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Coordination among transmitters is a key problem in cochannel small cell networks. In this paper we present a Bayesian game-theoretic analysis for the uplink channel access. The proposed game is able to model realistic network conditions, such as multiple orthogonal channels, statistical knowledge of channel state information (CSI) among cells, intercell interference, intracell collisions, and probabilistic symbol availability at the user equipment (UE). These requirements demand a non-cooperative incomplete information game model. The players are the UE. Each UE decides on which channel to transmit or else if it should not transmit. Our emphasis is on fully distributed set of strategies, identified as threshold strategies. For independent and symmetric types, we characterize the best response (BR) of the players and prove the existence and uniqueness of pure strategy Bayesian-Nash symmetric equilibrium, with in the subset of threshold strategies. Moreover we extend the game to accommodate the condition where the own CSI is statistical and solve for mixed strategy Bayesian-Nash symmetric equilibrium. We provide rigorous proofs of the key results employing stochastic coupling theory and support them through numerical simulations.

I. INTRODUCTION

Small cells, also referred to as femtocells, were introduced to meet the higher data rate demand of indoor users and to economically increase the network throughput [START_REF] Chandrasekhar | Femtocell networks: a survey[END_REF]- [START_REF] Sesia | LTE -The UMTS Long Term Evolution: From Theory to Practice[END_REF]. Femtocells contribute to the network capacity improvement through higher link gains, due to shorter distances, and spectral reuse. Interference remains the key limiting factor for small cell deployment [START_REF] Lopez-Perez | Ofdma femtocells: A roadmap on interference avoidance[END_REF]. Interference may occur between densely deployed femtocells and between femto-and macrocells in a heterogeneous network (HetNet) environment. There are three defined access modes for femtocells, open, closed and hybrid [START_REF] Sesia | LTE -The UMTS Long Term Evolution: From Theory to Practice[END_REF]. In this paper we consider uplink transmission of a closed femtocell network. In a closed femtocell environment only the user equipment (UE) that are on the access list of a given femto access point (FAP) may transmit and receive to and from that FAP [START_REF] Zahir | Interference management in femtocells[END_REF]. Coordinated scheduling of uplink transmission of UE among multiple FAPs is extremely heavy in signaling. Since femtocells by design are low cost appliances and in most cases they are back-hauled through home digital subscriber lines (DSL) heavy signaling can neither be processed nor transmitted. Thus, mitigation of uplink interference among UEs of a femtocell environment is a true challenge for the wireless research community [START_REF] Pantisano | Spectrum leasing as an incentive towards uplink macrocell and femtocell cooperation[END_REF].

Similar to small cell networks cochannel interference is a critical limitation in technologies, which use open ISM (industrial, scientific and medical) radio bands such as IEEE 802.11x series, ZigBee and other forms of ad-hoc and sensor networks [START_REF] Chieochan | Channel assignment schemes for infrastructure-based 802.11 wlans: A survey[END_REF]. The problem of mitigation of interference under lack of coordination is also found in cognitive radio networks (CRNs). There exists a rich set of literature, which focuses on the interference in the multiuser multicell environment [START_REF] Akkarajitsakul | Game theoretic approaches for multiple access in wireless networks: A survey[END_REF]. We present a selected few as related to our research.

A. Related Work

The problem of combined power allocation and base station association in a cognitive radio environment is considered in [START_REF] Hong | Joint distributed access point selection and power allocation in cognitive radio networks[END_REF]. The analysis is based on complete information games and considers intracell interference. They establish the Nash equilibrium (NE) through potential function argument. In [START_REF] Han | Non-cooperative resource competition game by virtual referee in multi-cell ofdma networks[END_REF] a complete information game is proposed for a system of multiple orthogonal frequency division multiplex (OFDM) transmit-receive pairs. The strategy of the transmitters is the rate assignment over the set of OFDM subchannels. They prove the existence of NE through convexity of the strategy space and utilities. In [START_REF] Buzzi | Potential games for energy-efficient power control and subcarrier allocation in uplink multicell ofdma systems[END_REF] a non-cooperation game is introduced for the problem of uplink channel and power allocation in a multicell environment similar to HetNets. The game requires perfect information and the NE is guaranteed through the existence of a potential function. One of the original work in incomplete information games (Bayesian games) is [START_REF] Adlakha | Competition in wireless systems via bayesian interference games[END_REF]. Therein power allocation for transmit-receive pairs over a multichannel system is considered. They prove that spreading power equally among the flat fading channels is a unique pure strategy NE.

The problem of channel access is encountered in the design of medium access control (MAC) protocols in ad-hoc networks and AP based data networks such as ALOHA and carrier sense multiple access (CSMA). In [START_REF] Wang | Gmac: A game-theoretic mac protocol for mobile ad hoc networks[END_REF] a game theory based MAC protocol is designed for power allocation in an interference channel. In [START_REF] Hultell | Selfish users in energy constrained aloha systems with power capture[END_REF] ALOHA protocol is modeled as a non-cooperative game. The strategy space is the probability of transmission of each player and intracell simultaneous transmission is modeled as interference. In [START_REF] Inaltekin | The analysis of nash equilibria of the one-shot random-access game for wireless networks and the behavior of selfish nodes[END_REF] uplink channel access game is proposed for a set of co-located transmit-receive pairs over a single channel. There is no consideration of interference and instead a collision based model, which is similar to the model in [START_REF] Cho | Design of robust random access protocols for wireless networks using game theoretic models[END_REF] is used. Yet the results in [START_REF] Inaltekin | The analysis of nash equilibria of the one-shot random-access game for wireless networks and the behavior of selfish nodes[END_REF] go further by providing nonsymmetric equilibria, which provides a more realistic view of HetNets, and also providing mixed strategy equilibria. In [START_REF] Chen | Random access game and medium access control design[END_REF] a continuous action space game is designed for a CSMA system as such they do not consider interference in the game. In [START_REF] Hanawal | Stochastic geometry based medium access games in wireless ad hoc networks[END_REF] a mobile ad-hoc network where nodes follow slotted ALOHA protocol is considered. The authors device a non-cooperative game for the channel access probability and solve for the NE through convex game argument. Their interest is also in symmetric NE similar to our work.

Application of game theory for femtocell related research can be seen in recent literature. In [START_REF] Galindo-Serrano | Equilibrium selection in interference management non-cooperative games in femtocell networks[END_REF] orthogonal frequency division multiple access (OFDMA) based multiple femtocell downlink power allocation with interference constraints is considered as a non-cooperative game. The model is a generalized NE problem, where the strategy spaces of the users are coupled by common constraints. The authors show the existence and uniqueness of normalized NE. In [START_REF] La | An interference minimization game theoretic subcarrier allocation algorithm for ofdma-based distributed systems[END_REF], subchannel allocation among in a OFDMA based network is considered as a potential game. The utility of the players is a function of interference. In [START_REF] Al-Zahrani | A game theory approach for inter-cell interference management in ofdm networks[END_REF] uplink power allocation game among UE is analyzed. Interference is controlled through a quadratic cost function on transmitted power. The game is shown to have a unique NE through concave utility functions. In [START_REF] Zheng | Subcarrier allocation based on correlated equilibrium in multi-cell ofdma systems[END_REF], uplink channel allocation in an OFDMA multicell system is formulated as a complete information game. The players are the subchannels. In [START_REF] Gao | A game approach for cell selection and resource allocation in heterogeneous wireless networks[END_REF] a distributed cell selection and resource allocation scheme performed by mobile stations has been presented. It is a two stage game where at first, UE select the cell and then they select the radio resources. In [START_REF] Hong | Mechanism design for base station association and resource allocation in downlink ofdma network[END_REF] OFDMA downlink resource allocation is addressed in the context of mechanism design. They demonstrate the NP-hardness of finding truthful mechanisms and provide an α-optimal solution.

The previous research, which are closest to our paper are [START_REF] Cho | Design of robust random access protocols for wireless networks using game theoretic models[END_REF], [START_REF] Cho | Cooperative and non-cooperative aloha games with channel capture[END_REF]- [START_REF] Guan | Distributed queueing games in interference-limited wireless networks[END_REF]. The main similarity is, our interest also lies in threshold strategies as in these research. However compared to them there are significant differences in modeling, analysis and results in our work. The channel access model that is used in [START_REF] Cho | Design of robust random access protocols for wireless networks using game theoretic models[END_REF], [START_REF] Cho | Cooperative and non-cooperative aloha games with channel capture[END_REF] is based on ALOHA and CSMA and they only consider a single AP therefore intercell interference is not considered. In [START_REF] Lee | Interference-aware mac protocol for wireless networks by a game-theoretic approach[END_REF] intercell interference is introduced through a Bayesian game but they do not consider multiple subchannels or the possibility of collision within a cell, as they assume collision avoidance (CA). In contrast, our work considers multiple channel and both intercell interference and intracell collisions and present a mixed strategy equilibrium solution too. Furthermore we consider the probability of symbol availability at the UEs, which is not modeled in these previous work, as they consider that every transmitter has a symbol ready to transmit. In [START_REF] Guan | Distributed queueing games in interference-limited wireless networks[END_REF], a threshold strategy based game in a multichannel environment is presented for managing queue length of the transmitters in an ad-hoc network. Instead of collisions they consider interference between transmit and receive pairs, but their objective of the game and utility functions are considerably different from our perspective, as they consider continuous and convex strategy space. A significant difference in the analysis is that our proof method is based on the theory of stochastic coupling, which to best of our knowledge, has not been employed in any previous small cell related literature [START_REF] Thorisson | Coupling, stationarity and regeneration, ser. Probability and Its Applications[END_REF]. Moreover we present results of mixed strategy equilibria, in addition to pure strategy equilibria, under statistical channel state information (CSI), which is not considered in these papers.

B. Contribution

Our work is applicable to wireless multiple access, multichannel small cell networks, these include Home eNode B (HeNB) type LTE femtocells, access point based local area networks (LAN), and ad-hoc networks. Our emphasis is on symmetric equilibria under threshold strategies [START_REF] Adlakha | Competition in wireless systems via bayesian interference games[END_REF], [START_REF] Lee | Interference-aware mac protocol for wireless networks by a game-theoretic approach[END_REF]. System symmetric equilibria provides fair performance to all UE and have the advantage of being fully distributed; hence each player is able to find the equilibrium point without collaboration. The main contributions of this paper are summarized in the following.

• We formulate an uplink channel access games for a multichannel multicell wireless network. Our game formulation brings together intracell collisions in channel access, intercell interference, and random symbol availability at the UE.

• We prove the existence of pure strategy Bayesian-Nash equilibrium (Bayesian-NE) for the symmetric game with CSI at the transmitter and solve it for the unique Bayesian-NE.

• We prove the existence of mixed strategy Bayesian-NE for the symmetric game under statistical CSI at the transmitter and solve for the uniformly distributed Bayesian-NE. To the best of our knowledge we are the first to present the above mentioned results under the general system model that we consider. The remainder of this paper is organized as follows. In Section II, we present the system model. In Section III, we find the best response for the game under threshold strategies. In Section IV, we solve the game for the pure strategy equilibrium. In Section V, we propose a game under statistical CSI and solve for the mixed strategy equilibrium. In Section VI, we provide simulation results and in Section VII, we conclude the paper.

II. SYSTEM MODEL

Consider a small cell network, which consists of a set M of M number of small cells. Let us denote by N the set of N number of UE and by K the set of radio frequency resources, which consists of K orthogonal subchannels. Each cell is equipped with one AP and hence the cell and the AP are used interchangeably. In general the AP can be either a 3GPP HeNB or a LAN technology. Each UE i ∈ N is attached to a AP b i ∈ M, which we refer to as the home AP of the UE. Similar to the channel model considered in [START_REF] Hong | Joint distributed access point selection and power allocation in cognitive radio networks[END_REF], [START_REF] Buzzi | Potential games for energy-efficient power control and subcarrier allocation in uplink multicell ofdma systems[END_REF] we treat intercell interference as Gaussian noise. Let us consider the received signal y mk , at the m th AP on the k th subchannel.

y mk = i∈Nm h jk x ik + j∈N-m √ g jmk x jk + n mk , (1) 
where N m represents the set of UE attached to the m th AP and N -m represents the set of UE attached to the APs except the m th , i.e., N -m := {j : j ∈ N , b j ∈ M {m}}, so that N = N m ∪ N -m . In (1), h ik is the channel power gain due to fading and path loss between UE i ∈ N m and its home AP, on subchannel k ∈ K and g jmk is the power gain of the interference signal from UE j ∈ N -m to AP m, on k. The transmit symbol of UE i ∈ N , on k, is denoted by x ik . We assume constant transmit power to simplify the analysis [START_REF] Novlan | Analytical modeling of uplink cellular networks[END_REF], and to achieve symmetry in the games. We denote by n mk the additive white Gaussian noise (AWGN), which we assume to be independent and identically distributed (i.i.d.) ∀ m ∈ M, k ∈ K. In order to simplify the notation, when the AP in discussion is clear from the context, we ignore the subscript m from g jmk and denote by g jk .

In the event that more than one UE of the set N m transmit on the same subchannel k ∈ K, all of those UE obtain a zero rate, which we identify as a collision. We consider two cases of channel knowledge. In the first, each UE posses its own channel state information (CSI), which is referred to as CSI available at the transmitter (CSIT). In the second case we assume the UE only posses statistical information of its own channels. In both cases we assume that a UE only posses statistical knowledge of CSI of all other UE. A schematic of a transmission scenario is given in Fig. 1. In this scenario UE i, l ∈ N of FAP m ∈ M experience a collision due to simultaneous transmission on k ∈ K. Next we develop the game theoretic model. 

A. Game Formulation

We define the game

G a := N , Θ, (f i ) i∈N , (A i ) i∈N , (u i ) i∈N ,
Players: The set N . Type: Each UE i ∈ N has a type vector θ i := (h i , g i , α i ). The elements of vector h i := (h i1 , . . . , h iK ) ∈ R K >0 are the channel power gains of UE i ∈ N to AP b i . The elements of vector g i ∈ R K×(M -1) >0 are the interference power gains of UE i ∈ N on subchannels k ∈ K to the set of APs M {b i }. The Boolean α i ∈ {0, 1}, represents the symbol availability, i.e., if a symbol is available then α i = 1 and if not α i = 0. We denote by Θ i the type set of player i ∈ N such that θ i ∈ Θ i and let Θ := Θ 1 × . . . × Θ N . Probability distribution: We consider a joint density f θ over the type set θ ∈ Θ. Action: Each UE i ∈ N has action set A i := {X, T 1 , . . . , T K }. The action X stands for "do not transmit" and T k stands for transmit on subchannel k ∈ K. Let A := A 1 × . . . A N . Payoff: Each UE i ∈ N has a payoff u i (a, θ), where a ∈ A and θ ∈ Θ. Following game-theoretic notation, let a -i := (a 1 , . . . , a i-1 , a i+1 , . . . , a N ) ∈ A -i such that A -i := A 1 × . . . A i-1 × A i+1 . . .×A N . Similarly θ -i := (θ 1 , . . . , θ i-1 , θ i+1 , . . . , θ N ) ∈ Θ -i where Θ -i := Θ 1 ×. . . Θ i-1 ×Θ i+1 . . .×Θ N . Now we define the payoff function u i (•). We use the terms payoff and utility interchangeably. When α i = 0, UE i ∈ N does not posses a symbol and hence we let the utility be zero irrespective of all other variables, otherwise if α i = 1, a i = T k , and the signal to interference and noise ratio (SINR) is above the minimum detectable threshold SINR th and if the other UE of cell b i do not transmit on subchannel k, then UE i ∈ N , obtains the maximum achievable rate else if, either the SINR is below the SINR th or a collision occurs, and UE i ∈ N , obtains a utility of zero.

Consider UE i ∈ N posses a symbol but decides not to transmit, i.e., α i = 1 and a i = X, then we define the utility by the modeling parameter ρ. Based on the objectives, we can assign a positive, negative or a zero value to ρ. A positive value models energy conscious or collision avoidance behavior. If SINR is below the threshold or if a collision occurs, the transmission energy is lost. A positive incentive for not transmitting is equivalent to the addition of a negative incentive to the utility obtained by successful transmission, i.e., ratecost. Having a positive ρ also results in a positive probability of not transmitting while a symbol is available, which is similar to the back-off probability in random access protocols. A negative value for ρ can be used as well, since the UE misses a transmission opportunity. Considering these arguments, we leave the development general. Below (2) and (3) defines the utility u i (•), as per above discussion:

u i (X, a -i , θ i , θ -i ) := ρ if α i = 1 0 if α i = 0, (2) 
u i (T k , a -i , (h i , g i , 1) , θ -i ) :=            1 2 log 1 + h ik j∈N-b i k g jk + σ 2 if h ik j∈N-b i k g jk + σ 2 SINR th and N bik = ∅ 0 otherwise, (3) 
where N -bik := {j : α j = 1, a j = T k , j ∈ N -bi }, i.e., the set of UE, which transmits on subchannel k ∈ K and, which do not belong to AP b i ∈ M. The set N bik := {j : α j = 1, a j = T k , j ∈ N bi , j = i}, is the set of UE of AP b i , except UE i, which transmits on subchannel k and ∅ denotes the null set. Let N -bik (resp. N bik ) denote the cardinality of the set N -bik (resp. N bik ). We denote by σ 2 the ratio of Gaussian noise power, to constant transmit power. We do not need to define a utility for α i = 0 and a i = A i X, since without a symbol the only action possible is X. "Types" in Bayesian games are "believes" a player holds about the other player(s) or even about its own self [START_REF] Nisan | Algorithmic game theory[END_REF]. Types are modeled as random variables. At times it is justified to assume that the players know their own type(s), e.g., the UE i ∈ N may find out the channel power gains (h i , g i ) through feed back from APs and it also knows if it has a symbol to transmit or not, but a UE may not know the exact types of another UE. Therefore we assume that UE i ∈ N only posses statistical knowledge of the types of all j ∈ N {i}. Such an incomplete information model leads to Bayesian games Next we need to define the probability distribution f θ over the type set θ ∈ Θ. To proceed we introduce the following notation. For a vector u, let [u] j denote the j th element of x, e.g.,

[h i ] k = h ik . Let [u]
denotes the set of all elements of u, e.g., [h i ] = {h i1 , . . . , h iK }. We follow independent and private type model, there for all players are mutually independent ( [29] p. 233-234). Hence f θ = i∈N f θi , where f θi is the probability distribution over the type set of player i ∈ N , i.e.,

θ i ∈ Θ i . Note that [θ i ] = {[h i ] , [g i ] , α i } .
In our discussion we assume that the set of random variables [θ i ] is mutually independent, i.e.,

f θi = k∈K f hik • k ∈ K m ∈ M b i f gimk • f αi
where f hik is the distribution of h ik , f gimk is the distribution of g imk and f αi is the mass of α i , which amounts to the assumption of independent channel fading. Moreover we let the K subchannels from a player i ∈ N to a given AP m ∈ M be identical i.e., f hik ∀ k ∈ K are identically distributed, and for a given m ∈ M, f gimk ∀ k ∈ K are identically distributed. Aggregating the above discussion, on independent and private types among player and mutual independence of the type set of each player, we define independent types, as follows. The definition allows us straightforward reference, later in the development.

Definition 1. In G a , Independent types are player types where all players are mutually independent, for i ∈ N the set of random variables [θ i ] is mutually independent, the K elements of [h i ] are i.i.d., and for a given m ∈ M b i , the K elements of [g im ] are i.i.d.

III. CHARACTERIZATION OF BEST RESPONSE FOR I.I.D. CHANNELS

The Ex interim expected utility of player i ∈ N is defined by the conditional expectation of its payoff, i.e., E (θ-i|θi) u i (a, θ) ( [30] p. 168). Note that by independence among players we have E (θ-i|θi) u i (s (θ) , θ) = E θ-i u i (s (θ) , θ) . From here own, for the sake of brevity, we refer to Ex interim expected simply as expected utility.

We define the vectors h := (h i , . . . , h N ) and analogously g and α, i.e., by lack of an index we define a vector of elements ordered over that index. We also use bold face to distinguish vectors from scalars. In order to examine the best response (BR) strategies of the game G a we commence with the standard definitions of pure strategies, best response (BR) strategy and Bayesian-Nash equilibria. Definition 2. In a normal form game a pure strategy is an action, but in game G a , we define random types, therefore we follow the Bayesian definition of a strategy. A pure strategy of player i ∈ N is a function s i , from its type set to the action space,

s i : Θ i → A i ( [29] p 223).
We let S i , denote the set of pure strategies of player i ∈ N , such that

s i ∈ S i . Let S := S 1 × • • • × S N and S -i := S 1 × • • • S i-1 × S i+1 × S N , Definition 3.
Given the strategies of other players, s -i ∈ S -i , a BR strategy of player i, denoted by ŝi ∈ S i , ∀ θ i ∈ Θ i is given by ( [START_REF] Nisan | Algorithmic game theory[END_REF] p 223, [START_REF] Shoham | Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations[END_REF] 

p. 169) ŝi (θ i ) ∈ arg max si∈Si E θ-i u i (s i (θ i ) , s -i (θ -i ) , θ i , θ -i ) .
By expected utilities of players we now define the pure strategy Bayesian Nash equilibrium of the game G a ( [29] pp. 233) as follows.

Definition 4. The strategy profile s := (s 1 , . . . , sN ) ∈ S is a Bayesian-Nash equilibrium if

E θ-i u i (s i (θ i ) , s-i (θ -i ) , θ) ≥ E θ-i u i (a i , s-i (θ -i ) , θ) , ∀ a i ∈ {X, T 1 , . . . , T K }, ∀ θ i ∈ Θ i and ∀ i ∈ N
, where s-i := (s 1 , . . . , si-1 , si+1 , . . . , sN ) .

A. Threshold Strategies and Best Response

In this paper we are interested in threshold strategies. We define a threshold strategy of player j ∈ N , by parameter h jth such that,

s j (θ j ) = T k if α i = 1 and h ik = max k ′ ∈K {h ik ′ } ≥ h jth
X otherwise. The threshold strategies form a subset of S i i ∈ N . We seek to establish that a Bayesian-Nash equilibrium can be found among the set of such strategies [START_REF] Cho | Design of robust random access protocols for wireless networks using game theoretic models[END_REF].

The above strategy states that a player transmits on k ∈ K if the channel gain h ik , is the largest among all the subchannels and h ik ≥ h jth , where h jth is a given constant, which is called the threshold. Therefore when all players follow a threshold strategy we can concisely denote the strategy vector by the threshold vector such that s (θ) ≡ (h 1th , . . . , h ith , . . . , h N th ), i ∈ N . While in the set of threshold strategies, the probability that player i ∈ N transmits on k ∈ K, which we denote by p ik (h ith ), is:

p ik (h ith ) = P h ik = max k ′ ∈K {h ik ′ } ∩ {h ik ≥ h ith } ∩ {α j = 1} (4) 
= P h ik = max k ′ ∈K {h ik ′ } ∩ {h ik ≥ h ith } P (α j = 1)
,

where P (•) denotes the probability of an event.

Remark 1. The probability p ik (h ith ) given by ( 4) is clearly increasing in h ik and decreasing in h ith . Note that from (4) and the independence in Definition 1, we can derive p U k , the probability a subset U ⊂ N of UE simultaneously transmits on a given subchannel k ∈ K,

p U = j∈U p jk (h jth ) . (5) 
In the following development, by a slight abuse of notation, we denote

E θ-i u i (T k , s -i (θ -i ) , θ) by E θ-i u i (h ik , s -i (θ -i ) , θ), while a i = T k . Remark 2. When player i ∈ N has type θ i = (h i , g i , 0
), the best response strategy ŝi ∈ S i is clearly ŝi (h i , g i , 0) = X, as without any symbol to transmit, X is the only action by definition of the utility in [START_REF] Lopez-Perez | Ofdma femtocells: A roadmap on interference avoidance[END_REF].

Recall that for i, j ∈ N ,

N -bi = {j : b j = b i }, N -bik = {j : α j = 1, a j = T k , j ∈ N -bi }, and N bik = {j : α j = 1, a j = T k , b j = b i , j = i, }. Let N ′
-bik := N -bi N -bik , i.e., set of UE not in AP b i , which do not transmit on k. We denote by P (N -bi ) the power set of N -bi . The expected utility of player i ∈ N for action T k is then given by

E θ-i u i (h ik , s -i (θ -i ) , θ) = pNb i k • N-b i k ∈P(N-b i ) p N-b i k • p N ′ -b i k • Ḋ ḟgN -b i k log 1 + h ik j∈N-b i k g jk + σ 2 dg N-b i k (6)
where, [START_REF] Chieochan | Channel assignment schemes for infrastructure-based 802.11 wlans: A survey[END_REF], pNb i k is the probability that no other UE in the cell b i ∈ M transmits on k ∈ K, which accounts for collisions, and is given by

g N-b i k := (g jbik ) j∈N-b i k , D := (g jbik ) j∈N-b i k : h ik j∈N-b i k g jk + σ 2 ≥ SINR th , ḟgN -b i k is the density of f gN -b i k . In
j ∈ N bi , j = i (1 -p jk (h jth )) , p N-b i k (resp. p N ′ -b i k
) is the probability that the set of UE N -bik (resp. N ′ -bik ) transmits (resp. do not transmit) on k, which comes from [START_REF] Pantisano | Spectrum leasing as an incentive towards uplink macrocell and femtocell cooperation[END_REF]. To confine our search to equilibria defined by threshold values, we need an increasing function for the expected utility. In the following remark we build on arguments in [START_REF] Cho | Cooperative and non-cooperative aloha games with channel capture[END_REF], [START_REF] Lee | Interference-aware mac protocol for wireless networks by a game-theoretic approach[END_REF] to demonstrate that ( 6) is an increasing function in h ik .

Remark 3. Given a threshold strategy vector s (θ) ≡ (h 1th , . . . , h ith , . . . , h N th ), the expected utility of player i ∈ N for action T k , given by ( 6), is increasing in h ik .

We provide the proof of Remark 3 in Appendix A, but it can also be seen by inspection. We use the definitions

D := (g jbik ) j∈N-b i k : (h ik + ǫ) j∈N-b i k g jk + σ 2 ≥ SINR th }, D′ := R |N-b i k | + D and D ′ := R |N-b i k | + D in the proof.
The technicality of designing a threshold strategy for multichannel system lies in the definition of independent types. Note that by Definition 1, the UE i ∈ N "believes" that the interference from a UE j ∈ N with b j = b i on AP b i is identically distributed over the subchannels K. This leads to the following claim. Claim 1. Consider player i ∈ N with α i = 1. For independent types (as defined in Definition 1) and threshold strategies

s -i (θ -i ) ≡ (h 1th , . . . , h i-1th , h i+1th , . . . , h N th ), it holds that arg max k∈K E θ-i u i (T k , s -i (θ -i ) , θ) = arg max k∈K {h ik } .
The proof of Claim 1 is given in Appendix B. Now we claim, given that the set of UE except UE i, i.e., N {i} follows threshold strategies (h 1th , . . . , h i-1th , h i+1th , . . . , h N th ), then UE i finds a BR strategy in the subset of threshold strategies.

Lemma 1. For independent types (as defined in Definition 1), given the threshold strategy vector s -i (θ -i ) ≡ (h 1th , . . . , h i-1th , h i+1th , . . . , h N th ), ∃ a unique threshold h ith , such that the BR strategy ŝi , of player i ∈ N , while

α i = 1 is ŝi (h i , g i , 1) = T k if h ik = max k ′ ∈K {h ik ′ } and h ik h ith , k ∈ K, X otherwise. ( 7 
)
Proof: In light of Claim 1 the best action in set A i {X} is T k if and only if h ik = max {h i1 , . . . , h iK } . Then to select the best action between the two {max {h i1 , . . . , h iK } , X}, we test for E θ-i u i (h ik ′ , s -i (θ -i ) , θ) ≥ E θ-i u i (X, s -i (θ -i ) , θ) where h ik ′ = max {h i1 , . . . , h iK }. Then we find the threshold h ith is given by the value of

h ik ′ when E θ-i u i (h ith , s -i (θ -i ) , θ) = E θ-i u i (X, s -i (θ -i ) , θ) , (8) 
The right hand side of the above equality is the constant ρ (by the definition of the payoff function in ( 2)). From Remark 3 we know

E θ-i u i (T k ′ , s -i (θ -i ) , θ) is increasing in h ik ′ .
Therefore ∃ h ith such that the equality (8) holds and it is unique. This completes the proof of Lemma 1.

IV. PURE STRATEGY BAYESIAN-NASH SYMMETRIC EQUILIBRIA

Here we consider the pure strategy Bayesian-Nash symmetric equilibria [START_REF] Cho | Design of robust random access protocols for wireless networks using game theoretic models[END_REF]. A symmetric strategy equilibria implies that at the equilibrium, all players have identical strategy functions. Symmetric strategies are commonly used to analyze Bayesian games [START_REF] Nisan | Algorithmic game theory[END_REF]. In order to prove the existence of symmetric strategy equilibria, we first define symmetric independent types, in order to transform game G a to a symmetric form [START_REF] Nisan | Algorithmic game theory[END_REF].

Definition 5. Symmetric independent types are independent types, i.e., follow Definition 1, and the corresponding types, h, g and α, of all players are i.i.d.

In Definition 5 corresponding types means the types of similar nature, thus we have three corresponding types h, g and α. The definition implies that the set of random variables [h] := {[h i ] : ∀ i ∈ N }, is mutually i.i.d. It means for two players i, j ∈ N , i has a belief of channel power gain set [h j ] of j, which is identical to j's belief of [h i ]. A similar definition holds for the elements of [g] := {[g i ] : ∀ i ∈ N } and [α] := {α i : ∀ i ∈ N }. Note that identical corresponding type distributions do not mean that the players have identical channel gains or symbol availability. It simply means that a player i ∈ N is indifferent over the set of other players N {i} and therefore holds identical believes about them. Such a model, while may not be true in practice, given the lack of information sharing in a small cell network, is not an over simplification and leads to theoretically fair solutions where all players achieve equal expected throughput at equilibrium. Now we establish the existence of a symmetric equilibrium for symmetric independent types (as per Definition 5). At a symmetric equilibrium players follow identical strategies and since we consider only threshold strategies, that means h ith = h th ∀ i ∈ N . Therefore we must explore the existence of a solution to (8) under a common threshold.

Claim 2. For symmetric independent types (Definition 5) the probability that the subset N -bik of UE in N -bi transmit on k ∈ K has binomial distribution.

Proof: The transmit probability p ik (h th ) of i ∈ N on k ∈ K is given by ( 4). Note that by Definition 5, we have

p ik (h th ) = p jk (h th ) . (9) 
Therefore let p (h th ) := p jk (h th ) ∀i ∈ N , k ∈ K. The probabilities p ik (h th ) , p jk (h th ) are independent ∀ i, j ∈ N , k ∈ K. Then the probability that N -bik number of UEs of N -bi take action T k , has the distribution of |N -bik | = N -bik successes in a sequence of |N -bi | = N -bi independent binary experiments with success probability p (h th ).

Hence it has binomial distribution with parameters (N -bi , p (h th )). This completes the proof of Claim 2.

We denote the binomial distribution with parameters (N -bi , p (h th )) by B and the mass function by f B . Let pNb i k (h th ) denote the probability that other UE in the cell b i , except UE i ∈ N i.e. N bi {i}, do not transmit on k and from ( 9)

pNb i k (h th ) = (1 -p (h th )) Nb i -1 , (10) 
where N bi = |N bi |. Presently we have all the results needed to prove the existence and uniqueness of Bayesian-Nash symmetric equilibrium for threshold strategies. Note that in Lemma 1 we assumed that the other player strategies, (h 1th , . . . , h i-1th , h i+1th , . . . , h N th ) were fixed. Therefore the probabilities pNb i k , p N-b i k , and p N ′ -b i k of (6) remained constant, but now, since all players are following a single threshold h th that assumption is no longer valid and Remark 3, is no longer valid. To our rescue comes the powerful mathematical tool of stochastic coupling. Coupling allows us to compare unrelated random variables by bringing them to a common probability space [START_REF] Thorisson | Coupling, stationarity and regeneration, ser. Probability and Its Applications[END_REF]. As we increase h th , the binomial distribution (N -bi , p (h th )) and the expected rate ¯D f gN -b i k log 1 + h th j∈N-b i k g jk + σ 2 dg N-b i k changes. This interplay is captured in coupling theory as we demonstrate in the next theorem.

Theorem 1. For symmetric independent types, the game G a has a unique Bayesian-Nash symmetric equilibrium in threshold strategies.

Proof: We need to show that for the common threshold s (θ) ≡ h th , the function E θ-i u i (h th , s -i (θ -i ), θ) given by ( 6), which is the expected utility over some subchannel k ∈ K, is increasing in h th . We have

E θ-i u i (h th , s -i (θ -i ) , θ) = pNb i k (h th ) • N-b i k ∈P(N-b i ) f B (N -bik ) • Ḋ f gN -b i k log 1 + h th j∈N-b i k g jk + σ 2 dg N-b i k (11)
From Remark 1 and (10), we observe that pNb i k (h th ) is increasing in h th . From (9), for h 1 th < h 2 th we have p h 1 th > p h 2 th . We define the random variable X (p) ∼ B (N -bi , p) and let

z X (p) , h 1 th = Ḋ f gN -b i k log 1 + h 1 th j∈N-b i k g jk + σ 2 dg N-b i k ,
be the expected utility of player i when |N -bik | = N -bik = X (p). Then for the common threshold

h 1 th , E θ-i u i (T k , s -i (θ -i ) , θ) = E X(p) z X (p) , h 1
th . We have from Remark 3 that z X (p) , h 1 th is increasing in h 1 th . Clearly z X (p) , h 1 th is decreasing in X (p), since with increasing X (p), the number of interferes grows i.e. N -bik grows. At this point we need a order comparison of the two unrelated binomial distributions X p h 2 th , X p h 1 th . By coupling theory (see Appendix C), for h 1 th < h 2 th we have X p h 2 th < X p h 1 th . Therefore

z X p h 1 th , h 1 th < z X p h 1 th , h 2 th < z X p h 2 th , h 2 th . In particular E X(p(h 1 th )) z X p h 1 th , h 1 th < E X(p(h 2 th )) z X p h 2 th , h 2 th . Hence E θ-i u i (h th , s -i (θ -i ), θ) is in- creasing in h th and ∃ h th such that E θ-i u i (h th , s -i (θ -i ) , θ) = E θ-i u i (X, s -i (θ -i ) , θ) . ( 12 
)
This completes the proof of Theorem 1.

At the equilibrium, all players follow a common strategy defined by a unique threshold. Furthermore each player is independently able to calculate the equilibrium threshold by solving [START_REF] Wang | Gmac: A game-theoretic mac protocol for mobile ad hoc networks[END_REF] as long as they all have knowledge of the symmetric believes. Note that for ρ ≤ 0 the threshold is zero and hence at all times all UE transmit over their highest gain subchannels. But for ρ > 0 the threshold is positive and hence there are instances when some of the UE do not transmit.

V. MIXED STRATEGIES FOR STATISTICAL CSI

So far in this paper we were concerned with pure strategy equilibrium of the symmetric game G a . In this section, deviating from previous work, we consider a situation where full CSI is not available at the UE to seek mixed strategy NE in threshold strategies. Each UE possesses statistical knowledge of its CSI in the form of a distribution (CSIT). In this situation, we need to consider the expected utility of player i ∈ N , not only over the types of other players but also over the channel distribution of the player i itself.

In order to model statistical CSIT, we introduce the following type definition. Type:

Each UE i ∈ N has a type vector ω i := (λ i , h i , g i , α i ), where random variable λ i ∈ R >0 is the mean of the exponentially distributed received power gain h ik from UE i ∈ N to its home AP b i ∀ k ∈ K. This definition is similar to the assumption of flat fading among subchannel and hence is justified in the wireless transmission context. We may assume any general distribution for λ i . Let λ := (λ 1 , . . . , λ N ); the mean received power gains of all players. We denote by Ω i the type set of player i ∈ N such that ω i ∈ Ω i and let ω := (ω 1 , . . . , ω N ) where ω ∈

Ω := Ω 1 × • • • × Ω N . The change in type definition requires a new game; G b := N , Ω, (f i ) i∈N , (A i ) i∈N , (u i ) i∈N .
The difference of G a from G a is the new type set Ω and the associated distributions of the players f i , i ∈ N .

In the game G b , a mixed strategy of player i ∈ N is defined by p i : Ω i → A i where p i is a probability distribution over A i ( [START_REF] Shoham | Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations[END_REF] p. 168). Let P i be the set of feasible mixed strategies of UE i ∈ N , such that p i ∈ P i . Let p := (p 1 , . . . , p N ) and p -i := (p 1 , . . . , p i-1 , p i+1 , . . . , p N ) be the mixed strategies of all UE except UE i. We are interested in symmetric Bayesian-NE in threshold mixed strategies. We restrict our search to the subset of threshold mixed strategies,

p i (ω i ) :=    P (T k ) = 1 K , ∀ k ∈ K, P (X) = 0 if α i = 1 and λ i ≥ λ ith P (T k ) = 0, ∀ k ∈ K, P (X) = 1 otherwise, ( 13 
)
where P (•) is the probability of a given event. We call the above defined mixed strategy, a uniformly distributed threshold strategy. Thus the mixed strategy p i ∈ P i , of a player i ∈ N is completely characterized by the parameter λ ith , so that p ≡ (λ 1th , . . . , λ N th ). Similar to Definition 1 we define independent types for game G b .

Definition 6. In G b , independent types are player types where all players are mutually independent and ∀ i ∈ N the set of random variables [ω i ] is mutually independent, the K elements of [h i ] are i.i.d., and for a given m ∈ M b i , the K elements of [g im ] are i.i.d. Now we state the counterpart of Remark 2 for mixed strategies.

Remark 4. For the type (λ i , h i , g i , α i = 0), the BR strategy is P (X | α i = 0) = 1 i ∈ N . This is clear as X is the only defined action when α i = 0 and we state it for the sake of completeness.

Remark 5. Note that by uniformly distributed threshold strategies in [START_REF] Hultell | Selfish users in energy constrained aloha systems with power capture[END_REF], we have the probability that player i ∈ N transmits on k ∈ K is p ik (λ ith ) := 1 K P (λ i ≥ λ ith ∩ α i = 1) ∀ i ∈ N . Note also that p ik (λ ith ) is increasing in λ i and decreasing in λ ith . Moreover by independence of types ( Definition 6), the probability that a subset U ⊂ N players action T k is p U = j∈U p jk (λ jth ) .

Recall i, j ∈ N , N -bi = {j : b j = b i }, N -bik = {j : α j = 1, a j = T k , j ∈ N -bi }, and N bik = {j :

α j = 1, a j = T k , b j = b i , j = i}. Let N ′
-bik := N -bi N -bik , i.e., set of UE not in AP b i , which do not transmit on k. Then we write the expected utility of UE i ∈ N , for action T k ∈ A i as follows;

E (hik,ω-i|λi,αi=1) u i (T k , p -i (ω -i ) , ω) = pNb i k • N-b i k ∈P(N-b i ) p N-b i k • p N ′ -b i k • E hik Ḋ ḟgN -b i k E hik log 1 + h ik j∈N-b i k g jk + σ 2 dg N-b i k , (14) 
where

pNb i k = j ∈ N bi , j = i (1 -p jk (h jth )) , is the probability that non of the other UE in AP b i ∈ M, except UE i, transmits on k ∈ K, p N-b i k (resp. p N ′ -b i k
) is the probability that the set of UE N -bik (resp. N ′ -bik ) transmits (resp. do not transmit) on k ∈ K, which come from Remark 5, and P (N -bi ) is the power set of N -bi . Now we characterize the BR strategy of player i ∈ N for α i = 1 and independent types (Definition 6). We claim that when the set of UE except UE i, follow a uniformly distributed threshold strategy as defined by [START_REF] Hultell | Selfish users in energy constrained aloha systems with power capture[END_REF], which is characterized by the thresholds p -i (ω -i ) := (λ 1th , . . . , λ i-1th , λ i+1th , . . . , λ N th ), then the player i ∈ N has a BR mixed strategy with threshold λ ith .

In the following lemma we establish that ( 14) is an increasing function of λ i . The proof is based on both the coupling theory and law of total expectation of random variables. Lemma 2. When α i = 1 and p -i (ω -i ) = (λ 1th , . . . , λ i-1th , λ i+1th , . . . , λ N th ), the expected utility E (hik,ω-i|λi,αi=1)

u i (T k , p -i (ω -i ) , ω) is increasing in λ i , k ∈ K.
Proof: Suppose we have two exponential distributions of power gain h ik , one is h 1 ik ∼ Exp (λ i1 ) and other h 2 ik ∼ Exp (λ i2 ), where λ i1 < λ i2 . In order to compare E (ω-i|λi,αi=1) u i (h ik , p -i (ω -i ) , ω), for λ i1 < λ i2 we need to bring h 1 ik and h 2 ik to a common probability space by the theory of coupling. Let U be an exponentially distributed random variable with mean 1. Then we have h 1 ik = λ i1 U and h 2 ik = λ i2 U and almost surely λ i1 U < λ i2 U , therefore almost surely h 1 ik < h 2 ik . Now consider the expected utility conditioned on h ik , E (ω-i|λi,αi=1,hik) u i (h ik , p -i (ω -i ), ω) and note that from Remark 4 and from Remark 5, we have it is increasing in h ik . Therefore

E (ω-i|λi1,αi=1,h 1 ik ) u i (λ i1 U, p -i (ω -i ) , ω) < E (ω-i|λi2,αi=1,h 2 ik ) u i (λ i2 U, p -i (ω -i ) , ω) .
Since the expectation depends only on the distribution of U , which is positive valued, the inequality is preserved for expectation over U , and we have

E U E (ω-i|λi1,αi=1,h 1 ik ) u i (λ i1 U, p -i (ω -i ) , ω) < E U E (ω-i|λi2,αi=1,h 2 ik ) u i (λ i2 U, p -i (ω -i ) , ω)
. By law of total expectation, the above inequality is equivalent to

E (h 1 ik ,ω-i|λi1) u i (λ i1 U, p -i (ω -i ) , ω) < E (h 2 ik ,ω-i|λi2) u i (λ i2 U, p -i (ω -i ) , ω) . This holds for all E (h 1 ik ,ω-i|λi1) u i (λ i1 U, p -i (ω -i ) , ω) , E (h 2 ik ,ω-i|λi2) u i (λ i2 U, p -i (ω -i ) , ω) < ∞.
This completes the proof of Lemma 2. Now that ( 16) is increasing in λ i , the next step is to show that for player i ∈ N , a BR mixed strategy always exists among the subset of threshold strategies while the other players follow threshold strategies p -i (ω -i ) ≡ (λ 1th , . . . , λ i-1th , λ i+1th , . . . , λ N th ). Lemma 3. Consider the independent types (Definition 6). Given the uniformly distributed threshold strategy p -i (ω -i ), which is characterized by (λ 1th , . . . , λ i-1th , λ i+1th , . . . , λ N th ) and for α i = 1, a BR mixed strategy of player i, pi ∈ P i is given by a threshold λ ith such that

pi (λ i , g i , 1) = P (T k | α i = 1) = p k , ∀ k ∈ K and P (X | α i = 1) = 0 if λ i ≥ λ ith P (T k | α i = 1) = 0, ∀ k ∈ K and P (X | α i = 1) = 1 if λ i < λ ith ,
where 0 ≤ p k ≤ 1 ∀ k ∈ K and k∈K p k = 1 are probabilities.

Proof: Let U be an exponentially distributed random variable with mean 1. By Lemma (2) we observe that there exists some λ ith such that for any k ∈ K

E (hik,ω-i|λith) u i (λ ith U, p -i (ω -i ) , ω) = E (ω-i|αi=1) u i (X, p -i (ω -i ) , ω) = ρ. (15) 
Therefore UE i ∈ N transmits if and only if λ i ≥ λ ith . Since exponential distribution is completely characterized by the mean we also have that expected utility over all k ∈ K are equal, i.e.,

E (hik,ω-i|λith) u i (λ ith U, p -i (ω -i ) , ω) = E (hil,ω-i|λith) u i (λ ith U, p -i (ω -i ) , ω) , k, l ∈ K. Therefore if λ i ≥ λ ith ,
at the best response, player i may play any probability distribution (p 1 , . . . , p K ) over the set K and shall obtain the same expected utility. This completes the proof of Lemma 3.

Lemma 3 tells us that while the other UE play a uniformly distributed threshold strategy UE i ∈ N may play any distribution (not necessarily uniform) over the set of subchannels provided that the mean of the exponential power gain is above a threshold. Therefore player i may also play a uniformly distributed threshold strategy. Now we establish the existence and uniqueness of mixed strategy Bayesian-Nash symmetric equilibrium in the set of uniformly distributed threshold strategy for game G b .

We define symmetric independent types similar to the Definition 5. By corresponding types we mean types of similar nature as described in the paragraph under Definition 5.

Remark 6. At a symmetric equilibrium all players follow identical mixed strategies and in addition since we restrict to threshold strategies it requires that we find a common threshold λ ith = λ th ∀ i ∈ N . For symmetric independent types (Definition 7) analogous to (9), we have equal probabilities that any player i ∈ N , transmits on k ∈ K, and we denote it by p (λ th ) := 1 K P (λ i ≥ λ th ∩ α i = 1) ∀ i ∈ N . Note that p (λ th ) is increasing in λ i and decreasing in λ th . Analogous to [START_REF] Buzzi | Potential games for energy-efficient power control and subcarrier allocation in uplink multicell ofdma systems[END_REF] the probability that UE in AP b i ∈ M except UE i, do not transmit on k ∈ K is given by pNb i k (λ th ) := (1 -p (λ th )) Nb i -1 . Moreover similar to [START_REF] Buzzi | Potential games for energy-efficient power control and subcarrier allocation in uplink multicell ofdma systems[END_REF] we have pNb i k (λ th ) increases in λ th . In addition Claim 2 follows through to game G b and we denote by B m the binomial random variable of the probability that a subset of UE N -bik ⊂ N -bi transmit on k ∈ K, and its distribution by f Bm . Then

E (hik,ω-i|λi,αi=1) u i (T k , p -i (ω -i ) , ω) = pNb i k • N-b i k ∈P(N-b i ) f Bm (N -bik ) • E hik Ḋ ḟgN -b i k E hik log 1 + h ik j∈N-b i k g jk + σ 2 dg N-b i k . ( 16 
)
Theorem 2. For symmetric independent types (Definition 7) the game G b has a unique Bayesian-Nash symmetric equilibrium in uniformly distributed threshold strategies.

Proof: We need to show that for the common threshold p (ω) ≡ λ th , (15) has a unique solution. Then by Lemma (3) it holds that a uniform distribution is a BR of each player, which is the definition of equilibrium. The proof follows similar to Theorem 1. In

E (hik,ω-i|λth) u i (T k , p -i (ω -i ) , ω) = pNb i k (λ th ) • N-b i k ∈P(N-b i ) f Bm (N -bik ) • E hik Ḋ ḟgN -b i k log 1 + h ik j∈N-b i k g jk + σ 2 dg N-b i k ,
by Remark 6, pNb i k (λ th ) is increasing in λ th . Let z (X (p) , λ th ) be the expected utility of player i for transmitting on k ∈ K, when |N -bik | = X (p) number of players from the set N -bi transmits on k. We know X (p) is binomial distributed with parameters (p (λ th ) , N -bi ). Let

z (X (p) , λ th ) = E hik Ḋ ḟgN -b i k log 1 + h ik j∈N-b i k g jk + σ 2 dg N-b i k .
Clearly z (X (p) , λ th ) is decreasing in X (p) (as number of interfering UEs increase with X (p)). We have from Lemma 2 that z (X (p) , λ th ) is increasing in λ th . Also E (hik,ω-i|λth) u i (T k , p -i (ω -i ), ω) = pbik (λ th ) E X(p) z (X (p) , λ th ) .

For λ 1 th < λ 2 th we have p λ 1 th > p λ 2 th . Therefore by coupling we have, X p λ

2 th < X p λ 1 th (see Appendix C) and z X p λ 1 th , λ 1 th < z X p λ 1 th , λ 2 th < z X p λ 2 th , λ 2 th . Since z (X (p (λ th )) , λ th ) ≥ 0, in particular E X(p(λ 1 th )) z X p λ 1 th , λ 1 th < E X(p(λ 2 th )) z(X p λ 2 th , λ 2 th ). Hence E (hik,ω-i|λth) u i (T k , p -i (ω -i ) , ω) is increasing in λ th and E (hik,ω-i|λth) u i (h ik , p -i (ω -i ) , ω) = E (hik,ω-i|αi=1) u i (X, p -i (ω -i ) , ω) = ρ, (17) 
has a solution. Then by Lemma 3 each UE playing a uniformly distributed mixed strategy defined by the common threshold λ th is a BR for each player and therefore is an equilibrium. This completes the proof of Theorem 2.

VI. NUMERICAL RESULTS

In this section we explore the results presented in this paper through numerical simulation. We consider a wireless network of three femtocells, i.e., M = 3.

A. Pure Strategy Equilibrium of I.I.D. Case

In this section we simulate the game G a . The results obtained in Section III and Section IV are valid for general channel gains. However here we consider Rayleigh fading channel model, which provides exponentially distributed received power and interference gains h ik and g imk ∀ i ∈ N , k ∈ K and m ∈ M. We take received power gain mean Eh ik = 0.5 ∀ i ∈ N and k ∈ K and Eg imk = 0.05 ∀ i ∈ N , k ∈ K, m ∈ M. The parameter ρ = 2 nats /trans, the ratio of noise power to constant transmit power σ 2 = 0.005 2 . Our standard setup is five active users per cell, i.e., the probability P (α i = 1) = 1 for five users of each cell and the SINR threshold SINR th = 20dB. We duly note when these parameters are changed. Under the above mentioned network parameters first we demonstrate the existence and uniqueness of pure strategy Bayesian-Nash symmetric equilibrium.

In Fig. 2a we demonstrate the existence of equilibrium by showing the existence of a root of [START_REF] Wang | Gmac: A game-theoretic mac protocol for mobile ad hoc networks[END_REF]. In Fig. 2b we demonstrate that the root obtained in Fig 2a is indeed the equilibrium point. To this end we let Player 1 deviate from the equilibrium threshold while all other players play the equilibrium threshold strategy. As we can see Player 1 is unable to achieve strictly better performance by unilateral deviation even though deviation to the left seems not to decrease the payoff of Player 1. Also note that at the equilibrium threshold all players achieve equal utility which follows from the symmetry of game G a . In Fig. 2b Player 1 and Player 2 both belong to femtocell 1 while Player 6 belongs to femtocell 2 and there are five active users in each of the 3 cells. Note also that at the equilibrium all players achieve equal expected utilities. This is a feature of symmetric equilibria and that ensures fairness among the players. In Fig. 3a we demonstrate the change of equilibrium point with respect to number of players and SINR threshold. We observe that as the number of players and the SINR th increase the threshold channel power gain increases. This phenomena is directly explained by [START_REF] Wang | Gmac: A game-theoretic mac protocol for mobile ad hoc networks[END_REF]. Increasing the number of UE or increasing the SINR th both pushes the root of (12) higher. In Fig. 3b we depict the expected rate of an individual UE as the number of UE in the cell increases. Is is clear from the figure that the expected rate decreases and approaches the value of ρ. 

B. Mixed Strategy Equilibrium of I.I.D. Case

In this section we simulate the game G b to numerically demonstrate the results obtained in Section V. We assume Rayleigh channel model in proving mixed strategy equilibrium. Therefore the received power gain is exponentially distributed. The mean received power gain λ i is considered to follow a uniform distribution in the interval [0.001, 2.001]. The other parameters are similar to the previous section. Fig. 4a demonstrates the existence of solution to [START_REF] Hanawal | Stochastic geometry based medium access games in wireless ad hoc networks[END_REF], which uniquely defines the threshold of the mean channel power gain, λ th .

In Fig. 4b we demonstrate the payoffs of players as Player 1 deviates from the threshold value, which we obtained from Fig 4a . As we did in the case of pure strategy simulation we let Player 1 deviate from the equilibrium threshold while all other players play the equilibrium threshold strategy. As we can see Player 1 is unable to achieve strictly better performance by unilateral deviation. In Fig. 4b Player 1 and Player 2 both belong to femtocell 1 while Player 6 belongs to femtocell 2. We also note that, unlike in pure strategy case, Player 1 performs strictly worse in deviating to either side of the equilibrium. The Fig. 5a and Fig. 5b for game G b have similar characteristics to their counterparts in the game G a . In both games as the number of active UE per cell increases the expected rate approaches the constant ρ.

VII. CONCLUSION

In this paper we have modeled the distributed uplink channel access problem as a Bayesian game among the UE. We provided a general system model, which includes multicell, multichannel, multiple access, intercell interference, intracell collisions and symbol availability, which are useful in modeling small cell networks such as femtocells and wireless LANs. We have provided threshold based symmetric strategies, both pure and mixed, to accommodate this general system model with an emphasis on sound analytical results. We first considered channel state information available at the transmitter then defined and solved the game G a for pure strategy symmetric equilibrium. Then we considered the case of statistical CSI at the UE where the UE posses only the distribution of CSI, and proved the existence and uniqueness of uniformly distributed mixed strategy symmetric equilibrium of the G b . The pure and mixed strategy equilibria, which we establish for the games G a and G b respectively, are particularly interesting as the equilibrium best response strategy is defined by a single threshold. In the case where CSI is available, a UE picks the channel with the highest power gain above the threshold, whereas in the statistical CSI case, UE randomly choose from a uniform distribution, while the mean channel power gain is above the threshold. Both the pure and the mixed strategy symmetric equilibria of the two games G a and G b can be achieved individually, without interaction among the UE. The analytical results are then numerically justified through a case study of three small cell network. The key extension that remains is to explore nonsymmetric equilibria.
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 3 Figure 3: Properties of the equilibrium of the game G a .
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 4 Figure 4: The existence of mixed strategy symmetric threshold equilibrium of the game G c .
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 5 Figure 5: Properties of the equilibrium of the game G c .
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APPENDIX A PROOF OF REMARK 3 Proof: For a fixed h ik and ǫ > 0 Note that the region volumes follow the relations D < D and D′ < D ′ . Let f gN -b i k denote the joint density function of random vector g N-b i k := (g jbik ) j∈N-b i k . Let P (N -bi ) be the power set of N -bi and U ∈ P (N -bi ). Then let N U k denote the set of UE in U , which transmits on k and N ′ U k = U N U k , i.e., set of UE in U , which does not transmit on k. Now let us consider an increased value of the channel gain h ik + ǫ, whereǫ > 0. Then we prove that

This completes the proof of Remark 3.

APPENDIX B PROOF OF CLAIM 1

Proof: By definition of independent types we have the K interference gains of a player

Therefore selecting the subchannel with heights expected payoff is equivalent to selecting the channel with the heights channel gain. This completes the proof of Claim 1.

APPENDIX C STOCHASTIC COUPLING OF BINOMIAL RANDOM VARIABLES

In Theorem 1 and Theorem 2 we need to compare the expected value of a non-negative valued function, say z (x, •), which is decreasing in x, with respect to two binomial random variables X 1 (µ 1 ) ∼ B (N, µ 1 ) and X 2 (µ 2 ) ∼ B (N, µ 2 ). The only information that is available is that µ 1 > µ 2 , where µ 1 , µ 2 are the success probabilities respectively. While it is tempting to write z (X 2 , •) > z (X 1 , •), it is not possible as X 1 , X 2 are random variables and at a trial X 2 may show up larger than X 1 . In order to compare z (X 1 , •) with respect to z (X 2 , •), we need to bring the two random variables to a common probability space. Consider the N i.i.d. uniformly distributed random variables U n ∼ U (0, 1), where n ∈ {1, . . . , N }. We can construct the two binomial random variables as

where for a event 1 A is the indicator function such that, 1 A = 1 if event A occurs and 1 A = 0 if event A does not occur. The two relations [START_REF] La | An interference minimization game theoretic subcarrier allocation algorithm for ofdma-based distributed systems[END_REF] and ( 20) links the two binomial random variables, that were unrelated before through the uniform random variables U n , n ∈ {1, . . . , N }. Then almost surely (for all events with probability non zero) X (µ 1 ) > X (µ 2 ). Since z (x, •) is increasing in x, almost surely we have the order relation, z (X 2 , •) > z (X 1 , •).

In particular z (x, •) ≥ 0 and since expectation depends only on the joint distribution of (U 1 , . . . U N ), which is positive, we have Ez (X 2 , •) > Ez (X 1 , •) where the expectation is over (U 1 , . . . , U N ).