is created. Eventually, assume d(t) = 3 and there is a separator of size 3, namely u 3 , u 4 and u 5 . t is adjacent to u 1 ,u 2 and, say, u 3 . If u 1 and u 2 are not adjacent, then it is never interesting to take v (if we take v we take only t in N (v) ∪ {v, t}, and we can take u 1 , u 2 instead). Otherwise, no more than 3 vertices from N (v) may belong to the optimal (otherwise that would mean for instance N (v)-u 1 contains no edge, and thus u 1 dominates u 2 ), and there are only 3 different ways to choose 2 vertices among u 3 , u 4 , u 5 . So we can replace the whole subgraph by a clique of size at most 3. Theorem 2. It is possible to compute a solution to max independent seton graph whose maximum (or even average) degree is 5 with running time O * (1.1969 n ) Proof. We just apply Proposition 2 with m 5n/2 6 Graphs of average degree at most 6

We apply here a technique similar to the case of graphs with average degree at most 6. Proof. Fix some vertex v 0 of degree 6, such that for any vertex of degree 6 in the graph:

w∈N (v) d(w) w∈N (v 0 ) d(w) = δ
For i 5, fix α i = m i6 /n 6 and α 6 = 2m 66 /n 6 . In other terms, α i is the average number of vertices of degree i that are adjacent to a vertex of degree 6. However, we can always consider α i = 0 for i 2. Summing up inequalities on any vertex of degree 6, we get:

i 6 iα i δ (8) 
i 6

α i = 6 (9) 
Fix ǫ = m/n -5/2 ∈]0, 1/2[: 

ǫ = n 6 -n 4 -
Once again, let µ 2 be the minimal number of edges we delete when we add v 0 to the solution.

Since there are at least 2d(v 0 ) edges between N (v 0 ) and the remaining of the graph, and thanks to inequalities (8) and ( 9), we get:

µ 2 12 + δ -12 2 15 + α 4 + 2α 5 + 3α 6 2 
Notice that ǫ > 0 implies: 5α 4 + 8α 5 + 8α 6 > 36 (11)

If we run min µ 2 under constraints (8),( 9),(11) and µ 2 ∈ N, we find µ 2 = 20 as a minimum, that proves our first claim. (limit case µ = 19 and ǫ = 0 is reached when α 6 = 0, α 5 = 2 and α 4 = 4) For 1 i 4, we now consider the following programs (P i ): max ǫ under constraints (8),( 9),(10) and µ 2 19 + i. In other terms, we determine the maximal value for ǫ such that it is possible that no vertex of degree 6 in the graph verifies µ 2 = 20 + i. The following table summarizes the results and concludes the proof of the lemma.

Worst case for µ 2 Upper bound for ǫ (α 6 , α ) for some appropriate constants (γ i ) i 5 . In particular: 

γ 0 = 1.1969 =⇒            γ 1 =
To be more precise, γ i corresponds to the case where our graph is dense enough to state that µ 2 19 + i, according to Lemma 6.

Proof. We seek a complexity of the form O * (γ n y m-(5/2+ǫ i )n ), where 5/2 + ǫ i is the lowest ratio m/n that allows us to use ν 1 = 1, µ 1 = 6, ν 2 = 7 and µ 2 = 19 + i in the recurrence equation:

1 = γ -ν 1 y -µ 1 +(5/2+ǫ i )ν 1 + γ -ν 2 y -µ 2 +(5/2+ǫ i )ν 2 (13)

According to Lemma 6, (ǫ i ) i 5 = (0, 5/46, 5/22, 10/37, 5/14). In the worst case this leads to the values summarized in (12). Note that a reduction of ν ′ 1 vertices and µ ′ 1 ν ′ 1 edges is not problematic for y γ 2/(3+2ǫ i ) i . In order to deal with trees, note also that removing a tree corresponds to a reduction of ν vertices and ν -1 edges. This is not problematic as soon as y 2.5ν+1 γ ν . This is true for ν 1. In other words, removing a tree reduces the global complexity. Theorem 3. It is possible to compute a solution to max independent seton graph whose maximum (or even average) degree is 6 with running time O * (1.2149 n ).

Proof. We just apply Proposition 3 with m 3n.

Conclusion

We have tackled in this paper worst-case complexity for max independent set in graphs with average degree 3, 4, 5 and 6. The results obtained improve upon the best results known for these problems. Let us note that the cases of average degrees 5 and 6 deserve further refinement. Indeed, it seems to us that there is enough place for improving them, since our results are got by using fairly simple combinatorial arguments.

An interesting point of our work is that improvement for the three last cases have been derived based upon a new method following which any worst-case complexity result for max independent set in graphs of average degree d can be used for deriving worst-case complexity bounds in any graph of average degree greater than d. This method works for any average degree's value and can be used for any graph-problem where the larger the degree the better the worst-case time-bound obtained.

  Let v be an articulation point of G and let C ⊂ V be the vertices of the smallest component (vertices in C only have edges to v or to other vertices in C). If the algorithm finds such an articulation point v it recursively computes a maximum independent set I v in the subgraph G[C] and I v in the subgraph G[C ∪ {v}]. Notice that |I v | can be at most 1 larger than |I v |, and if this is the case then v ∈ I v . If these sizes are the same, the algorithm recursively computes the maximum independent set I in G[V \ (C ∪ {v})] and returns I ∪ I v . This is correct since taking v in the independent set restricts the possibilities in G[V \ (C ∪ {v})] more, while it does not increase the maximum independent set in C ∪ {v}. And if |I v | = 1 + |I v |, then the algorithm computes the maximum independent set I in G[V \ C] and returns I ∪ (I v \ {v}). This is also correct since adding v to C increases the size of the maximum independent set in G[C] by 1, and this choice is left to the recursive call on G[V \ C].

  with u and v merged into a single vertex w. The algorithm makes a recursive call on G ′ returning I. If w ∈ I then we return 9I \ {w}) ∪ I v,u and otherwise we return I ∪ I v, u . • |I v,u | = |I v,u | = |I v, u | = |I v, u |. Now it is safe to use I v, u . We make a recursive call on G[V \ (C ∪ {u, v})] resulting in I and return I ∪ I v, u .
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 1 Figure 1: T consists of three vertices and at least two neighbors of v, a and b, have two tree neighbors.

3 .Figure 2 :

 32 Figure 2: Vertices of degree at least five.

Figure 3 :

 3 Figure 3: Vertex v has degree 3.

Figure 4 :Figure 5 :

 45 Figure 4: Triangles with one degree 4 vertex and two degree 3 vertices.

Figure 6 :

 6 Figure 6: Vertex v is part of a triangle.

Figure 7 :

 7 Figure 7: Vertex w, has a neighbor u = a, b that is adjacent to x.

Figure 8 :

 8 Figure 8: Vertices v and w are adjacent to both of u and u ′ .

Figure 9 :

 9 Figure 9: The case |X| = 3.

Figure 10 :

 10 Figure10: Vertex x is a degree 4 vertex that is a mirror of the degree three vertex v.

Figure 11 :

 11 Figure 11: Vertex v, has a third degree 4 neighbor z.

Lemma 3 .

 3 Let T (k) be the number of subproblems generated when branching on a graph G of complexity k. If G is 3-regular and contains no triangles or 4-cycles, then branching on any vertex results in T (k) T 2 (k -2) + T 4 (k -5), where T 2 and T 4 correspond to situations 2 and 4 from lemma 1, respectively, or a better branching exists. This leads to the worst case recurrence relation T (k) T (k -8) + 2T (k -10) + T (k -12) + 2T (k -14) and a running time of O * (1.17802 k ).

  Figure 12:

Corollary 1 .

 1 It is possible to compute a solution to max independent seton graphs with maximum (or even average) degree is 4 with running time O * (1.1571 n )

Lemma 5 .

 5 Assume the input graph has maximum degree 5 and average degree 4 or more. Then T (m, n) T (n -1, m -5) + T (n -6, m -15)

Lemma 6 .

 6 Assume the input graph has maximum degree 6 and average degree 5 or more. ThenT (m, n) T (n -1, m -6) + T (n -7, m -20) Furthermore, if it verifies: • m > 60n/23, then T (n, m) T (n -1, m -6) + T (n -7, m -21) • m > 60n/22, then T (n, m) T (n -1, m -6) + T (n -7, m -22) • m > 205n/74, then T (n, m) T (n -1, m -6) + T (n -7, m -23)• m > 20n/7, then T (n, m) T (n -1, m -6) + T (n -7, m -24)

  2n 3 2(n 6 + n 5 + n 4 + n 3 ) This function is decreasing with n 3 ,n 4 and n 5 . We now use some straightforward properties: = m 36 + m 46 + m 56 + 2m 66 That leads to: ǫ 60n 6 -15m 46 -40m 36 120n 5 + 24m 56 + 30m 46 + 40m 36 25m 46 + 40m 56 + 80m 66 -180n 6 360n 6 -10m 36 -16m 56 -80m 66 and, by hypothesis: ǫ 25α 4 + 40α 5 + 40α 6 -180 360 -10α 4 -16α 5 -40α 6

	n 5 n 4 n 3	m 56 5 m 46 4 m 36 3
	6n 6	

  Proposition 3. Assume that an algorithm computes a solution to max independent seton graphs with average degree at most 5, with running time O * (γ n 0 ). Then, it is possible to compute a solution to max independent seton any graph with running time:

	O * (γ n 0 γ 1 5n/46	γ 2 85n/252	γ 3 35n/814	γ 4 45n/518	m-5n/14 5 γ
					5 , α 4 )
	20		5/46	(0, 4, 2)
	21		5/22	(0, 6, 0)
	22		10/37	(2, 4, 0)
	23		5/14	(4, 2, 0)

Figure 13: G[N (v)] is a 4-cycle this is even better). Since any 2 vertices u i cannot be adjacent to each other, that means we can remove 8 vertices and at least 8 edges by folding u 1 , • • • , u 4 . Indeed, if for instance u 1 dominates its neighbors (its two neighbors being adjacent), we remove 3 vertices and at least 5 edges which is even better. Removing 8 vertices and at least 8 edges is very interesting: it gives ν 1 = 9, µ 1 = 12, ν 2 = 5, µ 2 = 12, and y = 1.0856.

Case 3. u 1 has degree 3 and only one outer edge. Then, u 1 has one inner edge, say (u 1 , u 2 ). Let y be the third neighbor of u 1 . We branch on y. at first that u 2 has degree 3. If we take y we remove 4 vertices and (at least) 8 edges (there is at most one inner edge in N (y)); if we don't take y, then we remove also v and we remove globally 2 vertices and 7 edges. This is obviously not sufficient. There is an easily improvable case, when a neighbor of y has degree 4 (or when y itself has degree 4), or when the neighbors of y are not adjacent. Indeed, in this case there are at least 9 edges in N (y), and we get ν 1 = 4, µ 1 = 9, ν 2 = 2 and µ 2 7, leading to y = 1.13641. Now, we can assume that y has degree 3, its 3 neighbors have degree 3. Same for z the neighbor of u 2 ; furthermore, they both are part of a triangle, see Figure 14. Note that z and y cannot be adjacent or there is a separator of size 2 (v and the third neighbor or z, y), and z and y cannot have a common neighbor (either this vertex would have degree at least 4, or they have two degree 3 common vertex but in this case v is a separator 1). At least a neighbor of say z is neither u 3 nor u 4 . Hence, when discarding y, we take u 1 , so remove u 2 and then add z to the solution. Eventually, we get ν 1 = 4, µ 1 = 8, ν 2 = 7 and µ 2 13, leading to y = 1.1195. Suppose now that u 2 has degree 4. Then, when we don't take y, since we don't take v, u 1 has degree 1. Then, we can take it and remove u 2 and its incident edges. Then, when not taking y, we remove in all 4 vertices and 10 edges. In other words, ν 1 = 4, µ 1 = 8, ν 2 = 4 and µ 2 10. This gives y = 1.1325. Case 4. u 1 has degree 4 and only one outer edge.

Since Case 1 does not occur, we can assume that there is a vertex (say u 4 ) of degree 3. Since Case 3 does not occur, u 4 no inner edge. Hence, u 1 is adjacent to u 2 and u 3 . Then, there are only two possibilities.

If there are no other inner edges, since Case 3 does not occur u 2 and u 3 have 2 outer edges, and we have in all 13 edges. This gives once again ν 1 = 1, µ 1 = 4, ν 2 = 5 and µ 2 13.

Otherwise, there is an edge between u 2 and u 3 . Then, v, u 1 , u 2 , u 3 form a 4-clique, see Figure 15. We branch on u 4 . If we take u 4 , we delete ν 1 = 4 vertices and (at least) ν 2 = 9 edges (v has degree 4 and is not adjacent to other neighbors of u 4 ). If we discard u 4 , then by domination we take v, and delete ν 2 = 5 vertices and at least µ 2 = 12 edges. It gives y = 1.0921.

To conclude the proof, we have to verify that removing ν ′ 1 vertices and µ ′ 1 ν ′ 1 edges (without branching) does not increase the running time. Indeed, this may occur when graph reductions are performed (such as a vertex folding for instance), but also in the previous analysis of the possible branchings, since it may happen that the real reduction remove ν 1 + ν ′ 1 vertices and

To get the result claimed, we have to verify that

. This is trivially true as soon as y γ 2 since ν ′ 1 µ ′ 1 . In other words, each time we remove ν ′ 1 vertices and at least ν ′ 1 edges, we reduce running time with a multiplicative factor c ν ′ 1 where c = ( √ y/γ) < 1.

Similarly, a last issue we have to deal with is what happens if some branching disconnects our graph. The cases when some trees are created are handled in Section 4. We now assume only connected components (C i ) each verifying m i n i have appeared. In order to simplify our notation we call T the complexity of the connected case. Our running time now verifies:

Since c < 1 (and n 1 1), for n large enough we have c n i 1 c n i 1 and eventually T (m, n) T (m, n).

Dealing with trees

We show here that creating a tree while branching is never problematic. If we branch on a vertex of degree 3 (as in Case 3), then no trees are created, or the graph can be reduced without branching (see Section 2.4). Now, we consider the case where one or several tree(s) is/are created when branching on a vertex of degree 4. We denote N the number of edges incident to some vertex in N (v), I (resp. Ω) the set of edges, called inner edges, that have both endpoints in N (v) (resp. the set of edges that have only one endpoint in N (v)).

At first, suppose that one of the l 1 trees created is a single vertex t. Then, t is a mirror of v: when discarding v, we can also discard t and this removes 2 vertices and (at least) 7 edges. It is easy to see that no tree are created: indeed, this does not disconnect the graph since at least 3 u i 's are connected to the remainder of the graph (i.e., the graph after removing v, N (v) and the trees), each tree is connected to at least one of these 3 u i 's, and the fourth u i has to be connected either to 2 trees or to some u i (or to the remainder of the graph). When taking v, we remove 5 vertices and N |Ω| 4 + 3 + 3l edges (since there are at least 3 edges per tree, and 3 edges to the remainder of the graph). The reduction of the trees allow to delete at worst l more vertices (actually l + k vertices and k edges, for some k 0). In all, we have ν 1 = 2, µ 1 = 7, ν 2 = 5 + l and µ 2 = 7 + 3l, which is good for l 2 (it gives y = 1.1078). If l = 1, then N |Ω| + ⌈(12 -|Ω|)/2⌉ 10 + 1 = 11, hence the reduction we get is ν 1 = 2, µ 1 = 7, ν 2 = 6 and µ 2 = 11. It gives y = 1.1299. Now, if l 2 and each tree has at least 2 vertices, there are at least 4 edges linking each tree to N (v). When taking v, we remove 5 vertices and at least 4 + 3 + 4l edges. When reducing the trees, we remove additional 2l vertices and l edges. In all, we remove 5 + 2l vertices and 7 + 5l edges. This is of course worse for l = 2, for which we have ν 1 = 1, µ 1 = 4, ν 2 = 9 and µ 2 = 19 (and y = 1.1031). Now, consider the final case where one tree T composed by at least 2 vertices is created while branching on v. Then, we have at least 4 edges linking N (v) to T , and 3 edges linking N (v) to the remainder of the graph. Then, N = |Ω| + |I| 11 + |I|. When taking v, since we reduce a tree T of at least 2 vertices, we delete at worse 7 vertices and N + 1 edges.

• If all neighbors of v have degree 4, then N 11 + ⌈(16 -11)/2⌉ = 14. In this case, ν 1 = 1, µ 1 = 4, ν 2 = 7 and µ 2 = 15. It gives y = 1.1315.

• If 1 neighbor of v have degree 3 (and 3 have degree 4), then if there exists at most one inner edge, then |Ω| 13 and N 14. Hence, we get at worse ν 1 = 1, µ 1 = 4, ν 2 = 7 and µ 2 = 15. Now, suppose there are two inner edges (hence the tree has two degree 3 vertices t 1 , t 2 ). If a vertex t 1 of the tree is a mirror of v, then when discarding v we can discard t 1 also and get ν 1 = 2, µ 1 = 7 (this does not create tree). With ν 2 = 7 and µ 2 = 14, it gives y = 1.0952. Now, there are only three possibilities without mirror. The first two possibilities occur when the two inner edges are (u 1 , u 2 ) and (u 3 , u 4 ). If say u 3 is adjacent to both t 1 and t 2 (then t 1 is adjacent to u 1 and t 2 to u 2 ), it is never interesting to take u 3 (we cannot take 3 vertices if we take u 3 ). The case where t 1 is adjacent to (u 1 , u 3 ) and t 2 to (u 2 , u 4 ) reduces as follows: we can replace the whole subgraph by two adjacent vertices u 1 u 3 and u 2 u 4 since either we take two vertices v and t 1 , or we take 3 vertices u 1 , u 3 , t 2 , or u 2 , u 4 , t 1 . If the inner edges are (u 1 , u 2 ) and (u 2 , u 3 ), then to avoid mirror u 2 must be adjacent to say t 1 , and then t 1 has to be adjacent to u 4 , and t 2 to u 1 and u 3 . But, as previously, this case reduces by replacing the whole graph by two adjacent vertices u 1 u 3 and u 2 u 4 .

• If 2 neighbors of v have degree 4, and 2 have degree 3, then there exists at most one inner edge. If there is no inner edge, then N = |Ω| = 14 and ν 1 = 1, µ 1 = 4, ν 2 = 7 and µ 2 = 15.

If there is one inner edge (u 1 , u 2 ), then if u 3 or u 4 has degree 3, when discarding v we can fold two (non adjacent) vertices or degree 2. This gives ν 1 = 5, µ 1 = 8, ν 2 = 7 and µ 2 = 14 (y = 1.1244). If u 1 and u 2 have degree 3, then to avoid separators of size 2 u 1 is adjacent to say t 1 and u 2 is not adjacent to the tree. Then, t 2 is a mirror of v and we get a reduction ν 1 = 2, µ 1 = 7, ν 2 = 7 and µ 2 = 14.

• If one neighbor has degree 4 and the other neighbors of v have degree 3, then there cannot exist more than one inner edge (because of the degrees). If there is no inner edge, then N 13 and, as previously, by folding say the 3 (pairwise non adjacent) vertices of degree 3 when not taking v, we get ν 1 = 7, µ 1 = 10, ν 2 = 7 and µ 2 = 14 (y = 1.0946). If there is one inner edge (u 1 , u 2 ), then we do not need to branch. Indeed, the tree has only two vertices t 1 , t 2 of degree 3 (otherwise there would be 12 edges in Ω). If say t 1 is adjacent to both u 1 and u 2 , to avoid domination u 1 and u 2 have to be adjacent to a fourth edge. If t 1 is adjacent to both u 3 and u 4 , then it is never interesting to take t 1 : indeed, it is impossible to take t 1 plus 2 other vertices, and we can always take v and t 2 . If t 1 is adjacent to u 1