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Efficient approximation of min set cover by "low-complexity" exponential algorithms

We study approximation of min set cover combining ideas and results from polynomial approximation and from exact computation (with non-trivial worst case complexity upper bounds) for NP-hard problems. We design approximation algorithms for min set cover achieving ratios that cannot be achieved in polynomial time (unless problems in NP could be solved by slightly super-polynomial algorithms) with worst-case complexity much lower (though super-polynomial) than those of an exact computation.

Introduction

Given a ground set C of cardinality n and a system S = {S 1 , . . . , S m } ⊂ 2 C , min set cover consists of determining a minimum size subsystem S ′ such that ∪ S∈S ′ S = C. min set cover is a famous NP-hard problem dealt in the seminal paper [START_REF] Karp | Reducibility among combinatorial problems[END_REF].

For the last ten years, the issue of exact resolution of NP-hard problems by algorithms having provably non-trivial upper time-complexity bounds has been very actively studied (see, for instance, the surveys by [START_REF] Fomin | Some new techniques in design and analysis of exact (exponential) algorithms[END_REF][START_REF] Schöning | Algorithmics in exponential time[END_REF][START_REF] Woeginger | Exact algorithms for NP-hard problems: a survey[END_REF]). Notable results for min set cover in this area are given in the papers [START_REF] Fomin | Some new techniques in design and analysis of exact (exponential) algorithms[END_REF][START_REF] Grandoni | A note on the complexity of minimum dominating set[END_REF][START_REF] Van Rooij | Design by measure and conquer, a faster exact algorithm for dominating set[END_REF].

Furthermore, very active research has been also conducted around approximation of min set cover by polynomial algorithms (see, for instance, [START_REF] Langston | A greedy-heuristic for the set covering problem[END_REF][START_REF] Hochbaum | Approximation algorithms for the set covering and vertex cover problems[END_REF][START_REF] Goldsmidt | A modified greedy heuristic for the set covering problem with improved worst case bound[END_REF][START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF][START_REF] Lovász | On the ratio of optimal integral and fractional covers[END_REF][START_REF] Slavík | A tight analysis of the greedy algorithm for set cover[END_REF]). More precisely, it is proved in [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF][START_REF] Lovász | On the ratio of optimal integral and fractional covers[END_REF] that min set cover is approximable in polynomial time within tight ratio 1+ln |S * | where S * is a maximum-cardinality set in S while in [START_REF] Langston | A greedy-heuristic for the set covering problem[END_REF] the same upper bound is shown for the weighted version of min set cover where a nonnegative weight is associated with every set in S and the objective becomes to minimize the total weight of a set cover. These ratios are attained by the natural greedy algorithm which, for the unweighted case, chooses to include in the solution one of the sets of maximum residual cardinality while, for the weighted case, it chooses to include in the solution one of the sets maximizing the ratio between residual cardinality and weight. In [START_REF] Slavík | A tight analysis of the greedy algorithm for set cover[END_REF], it is shown that (in the unweighted case) the greedy min set coveralgorithm achieves a tight ratio of O(log n). In [START_REF] Duh | Approximation of k-set cover by semi-local optimization[END_REF], using semi-local optimization techniques, a (1/2) + ln |S * |-approximation algorithm is given.

On the other hand, since the beginning of 90's, and using the celebrated PCP theorem ( [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF]), numerous natural hard optimization problems have been proved to admit more or less pessimistic inapproximability results. For instance, min set cover is inapproximable within approximation ratio better than (1ε) ln n, for every ε > 0, unless NP ⊂ DTIME(n log log n ) ( [START_REF] Feige | A threshold of ln n for approximating set cover[END_REF]). Similar results have been provided for numerous other paradigmatic optimization problems, as max independent set, min coloring, etc. Such results exhibit large gaps between what it is possible to do in polynomial time and what becomes possible in exponential time.

Hence, for min set cover, a natural question is: how much time takes the computation of an r-approximate solution, for r ∈]1, log n[? Of course, we have a lower bound to this time (any polynomial in n, unless NP ⊂ DTIME(n log log n ), thanks to the inapproximability result) and also an upper bound (the running time of exact computation). But: can we devise, for some ratio r, a r-approximate algorithm with an improved running time located somewhere between these bounds?, is this possible for any ratio r, i.e., can we specify a global relationship between running time and approximation ratio?.

Here we try to bring answers to these questions by matching ideas and results from exact computation and from polynomial approximation. This issue has been marginally handled by [START_REF] Björklund | Inclusion-exclusion algorithms for counting set partitions[END_REF] for minimum coloring. It has been also handled by [START_REF] Cai | Fixed-parameter approximation: conceptual framework and approximability results[END_REF][START_REF] Chen | On parameterized approximability[END_REF][START_REF] Downey | Parameterized approximation problems[END_REF], though in a different setting and with different objectives oriented towards development of fixed-parameter algorithms. Also a different but very interesting kind of trade-off between exact computation and polynomial approximation is settled by [START_REF] Vassilevska | Confronting hardness using a hybrid approach[END_REF]. Note finally that in the same setting we handle in [START_REF] Bourgeois | Efficient approximation by "low-complexity" exponential algorithms[END_REF] Let us note that in [START_REF] Hochbaum | Approximation algorithms for the set covering and vertex cover problems[END_REF] it is proved that min set cover is approximable in polynomial time within ratio f . Improvement of this ratio down to either fc, or to f /c for some fixed constant c > 0 is very unlikely given that would entail polynomial approximation of min vertex cover within ratio 2ε, for some fixed ε, fact very highly improbable ( [START_REF] Khot | Vertex cover might be hard to approximate to within 2ε[END_REF]).

Let T (•) be a super-polynomial and p(•) be a polynomial, both on integers. In what follows, using notations in [START_REF] Woeginger | Exact algorithms for NP-hard problems: a survey[END_REF], for an integer n, we express running-time bounds of the form p(n) • T (n) as O * (T (n)) by ignoring, for simplicity, polynomial factors. We denote by T (n) the worst-case time required to solve the considered combinatorial optimization problem with n variables. We recall (see, for instance, [START_REF] Eppstein | Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction[END_REF]) that, if it is possible to bound above T (n) by a recurrence expression of the type T (n)

T (n -r i ) + O(p(n)), we have T (n -r i ) + O(p(n)) = O * (α(r 1 , r 2 , . . .) n ) where α(r 1 , r 2 , . . .) is the largest zero of the function f (x) = 1 -x -r i .
In what follows, in Sections 2 and 3, we study efficient approximation of min set cover by low-complexity exponential algorithms. We propose several techniques that allow to achieve non trivial tradeoffs between approximation and time complexity (depending either on d, n, or m). Note that the corresponding best known exact algorithms that we are aware of have complexity O * (1.23 d ) ( [START_REF] Van Rooij | Design by measure and conquer, a faster exact algorithm for dominating set[END_REF]), O * (2 n ) ( [START_REF] Björklund | Inclusion-exclusion algorithms for counting set partitions[END_REF]) and O * (2 m ) (brute force algorithm). We first show how to devise an approximate "pruning the search tree"-based algorithm: this algorithm allows for instance to compute a 7-approximate solution in time O * (1.0007 d ). We also propose a greedy approach that outperforms the previous one when n is small (respect to m), and then show that these approaches are also pertinent in particular cases such as when the frequencies of elements are upper bounded. Finally, in Section 3 we improve some of the results of Section 2 by developing and analyzing a randomized approximation algorithm for min set cover.

In Section 4 we use a standard approximability preserving reduction from min dominating set to min set cover and show how results of Section 2 can be transferred from min set cover to min dominating set. This latter problem is defined as follows: given a graph G(V, E), a dominating set is a subset H ⊂ V such that, any vertex from V -H is adjacent to some vertex from H; the objective is to determine a dominating set of minimum size.

In Section 5, we study min set cover but expressing the objective function as the maximization of the number of unused sets: one seeks a set cover S * that maximizes m-|S * |. Though being obviously equivalent from an exact resolution viewpoint, approximation properties change. Polynomial approximation of this problem problem has already been studied in [START_REF] Demange | Differential approximation algorithms for some combinatorial optimization problems[END_REF][START_REF] Duh | Approximation of k-set cover by semi-local optimization[END_REF][START_REF] Bazgan | On the differential approximation of min set cover[END_REF][START_REF] Hassin | z-approximations[END_REF]. In the same setting, studies have also been conducted for several other problems, for instance, maximization of unused colors corresponding to the usual min coloring problem, maximization of unused bins in the bin packing problem, etc.

Maximizing the number of unused sets can be also seen as studying min set cover under the so-called differential ratio. Let A be a polynomial time approximation algorithm for an NPhard problem Π, let m(I, S) be the value of the solution S provided by A on an instance I of Π, and opt(I) be the value of the optimal solution for I. Finally, let ω(I) be the value of a worst solution of G defined as the value of an optimal solution for Π, the combinatorial problem having the same constraints as Π but instead of minimizing the objective function of Π we wish to maximize it (ω(I) = m for min set cover, corresponding to the solution that takes all the sets). The differential-approximation ratio δ A (I) of an approximation algorithm A on I is defined as δ A (I) = (ω(I)m(I, S))/(ω(I)opt(I)). The usual ratio ρ A (I) = m(I, S)/opt(I) will sometimes be called standard-approximation ratio in what follows. For both ratios, the closer to 1, the better the approximability quality of an algorithm.

In general, no apparent links exist between standard and differential approximations in the case of minimization problems, in the sense that there is no evident transfer of a positive, or negative, result from one paradigm to the other. Hence a "good" differential approximation result does not signify anything for the behavior of the approximation algorithm studied when dealing with the standard framework and vice-versa.

Considering the differential approximation, it is proved in [START_REF] Bazgan | Completeness in standard and differential approximation classes: Poly-(D)APX-and (D)PTAS-completeness[END_REF] (based upon a preliminary result by [START_REF] Demange | On an approximation measure founded on the links between optimization and polynomial approximation theory[END_REF]) that min set cover is Poly-DAPX-hard (where Poly-DAPX is the class of problems approximable in polynomial time within differential ratios 1/f (|I|), where f is a polynomial of the instance size |I|). Moreover, for any ε > 0, there is no polynomial m ε-1differential approximation algorithm for min set cover unless P = NP.

Finally, in Section 5, we study efficient approximation of min set cover by low-complexity exponential algorithms in the differential paradigm.

2 Approximation with standard ratio

Approximately pruning the search tree

Pruning the search tree is one of the most classical techniques to get exact algorithms with non trivial exponential complexity. Here, we show that this technique can be adapted to get approximation algorithms realizing interesting tradeoffs between time complexity and approximation. The algorithm is based upon two improvements respect to an exact search tree algorithm. First, since we only seek an approximate solution, the algorithm may, when branching, make some "errors" by being "less careful" than an exact one. For instance, if one wants a 2-approximate solution, each time the algorithm branches on a set, in the case it puts it in the cover it can add another set (obtaining recursively a ratio 2): taking this additional set reduces the size of the remaining problem, thus reducing the complexity of the pruning algorithm. The second improvement consists of stoping the development of the tree before the end: if at some point the remaining instance is polynomially approximable within the ratio looked for, then no need to continue the branching.

Considering these two ways of better pruning the search tree, we propose the following algorithm SC1, parametrized by the ratio q we want to guarantee:

• fix q ∈ N * and compute the largest integer p such that H(p) -1/2 q, where H is the harmonic number sequence;

• repeat steps 1 to 4 below until C is covered:

1. if there exists an item of C that belongs to a single subset S ∈ S, add S to the solution;

2. if there exist two sets S, R in S such that S is included into R, remove S without branching;

3. if all the surviving subsets have cardinality at most p run the algorithm by [START_REF] Duh | Approximation of k-set cover by semi-local optimization[END_REF] to compute a q-approximation of the optimal solution in the surviving instance;

4. determine q sets S 1 , . . . , S q from S such that ∪ i q S i has maximum cardinality and perform the the following branching: either add every S i to the solution (and remove ∪ i q S i from C), or remove all of them.

Formally, until step 3 is executed, Algorithm SC1 returns:

SC1(C, S) = argmin |SC1 (C, S \ {S i : i q})| , {S i : i q} ∪ SC1 C \ i q S i , S \ {S i : i q} (1) 
Proposition 1. For any integer q 1, Algorithm SC1 computes with running time O * (α d ) a q-approximation of min set cover, where α is the solution of:

x q(2+p) -x q(1+p) -1 = 0 ( 2 
)
and p is the largest integer such that H(p) -1/2 q

Proof. The algorithm always returns a set cover, since it never removes from C an item that has not been covered yet. We now claim that the solution computed has size at most q × | opt(I)|, where I is the instance (C, S) of min set cover. Obviously, this is the case if d is smaller than some bounded constant or if any set from S has size at most p: this corresponds to Step 3, which produces a H(p) -1/2 q approximate solution on the remaining instance. Now, we deal with the branching step 4. Assume the ratio claimed is true for any instance such that d < D, consider an instance (C, S) with |C| + |S| = D, suppose that Algorithm SC1 branches on q sets just chosen in step 4 and fix some optimal solution S * . Denote finally by S * q an optimal solution of the instance (C, S \ {S i : i q}) and by S * q,q an optimal solution of the instance (C \ ∪ i q S i , S \ {S i : i q}). Then, two cases may occur, depending on the fact that S * takes or not at least one S i .

If, for any i q, S i / ∈ S * , then according to (1), we get:

|SC1 (C, S)| = |SC1 (C, S \ {S i , i q})| q S * q = q |S * |
since the subfamily {S i : i q} is not contained neither to S * q nor to S * and instance (C, S \ {S i , i q}) has d < D.

Suppose now that there exist k 1 sets S i , i ∈ {1, . . . , q} such that S i ∈ S * . Then, still according to (1):

|SC1(C, S)| = SC1   C \ i q S i , S \ {S i : i q}   + q q S * q,q + q (3) q (|S * | -k) + q q |S * |
where inequality in (3) holds because instance (C \ ∪ i q S i , S \ {S i : i q}) also has d < D. Based upon the above, an easy induction on d establishes that the ratio claimed is true for any value of d.

Let us now study complexity of Algorithm SC1. Since any operation has a polynomial time execution, we only have to determine how many times it branches. The worst case complexity of the algorithm on an instance with parameter d can be written as p(d) × T (d), where p is a fixed-degree polynomial and T (d) the number of nodes of the search tree. Each time it branches, in the case the S i 's are removed, then d decreases by q. In the case the S i 's are taken in the cover, then |S| decreases by d. But, except maybe the last time it occurs, ∪ i q S i contains at least (p + 1)q items, since it remains at least one subset that covers p + 1 items or more in the surviving ground set. Then, the parameter of instance where all these sets are removed is at most (mq) + (n -(p + 1)q) = d -(p + 2)q. So:

T (d) T (d -q) + T (d -(p + 2)q)
One can see that α d , where α is the solution of (2) verifies this inequality.

Table 1 gives complexity of Algorithm SC1 (basis of the exponential) for some values of the ratio q that one wishes to reach. To conclude this section, let us remark that we can derive from the previous analysis a result on the running time of SC1 with respect to m instead of d. Measuring complexity with m instead of d may be useful if m is "small", for instance if it is smaller than n. Proposition 2. For any integer q 1, Algorithm SC1 computes a q-approximation of min set cover in O * (2 m/q ) Proof. The ratio claimed is proved in Proposition 1. For its running time just observe that, each time it branches, it removes exactly q subsets from S, i.e., T (m) 2T (mq) that gives

T (m) = O * (2 m/q ).
Table 2 deals with Proposition 2 and measures running time of SC1 for some values of q. The exact algorithm is in O * (2 m ), since there is no better algorithm that we are aware of. 

A "greedy" approach

In the previous approach, we adapted the technique of pruning the search tree to get approximation algorithms. Here, we tackle the efficient approximation of min set cover by using the classical greedy technique. In particular, this leads to good tradeoffs between approximation and complexity measured with respect to n (see for instance Corollary 1). Suppose that an algorithm E solves min set cover within approximation ratio ρ, for some ρ > 1 and consider the following algorithm, denoted by SC2, that uses a greedy approach to decrease the size of min set cover-instance:

1. fix ǫ > 0 and q > 1 and compute all collections Z ⊂ S of size at most 1/ǫ; if some Z are covers of C, return the smallest among them;

2. compute and store a set S * ⊂ S of maximum cardinality; C := C \ S * ; S := S \ {S * };

3. repeat step 2 until the surviving set C verifies |C| ne -r+1 ; let S ′′ be the the collection of sets S * computed during all the executions of step 2;

4. output S ′ = S ′′ ∪ E(C).

Proposition 3. Assume that an algorithm E is able to compute, for some ρ 1, a ρ-approximation of min set cover with running time O * (α n 1 α m 2 ). Then, SC2 computes for any r 0 and for any ǫ > 0, a (r + ρ)-approximation of min set cover with complexity O * (α ne -r+ǫ

1 α m 2 )
Proof. Let us first note that step 1 of Algorithm SC2 is polynomial since ǫ is fixed. If a set cover of size at most 1/ǫ exists in the instance, then an optimal solution is built in polynomial time; otherwise, 1/ε is a lower bound to the size of an optimal set cover.

For simplicity, index the surviving set C by the iteration of step 2 that has produced it (C 0 = C). So, execution of this step has stopped for the first i for which

|C i | ne -r+1 . Obviously, at each step k at least |C k-1 |/k * elements are removed from C k-1 ,
where k * is the size of an optimal solution. Indeed, these elements can be covered by at most k * subsets and the algorithm includes in the solution one of the largest among them. When k subsets have been chosen, the size of the remaining set C k to be covered is so at most n(1

-1/k * ) k ne -k/k * .
Algorithm E completes the cover under construction by running on some instance C k with complexity O * (α

|C k | 1 α m 2 )
. In all, if step 2 is executed k times, Algorithm SC2 achieves ratio at most:

k + ρk * k * = ρ + k k * (4) If k is such that |C k | < ne -r+ǫ and |C k-1 | ne -r+ǫ , then: k k * k -1 k * + ǫ log n |C k-1 | + ǫ r (5) 
Combination of ( 4) and ( 5) immediately derives the approximation ratio claimed.

On the other hand, given that steps 1 and 2 are polynomial, the overall complexity of SC2 is dominated by the complexity of E, that is O * (α ne -r+ǫ 1 α m

2 ), as claimed. A similar approach is used by [START_REF] Björklund | Inclusion-exclusion algorithms for counting set partitions[END_REF] in order to prove that for any k ∈ N it is possible to get a (1 + k/opt)-approximation of minimum coloring with running time O * (γ n + α ne -k/opt ), where γ n (resp., α n ) is the running time of some exact algorithm for max independent set (resp., minimum coloring). At first glance, our result might seem to be a generalization of the result by [START_REF] Björklund | Inclusion-exclusion algorithms for counting set partitions[END_REF], since minimum coloring can be naturally modeled as a min set cover (see [START_REF] Johnson | Approximation algorithms for combinatorial problems[END_REF]). But, this is not true for the following two reasons:

• when minimum coloring problem is handled as a min set cover problem, the size of the set-system (that is the number of the independent sets of the input graph) may grow exponentially with n; in this case, the part of the complexity depending on m is dominating;

• the fact that Proposition 3 derives ratios 1 + r for any r and not only for multiples of 1/k * is due to the fact that we can solve polynomially any instance whose cover is smaller than some bounded constant; this is no more possible when m grows exponentially with n.

Corollary 1. If E stands for the inclusion-exclusion method by [START_REF] Björklund | Inclusion-exclusion algorithms for counting set partitions[END_REF], then SC2 computes for any r 0 and for any ǫ > 0, a (1 + r)-approximation of min set cover with running time and space O * (2 ne -r+ǫ ).

Approximation within ratio better than f

Recall that, as we mentioned in Section 1, min set cover is approximable in polynomial time within ratio f , but improvement of this ratio is very unlikely. Let us also note that Proposition 2 enables achievement of a rf -approximation for any r such that rf ∈ N * (hence 1/f r 1), with running time O * (2 m/rf ). In what follows we design another algorithm, denoted by SC3, that achieves the same ratio with lower complexity in the case where the maximum frequency is bounded above by a fixed constant. It works as follows:

• fix p, q ∈ N such that p/q = r -(1/f ) and λ < r/2;

• compute a first solution S 1 as follows:

1. pick some c 1 ∈ C; let F 1 be the family of sets in S that contain c 1 (f

1 = |F 1 | f ); remove ∪ S∈F 1 S from C;
2. repeat step 1 until C is empty; let t be the number of iterations of step 1; set S 1 = ∪ i t F i , where F i is the sub-family of S removed at iteration i;

• compute a second cover S 2 as follows:

set S 2 = ∅;

for any i t, fix at random a partition of F i into q sets and add to S 2 p among these sets such that their union has maximum size;

run an exact algorithm E on the remaining instance and add the result to S 2 ;

• compute a last solution S 3 as follows:

fix at random an equipartition of S into m/rf sets F 1 , . . . , F m/rf of size rf ;

compute all the unions of at most λm/rf F i 's; if some of them form a cover of C set S 3 a smallest among them;

• output S ′ = argmin{|S 1 |, |S 2 |, |S 3 |}.
Proposition 4. Assume that an algorithm E is able to compute min set cover with running time O * (α n 1 α m 2 ). Then, SC3 computes, for any r 0, an rf -approximation of min set cover with complexity O * (max(β m/rf , α

(1-µ)n 1 α (1-λµ)m 2
)), where:

β = 1 λ r λ r 1 -λ r 1-λ r < 2 µ = r - 1 f
Proof. Let S * be some optimal set cover. Since any c i ∈ C has to be covered, |S * | t. Assume first |S * | t/r. Then:

|S 1 | |S * | tf t r = rf (6) 
On the other hand, assume t λm/rf and f i λm. Then:

|S 1 | |S * | λm t λm λm rf = rf (7) 
So, under the assumptions just made, and given that solution S 1 is computed in polynomial time, a ratio rf is achieved in polynomial time.

We now consider that |S * | t/r and either t λm/rf , or f i λm. In the first case, we get |S * | λm/r 2 f . Consider the set F = ∪ F i ∩S * =∅ F i . Of course |F| rf |S * | and it is a cover. Since the number of F i that intersects S * is at most |S * |, an exhaustive search on all the unions of at most λm/r 2 f , F i 's reaches it; hence, |S 3 | |F|. So:

|S 3 | |S * | |F| |S * | rf (8) 
Using Stirling's formula, computation of S 3 takes time at most m/rf λm/r 2 f = O(β m/rf ). Assume finally: t λm/rf and i t f i λm. Solution S 2 contains at most t f i × p/q + |S * | subsets. So:

|S 2 | |S * | i t f i r -1 f |S * | + 1 f t r -1 f t + 1 rf (9) 
Computation of S 2 requires running of the exact algorithm E on an instance whose size (m ′ , n ′ ) is:

n ′ n 1 - p q n 1 -r + 1 f m ′ m - p q i t f i m 1 -λ r - 1 f
where the first inequality holds since in each ∪ S∈F i S at least a fraction p/q of elements is covered. This, together with ( 6), ( 7), ( 8) and ( 9) conclude the proof of the proposition.

For instance, if we wish to get a ratio rf = f /2, we can use the exact min set coveralgorithm (with running time O * (1.236 n+m )) and fix λ = 1/6 < r/2. Then the running time of SC3 is O * (max(1.89 m/rf , 1.236 (1/2+1/f )n+(11/12+1/6f )m )). In fact, optimal value for λ obviously depends on maximum frequency f and on m/n. According to Propositions 1 and 2, SC1 has running time O * (min(2 m/rf , α(rf ) n+m )).

A comparison of the running times of Algorithms SC1, SC2 and SC3 is not easy: when n is very small w.r.t. m, then SC2 associated with the inclusion-exclusion algorithm by [START_REF] Björklund | Inclusion-exclusion algorithms for counting set partitions[END_REF] dominates the two other algorithms, but in the other cases, each of the three algorithms can dominate the others depending on the approximation ratio we seek and on the relative values of n and m.

A Randomized Algorithm

We give in this section a randomized algorithm for min set cover that improves results in Section 2. But first, consider the following (deterministic) algorithm Divide that will be used later:

1. group the m sets of S into m/2 groups of size 2, F i = {S 2i-1 , S 2i };

2. consider the 2 m/2 subsets of S constituted by either none or the two sets S 2i-1 , S 2i of any group F i ;

3. for any of the subsets produced at step 2, test if this is a cover of C;

4. output the best solution computed.

Lemma 1 . Divide is a 2-approximation algorithm for min set cover. Its running time is O * (2 m/2 ).

Proof. Consider an optimal solution S * and the particular solution S ′ defined as follows:

• if S 2i-1 or S 2i belongs to S * , then both S 2i-1 and S 2i belong to S ′ ;

• otherwise, neither S 2i-1 nor S 2i belong to S ′ .

Note that S ′ is a particular solution built by Divide and, since S * ⊆ S ′ , it is a feasible solution. Furthermore, its approximation ratio is 2 since in each groupe F i we take at most twice the number of subsets in S * . Note that Divide can be easily generalized by partitioning in m/q groups F i of size q. This would lead to a q-approximation algorithm, running in time O * (2 m/q ). This is the same bound as in Proposition 2.

We now show how to use randomization to get a q-approximation algorithm (for q < 2) in time much smaller than O * (2 m/q ). The idea of the randomized algorithm is the following. The worst case for Divide is a ratio 2, but it may perform better. Indeed, when both S 2i-1 and S 2i belong to S * then on the set F i = (S 2i-1 , S 2i ), Divide has ratio 1. If this is the case for a significant part of the F i 's, then the ratio achieved by Divide is better than 2. If we partition S in groups of size 2 at random, we estimate the probability that it achieves a ratio r < 2. Unfortunately, this probability decreases exponentially to 0. But, by repeating this partition an exponential (sufficiently large) number of times, we get an r approximation with probability 1. This is the idea leading to Algorithm RandomDivide. The interesting fact is that, with a suitable choice of the number of repetitions, the global running time is much smaller than the running time

O * (2 m/r ) claimed in Proposition 2.
In what follows, given a partition P = (F 1 , . . . , F m/2 ) of S in groups of size 2, and an optimal solution S * , we denote by q 1 and q 2 the number of groups F i where S * takes, respectively, one or two sets. Then, as shown in the proof of Lemma 1, we return a solution of size at most 2q 1 + 2q 2 . Hence, the ratio ρ of this solution verifies:

ρ 2q 1 + 2q 2 q 1 + 2q 2 = 2 - 2q 2 q 1 + 2q 2 (10) 
Then, P being a random partition of S in groups of size 2, assume that we are able to lower bound the probability Pr[q 2 km] that q 2 equals at least km by a function t(k, m). and consider the following algorithm, denoted RandomDivide parameterized by the ratio r < 2 that we wish to guarantee:

1. set k = 1/r -1/2 and apply m/t(k, m) times Algorithm Divide using randomized (independent) partitions of S;

2. output the best solution among the solutions computed at step 1.

Proposition 5. RandomDivide computes with probability at least 1e -m an r-approximate solution for min set cover in time O * (2 m/2 /t(1/r -1/2, m)).

Proof. If, for at least one random partition, q 2 is at least km, then, using (10) (and q 1 + q 2 m/2), the solution computed has ratio at most 1/(k + 1/2) = r.

Since the probability that q 2 is smaller than km is at most 1t(k, m), the probability p that it is always smaller than km verifies:

p (1 -t(k, m)) m t(k,m) e -m
and the result follows. Now, the main part of randomization consists of lower bounding probability Pr[q 2 km]. Before explaining how to obtain such a bound, let us present the results achieved by Random-Divide(r). Figure 1 and Table 3 compare the running times (more exactly the basis of the exponential in the running time) of RandomDivide versus a deterministic algorithm in 2 m/r . In Table 3 (the exponential basis of) the number of random partitions we use is also given. Let us now compute the probabilities; we define the function f (for 0 < x < y) as:

f (x, y) = y y x x (y -x) y-x
Lemma 2. Let P be a random partition of S into groups of size 2. Let λ be such that S * = λm. The probability Pr[q 2 = km] that q 2 = km verifies:

Pr [q 2 = km] = Θ (p(m)α(k, λ) m )
for some suitable polynomial p, where α is given by:

α(k, λ) = f k, 1 2 f λ -2k, 1 2 -k 2 λ-2k f (λ, 1)
Proof. Consider a partition P of S into groups F 1 , . . . , F m/2 of size 2. We have m λm possibilities for the λm subsets of S * in S. Among these possibilities, to get q 2 = km, we have:

• m/2
km choices for the km groups with two sets in the optimum solution;

• (m/2)-km λm-2km choices for the λm -2km groups with one set in the optimum solution;

• 2 λm-2km choices for placing these λm -2km sets, since there are two possible places in each group.

In all, the probability Pr[q 2 = km] is:

Pr [q 2 = km] = m/2 km × m/2-km λm-2km × 2 λm-2km m λm (11) 
Now, using Stirling's formula, we have, for any s and t:

tm sm = q(m) × t t s s (t -s) t-s m = q(m) × (f (s, t)) m (12) 
for some suitable polynomial q.

The result follows from equations 11 and 12.

Of course we have to consider the worst case for the size of an optimum solution, i.e. the value λ leading to the worst value for Pr[q 2 km]. Since only the exponential part matters, the bound is:

g(k) = min 0 λ 1 max l k {α(l, λ)} (13) 
Then, according to Lemma 2 and using (13), we can choose in the definition of RandomDivide t(k, m) = c × p(m)g(k) m , for some suitable constant c and polynomial p. Note that, in order to simplify the computation of g(k), we can try to study directly the quantity min λ {α(k, λ)} (for a fixed k < 1/2). Unfortunately, this value is 0: this is very natural since, when S * is very close to m, q 1 is close 0 and q 2 close to m/2, hence q 2 km but q 2 = km. In other words, to get the result, we have to directly bound Pr[q 2 km] since we cannot only lower bound Pr[q 2 = km]. But, a remark allows to significantly simplify study of α(k, λ): one can show that α(k, 2k) = 1. Using this, we can easily, by a simple function minimization, determine (eventually using a computer) g(k).

Application to min dominating set

Consider the following reduction from min dominating set to min set cover, originally proposed by [START_REF] Paz | Non deterministic polynomial optimization problems and their approximations[END_REF]. Let G(V, E) be an instance of min dominating set. We construct an instance I(S, C) of min set cover as follows:

C = V , S = {S v = {v}∪Γ(v), v ∈ V }, where Γ(v) is the set of neighbors of vertex v (|S| = |V |). Consider now a cover S ′ = {S v 1 , . . . , S v k } of C.
Obviously, the set {v 1 , . . . , v k } is a dominating set of G, since set S v i (resp., vertex v i ) covers (resp., dominates) elements corresponding to vertex v i itself and to its adjacent vertices. Proposition 6. Assume there exists an r-(standard)-approximation algorithm A for min set cover (r 1) with running time O * (α n 1 α m 2 ). Then, an r-(standard)-approximation for min dominating set can be computed with running time O * ((α 1 α 2 ) n ).

To the best of our knowledge, there does not exist exact algorithm for min set cover that is fast enough to allow SC2 or SC3 to be faster than SC1 when used to solve min dominating set. Recall that SC2 or SC3 are faster than SC1 only when m is smaller than n and this is not the case for the reduction just described. For instance, Table 4 shows performances of SC1 and SC2 for some ratio's values and with E having running time O * (1.236 n ). 

Ratio

Approximation with differential ratio

In this section we propose efficient approximation algorithm for min set cover using the differential ratio (or equivalently for the maximization of unused sets problem with the standard ratio). Recall that ω(I) = m and that the differential ratio is always smaller than 1. We propose three different algorithms: a first one, quite simple, that basically performs exhaustive search on solutions of particular sizes; a second one that prunes the search tree; a third one that combines the first exhaustive approach and a greedy method.

Generating candidate solutions

Consider the following algorithm, called DSC1:

1. fix a differential ratio r ∈ Q (0 r 1) to be achieved;

2. compute all the combinations of at most rm/(1+r) subsets from S; if some of them cover C return a minimum-size one;

3. otherwise, compute all the combinations of at least m/(1 + r) subsets from S and return a minimum-size one.

Proposition 7. For any r 1, Algorithm DSC1 returns a r-differential approximation of min set cover with running time O * (β m ), where:

β = β(r) = 1 + r r r 1+r
Proof. Assume first |S * | rm/(1 + r). Then step 2 of DSC1 returns an optimal solution, so does step 3 if |S * | m/(1 + r).

Assume now rm/(1 + r) |S * | m/(1 + r). Then the solution returned by DSC1 has been computed at step 3 and its size is bounded above by m/(1 + r). So, denoting by S ′ this solution:

m -|S ′ | m -|S * | m 1 -1 1+r m 1 -r 1+r = r
On the other hand, the algorithm has running time:

rm 1+r i=1 m i + m i= m 1+r m i = 2 rm 1+r i=1 m i 2m m rm/(1 + r) = O * m 2 β m
where β is as claimed in the proposition's statement.

Remark that |S ′ |/|S * | 1/r. In other words, algorithm DSC1 also guarantees standard approximation ratio 1/r, but is dominated in complexity by the algorithms presented in Section 2 since 2 r β(r) 2.

Table 5 gives execution times of Algorithm DSC1 for some ratio's values. q 1 2 3 4 5 6 7 8 β(1/q) 2 1.89 1.755 1.649 1.569 1.507 1.458 1.417 Table 5: Execution times of DSC1 for some values of q = 1/r.

A branch-and-bound-like algorithm

We now devise a tree search based algorithm, in the spirit of Algorithm SC1 seen in Section 2, that improves the results of Section 5.1. In order to guarantee a differential ratio, we have to ensure that the output solution is far from m, which was not true in Algorithm SC1. This leads to the modification of the branching step; the algorithm, called DSC2, works as follows:

• fix q ∈ Q;

• repeat steps 1 to 4 below until C is covered:

1. if there exists an item of C that belongs to a single subset S ∈ S, it adds S to the solution;

2. if there exist two sets S, R in S such that S is included into R, S is removed without branching;

3. if all the surviving subsets have cardinality at most 2 exactly solve min set cover;

4. determine q sets S 1 , . . . , S q from S such that S 1 is of maximum cardinality and ∪ 2 i q S i has maximum cardinality in C \ S 1 and perform the the following branching: either add S 1 in the solution, or do not add it and add {S i : 2 i q}.

Formally, until step 3 is executed, Algorithm DSC2 returns:

DSC2(C, S) = argmin |S 1 ∪ DSC2 (C \ S 1 , S \ {S 1 })| , {S 2 , . . . , S q } ∪ DSC2 C \ 2 i q S i , S \ {S 1 , . . . , S q } ( 14 
)
On the other hand, when maximum cardinality of the instance is at most 2, min set cover is polynomial since it becomes an edge covering problem ( [START_REF] Berge | Graphs and hypergraphs[END_REF]).

Proposition 8. For any integer q 1, algorithm DSC2 computes an 1/q-differential approximation of min set cover with running time O * (α d ), where α is the solution of:

x 4q-3 -x 4q-7 -1 = 0 (15) 
Proof. Algorithm DSC2 obviously returns a set cover. Assume that |S| -| opt(C, S)| q(|S| -|DSC2(C, S)|) for any instance (C, S) such that |C|+|S| < D, consider some instance (C, S), where |C|+|S| = D, set |S| = m, fix some optimal solution S * , and denote by S * 1 an optimal solution of the instance (C \S 1 , S \{S 1 }) and by S * q,q an optimal solution of the instance (C \∪ i q S i , S \{S i : i q}).

If S 1 ∈ S * , then according to [START_REF] Eppstein | Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction[END_REF], we get:

m -|DSC2(C, S)| = m -1 -|DSC2 (C \ S 1 , S \ {S 1 })| m -1 -S * 1 q m -|S * | q since instance (C \ S 1 , S \ {S 1 }) under consideration has d < D.
If, on the other hand, S 1 / ∈ S * , let k q -1 be the number of subsets that belong to S * and our algorithm added to the solution. Then, always according to [START_REF] Eppstein | Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction[END_REF]:

m -|DSC2(C, S)| = m -q -|DSC2 (C \ ∪ i q S i , S \ {S i : i q})| + 1 m -q -S * q,q q + 1 (16) m -q -|S * | + k q + 1 m -|S * | q
where inequality in ( 16) holds because instance (C \ ∪ i q S i , S \ {S i : i q}) also has d < D. Based upon the above, an easy induction on d establishes that the ratio claimed is true for any value of d.

Let us now study complexity of Algorithm DSC2. Any time it branches, every set S i ∩ (C \ ∪ j<i S j ), i q contains at least 3 items (otherwise the surviving instance would be polynomial and would met step 3). Then, | ∪ i q S i | 3q, and the parameter of instance were all these sets except S 1 are taken is at most (mq) + (n -3(q -1)) = d -4q + 3. Consequently, T (d) T (d -4) + T (d -4q + 3) and α d , where α is the solution of (15) verifies this inequality.

Table 6 presents examples of running time (basis of the exponential) for Algorithm DSC2 for some values of q (ratio achieved 1/q). 6: Complexity (basis of the exponential) of DSC2 for some values of q = 1/r.

As in the case of standard approximation paradigm (Proposition 2), the following analogous result holds here. Proposition 9. For any integer q 1, Algorithm DSC2 computes an 1/q-differential approximation for min set cover with running time O * (γ m ), where γ is solution of:

γ q -γ q-1 -1 = 0 (17) 
In order to show complexity claimed in Proposition 9 just observe that each time DSC2 branches, either 1 (if taken) or q (if dismissed) subsets are fixed. So, T (m) T (m -1) + T (mq) that leads to [START_REF] Goldsmidt | A modified greedy heuristic for the set covering problem with improved worst case bound[END_REF]. In Table 7 examples of running times are given for Algorithm DSC2 are given for some values of q (ratio 1/q). 7: Complexity of DSC2 for some values of q = 1/r.

Combining greedy and exhaustive approaches

We now propose an algorithm, called DSC3 that combines greedy and exhaustive methods in the same spirit as in Section 2.2. Assume in what follows an exact Algorithm E that is able to solve (exactly) min set cover with running time O * (α m 1 α n 2 ).

1. fix: a ratio r ∈ Q (0 r 1) to be achieved, a λ < 1 and ǫ > 0;

2. compute all the combinations of at least (rλ + 1r)m subsets from S; let S 1 be one of the minimum-size covers so computed; 

|C k | 1 α m 2 )
. Putting this together with the complexity of step 2 derives the overall complexity claimed.

In order to conclude the proof, remark that the differential ratio achieved by steps 3 and 4 is:

m -|S 2 | m -|S * | m -|S * | -(1 -r) 1 λ -1 |S * | m -|S * | m -r + 1 λ -r λ |S * | m -|S * | 1 -(rλ + 1 -r) 1 -λ = r
as claimed.

For instance, if one wishes to attain ratio r = 1/2, one can use the (best known) exact algorithm for min set cover, whose running time is O * (1.236 n+m ) and one can fix λ = 4/5. Then, running time of DSC3 is O * (max(1.384 m , 1.236 0.535n+m )).

Once again, optimal value for λ depends on quantity m/n. Also, it is easy to see that when ratio m/n is small enough, it is always possible to determine some λ such that DSC3 is faster than both DSC1 and DSC2.

  max independent set, min vertex cover, max clique, max bipartite subgraph and max set packing. In what follows, we set ∆ = |S * |, where S * = argmax{|S| : S ∈ S}. Given an element c ∈ C, we denote by f c the quantity |{S : c ∈ S}|, i.e., the number of sets in S containing c, and we set f = max{f c : c ∈ C}. Finally, we set d = m + n.

Figure 1 :

 1 Figure 1: RandomDivide (lower curve) versus 2 m/r

  380 1.167 1.119 1.095 1.081 1.071 1.063 1.057 Table

  1.618 m 1.466 m 1.380 m 1.345 m 1.285 m 1.255 m 1.232 m Table

3 .Proposition 10 .

 310 compute and store a set S * ⊂ S of maximum cardinality; C := C \ S * ; S := S \ {S * }; 4. repeat step 3 until the surviving set C verifies |C| ne -(1-r)((1/λ)-1) ; S 2 := S ′′ ∪ E(C); 5. output S ′ = argmin{|S 1 |, |S 2 |}. Assume that an Algorithm E exactly solves min set cover with running time O * (α n 1 α m 2 ). Then, DSC3 computes, for any r 0 and for any ǫ > 0, an r-differential approximation of min set cover with complexity O * (max{β m , α ne -(1-r)(1/λ)+ǫ 1r) rλ+1-r (rrλ) r-rλ < 2 Proof. Assume first |S * | (rλ + 1r)m. Then, Algorithm DSC3 is optimal. Furthermore, if λm |S * | (rλ + 1r)m, then S 1 is a cover of size (rλ + 1r)m and: m -|S 1 | m -|S * | mm(rλ + 1r) mλm = r Assume now λm |S * | and, as in the proof of Proposition 3 (Section 2.2), index the surviving set C by the iteration of step 3 that has produced it. At each iteration k, at least |C k-1 |/|S * | elements are removed from C k-1 . Indeed, C k-1 can be covered by at most |S * | subsets and DSC3 adds the largest one to solution S 2 . When k subsets have been chosen, the size of the remaining set C k to be covered is at most n(1 -(1/|S * |)) k ne -k/|S * | . Fix k such that |C k | < ne -(1-r)((1/λ)-1)+ǫ and |C k-1 | ne -(1-r)((1/λ)-1)+ǫ . Note that k (1r)((1/λ) -1)|S * |. According to our assumptions, Algorithm E runs on C k with complexity O * (α

Table 1 :

 1 Complexity of SC1 (basis of the exponential) for some values of q.

	Ratio q	1	2	3	4	5	6	7	8
	p	2	6	18	50	136	372	1014	2758
	α	1.380 1.110 1.038 1.014 1.005 1.002 1.0007 1.0003

Table 3 :

 3 RandomDivide versus 2 m/r

	Ratio 2 1/r RandomDivide # of random partitions
	1.1	1.88	1.63	1.15
	1.2	1.79	1.52	1.08
	1.3	1.71	1.48	1.05
	1.4	1.65	1.55	1.03
	1.5	1.59	1.44	1.02
	1.6	1.55	1.43	1.007
	1.7	1.51	1.42	1.003
	1.8	1.47	1.42	1.002
	1.9	1.45	1.42	1.0003

Table 4 :

 4 Complexities of SC1 and SC2 when used for solving min dominating set.

		SC1	SC2
	1	1.904 n 1.526 n
	2	1.232 n 1.335 n
	3	1.077 n 1.272 n
	4	1.028 n 1.249 n
	5	1.010 n 1.241 n
	6	1.004 n 1.238 n
	7	1.001 n 1.237 n
	8	1.0006 n 1.236 n