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Abstract

We study approximation of min set cover combining ideas and results from polynomial
approximation and from exact computation (with non-trivial worst case complexity upper
bounds) for NP-hard problems. We design approximation algorithms for min set cover

achieving ratios that cannot be achieved in polynomial time (unless problems in NP could
be solved by slightly super-polynomial algorithms) with worst-case complexity much lower
(though super-polynomial) than those of an exact computation.

1 Introduction

Given a ground set C of cardinality n and a system S = {S1, . . . , Sm} ⊂ 2C , min set cover

consists of determining a minimum size subsystem S ′ such that ∪S∈S′S = C. min set cover

is a famous NP-hard problem dealt in the seminal paper [22].
For the last ten years, the issue of exact resolution of NP-hard problems by algorithms

having provably non-trivial upper time-complexity bounds has been very actively studied (see,
for instance, the surveys by [16, 26, 30]). Notable results for min set cover in this area are
given in the papers [16, 18, 28].

Furthermore, very active research has been also conducted around approximation of min set

cover by polynomial algorithms (see, for instance, [9, 20, 17, 21, 24, 27]). More precisely, it is
proved in [21, 24] that min set cover is approximable in polynomial time within tight ratio
1+ln |S∗| where S∗ is a maximum-cardinality set in S while in [9] the same upper bound is shown
for the weighted version of min set cover where a nonnegative weight is associated with every
set in S and the objective becomes to minimize the total weight of a set cover. These ratios are
attained by the natural greedy algorithm which, for the unweighted case, chooses to include in the
solution one of the sets of maximum residual cardinality while, for the weighted case, it chooses
to include in the solution one of the sets maximizing the ratio between residual cardinality
and weight. In [27], it is shown that (in the unweighted case) the greedy min set cover-
algorithm achieves a tight ratio of O(log n). In [13], using semi-local optimization techniques, a
(1/2) + ln |S∗|-approximation algorithm is given.

On the other hand, since the beginning of 90’s, and using the celebrated PCP theorem ([1]),
numerous natural hard optimization problems have been proved to admit more or less pessimistic
inapproximability results. For instance, min set cover is inapproximable within approximation
ratio better than (1 − ε) ln n, for every ε > 0, unless NP ⊂ DTIME(nlog log n) ([15]). Similar
results have been provided for numerous other paradigmatic optimization problems, as max

independent set, min coloring, etc. Such results exhibit large gaps between what it is
possible to do in polynomial time and what becomes possible in exponential time.
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Hence, for min set cover, a natural question is: how much time takes the computation of
an r-approximate solution, for r ∈]1, log n[? Of course, we have a lower bound to this time (any
polynomial in n, unless NP ⊂ DTIME(nlog log n), thanks to the inapproximability result) and
also an upper bound (the running time of exact computation). But: can we devise, for some
ratio r, a r-approximate algorithm with an improved running time located somewhere between
these bounds?, is this possible for any ratio r, i.e., can we specify a global relationship between
running time and approximation ratio?.

Here we try to bring answers to these questions by matching ideas and results from exact
computation and from polynomial approximation. This issue has been marginally handled by [5]
for minimum coloring. It has been also handled by [7, 8, 12], though in a different setting and with
different objectives oriented towards development of fixed-parameter algorithms. Also a different
but very interesting kind of trade-off between exact computation and polynomial approximation
is settled by [29]. Note finally that in the same setting we handle in [6] max independent set,
min vertex cover, max clique, max bipartite subgraph and max set packing.

In what follows, we set ∆ = |S∗|, where S∗ = argmax{|S| : S ∈ S}. Given an element c ∈ C,
we denote by fc the quantity |{S : c ∈ S}|, i.e., the number of sets in S containing c, and we set
f = max{fc : c ∈ C}. Finally, we set d = m + n.

Let us note that in [20] it is proved that min set cover is approximable in polynomial time
within ratio f . Improvement of this ratio down to either f − c, or to f/c for some fixed constant
c > 0 is very unlikely given that would entail polynomial approximation of min vertex cover

within ratio 2 − ε, for some fixed ε, fact very highly improbable ([23]).
Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers. In what follows,

using notations in [30], for an integer n, we express running-time bounds of the form p(n) · T (n)
as O∗(T (n)) by ignoring, for simplicity, polynomial factors. We denote by T (n) the worst-case
time required to solve the considered combinatorial optimization problem with n variables. We
recall (see, for instance, [14]) that, if it is possible to bound above T (n) by a recurrence expression
of the type T (n) 6

∑

T (n− ri) + O(p(n)), we have
∑

T (n− ri) + O(p(n)) = O∗(α(r1, r2, . . .)
n)

where α(r1, r2, . . .) is the largest zero of the function f(x) = 1 −
∑

x−ri .
In what follows, in Sections 2 and 3, we study efficient approximation of min set cover

by low-complexity exponential algorithms. We propose several techniques that allow to achieve
non trivial tradeoffs between approximation and time complexity (depending either on d, n,
or m). Note that the corresponding best known exact algorithms that we are aware of have
complexity O∗(1.23d) ([28]), O∗(2n) ([5]) and O∗(2m) (brute force algorithm). We first show how
to devise an approximate “pruning the search tree”-based algorithm: this algorithm allows for
instance to compute a 7-approximate solution in time O∗(1.0007d). We also propose a greedy
approach that outperforms the previous one when n is small (respect to m), and then show
that these approaches are also pertinent in particular cases such as when the frequencies of
elements are upper bounded. Finally, in Section 3 we improve some of the results of Section 2
by developing and analyzing a randomized approximation algorithm for min set cover.

In Section 4 we use a standard approximability preserving reduction from min dominating

set to min set cover and show how results of Section 2 can be transferred from min set cover

to min dominating set. This latter problem is defined as follows: given a graph G(V,E), a
dominating set is a subset H ⊂ V such that, any vertex from V − H is adjacent to some vertex
from H; the objective is to determine a dominating set of minimum size.

In Section 5, we study min set cover but expressing the objective function as the maxi-
mization of the number of unused sets: one seeks a set cover S∗ that maximizes m−|S∗|. Though
being obviously equivalent from an exact resolution viewpoint, approximation properties change.
Polynomial approximation of this problem problem has already been studied in [10, 13, 3, 19].
In the same setting, studies have also been conducted for several other problems, for instance,
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maximization of unused colors corresponding to the usual min coloring problem, maximization
of unused bins in the bin packing problem, etc.

Maximizing the number of unused sets can be also seen as studying min set cover under
the so-called differential ratio. Let A be a polynomial time approximation algorithm for an NP-
hard problem Π, let m(I, S) be the value of the solution S provided by A on an instance I
of Π, and opt(I) be the value of the optimal solution for I. Finally, let ω(I) be the value of a
worst solution of G defined as the value of an optimal solution for Π̄, the combinatorial problem
having the same constraints as Π but instead of minimizing the objective function of Π we wish
to maximize it (ω(I) = m for min set cover, corresponding to the solution that takes all
the sets). The differential-approximation ratio δA(I) of an approximation algorithm A on I is
defined as δA(I) = (ω(I) − m(I, S))/(ω(I) − opt(I)). The usual ratio ρA(I) = m(I, S)/opt(I)
will sometimes be called standard-approximation ratio in what follows. For both ratios, the closer
to 1, the better the approximability quality of an algorithm.

In general, no apparent links exist between standard and differential approximations in the
case of minimization problems, in the sense that there is no evident transfer of a positive, or
negative, result from one paradigm to the other. Hence a “good” differential approximation result
does not signify anything for the behavior of the approximation algorithm studied when dealing
with the standard framework and vice-versa.

Considering the differential approximation, it is proved in [2] (based upon a preliminary
result by [11]) that min set cover is Poly-DAPX-hard (where Poly-DAPX is the class
of problems approximable in polynomial time within differential ratios 1/f(|I|), where f is a
polynomial of the instance size |I|). Moreover, for any ε > 0, there is no polynomial mε−1-
differential approximation algorithm for min set cover unless P 6= NP.

Finally, in Section 5, we study efficient approximation of min set cover by low-complexity
exponential algorithms in the differential paradigm.

2 Approximation with standard ratio

2.1 Approximately pruning the search tree

Pruning the search tree is one of the most classical techniques to get exact algorithms with non
trivial exponential complexity. Here, we show that this technique can be adapted to get approx-
imation algorithms realizing interesting tradeoffs between time complexity and approximation.
The algorithm is based upon two improvements respect to an exact search tree algorithm. First,
since we only seek an approximate solution, the algorithm may, when branching, make some
“errors” by being “less careful” than an exact one. For instance, if one wants a 2-approximate
solution, each time the algorithm branches on a set, in the case it puts it in the cover it can
add another set (obtaining recursively a ratio 2): taking this additional set reduces the size of
the remaining problem, thus reducing the complexity of the pruning algorithm. The second
improvement consists of stoping the development of the tree before the end: if at some point
the remaining instance is polynomially approximable within the ratio looked for, then no need
to continue the branching.

Considering these two ways of better pruning the search tree, we propose the following algo-
rithm SC1, parametrized by the ratio q we want to guarantee:

• fix q ∈ N∗ and compute the largest integer p such that H(p) − 1/2 6 q, where H is the
harmonic number sequence;

• repeat steps 1 to 4 below until C is covered:

1. if there exists an item of C that belongs to a single subset S ∈ S, add S to the
solution;
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2. if there exist two sets S,R in S such that S is included into R, remove S without
branching;

3. if all the surviving subsets have cardinality at most p run the algorithm by [13] to
compute a q-approximation of the optimal solution in the surviving instance;

4. determine q sets S1, . . . , Sq from S such that ∪i6qSi has maximum cardinality and
perform the the following branching: either add every Si to the solution (and remove
∪i6qSi from C), or remove all of them.

Formally, until step 3 is executed, Algorithm SC1 returns:

SC1(C,S) =

argmin

{

|SC1 (C,S \ {Si : i 6 q})| ,

∣

∣

∣

∣

∣

{Si : i 6 q} ∪ SC1

(

C \
⋃

i6q
Si,S \ {Si : i 6 q}

)∣

∣

∣

∣

∣

}

(1)

Proposition 1. For any integer q > 1, Algorithm SC1 computes with running time O∗(αd) a
q-approximation of min set cover, where α is the solution of:

xq(2+p) − xq(1+p) − 1 = 0 (2)

and p is the largest integer such that H(p) − 1/2 6 q

Proof. The algorithm always returns a set cover, since it never removes from C an item that has
not been covered yet. We now claim that the solution computed has size at most q × | opt(I)|,
where I is the instance (C,S) of min set cover. Obviously, this is the case if d is smaller than
some bounded constant or if any set from S has size at most p: this corresponds to Step 3, which
produces a H(p) − 1/2 6 q approximate solution on the remaining instance.

Now, we deal with the branching step 4. Assume the ratio claimed is true for any instance
such that d < D, consider an instance (C,S) with |C| + |S| = D, suppose that Algorithm SC1

branches on q sets just chosen in step 4 and fix some optimal solution S∗. Denote finally by S∗
q̄

an optimal solution of the instance (C,S \ {Si : i 6 q}) and by S∗
q̄,q̄ an optimal solution of the

instance (C \∪i6qSi,S \{Si : i 6 q}). Then, two cases may occur, depending on the fact that S∗

takes or not at least one Si.
If, for any i 6 q, Si /∈ S∗, then according to (1), we get:

|SC1 (C,S)| = |SC1 (C,S \ {Si, i 6 q})| 6 q
∣

∣S∗
q̄

∣

∣ = q |S∗|

since the subfamily {Si : i 6 q} is not contained neither to S∗
q̄ nor to S∗ and instance (C,S \

{Si, i 6 q}) has d < D.
Suppose now that there exist k > 1 sets Si, i ∈ {1, . . . , q} such that Si ∈ S∗. Then, still

according to (1):

|SC1(C,S)| =

∣

∣

∣

∣

∣

∣

SC1



C \
⋃

i6q

Si,S \ {Si : i 6 q}





∣

∣

∣

∣

∣

∣

+ q 6 q
∣

∣S∗
q̄,q̄

∣

∣+ q (3)

6 q (|S∗| − k) + q 6 q |S∗|

where inequality in (3) holds because instance (C \ ∪i6qSi,S \ {Si : i 6 q}) also has d < D.
Based upon the above, an easy induction on d establishes that the ratio claimed is true for

any value of d.
Let us now study complexity of Algorithm SC1. Since any operation has a polynomial time

execution, we only have to determine how many times it branches. The worst case complexity
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of the algorithm on an instance with parameter d can be written as p(d) × T (d), where p is a
fixed-degree polynomial and T (d) the number of nodes of the search tree. Each time it branches,
in the case the Si’s are removed, then d decreases by q. In the case the Si’s are taken in the
cover, then |S| decreases by d. But, except maybe the last time it occurs, ∪i6qSi contains at
least (p + 1)q items, since it remains at least one subset that covers p + 1 items or more in the
surviving ground set. Then, the parameter of instance where all these sets are removed is at
most (m − q) + (n − (p + 1)q) = d − (p + 2)q. So:

T (d) 6 T (d − q) + T (d − (p + 2)q)

One can see that αd, where α is the solution of (2) verifies this inequality.
Table 1 gives complexity of Algorithm SC1 (basis of the exponential) for some values of the

ratio q that one wishes to reach.

Ratio q 1 2 3 4 5 6 7 8
p 2 6 18 50 136 372 1014 2758
α 1.380 1.110 1.038 1.014 1.005 1.002 1.0007 1.0003

Table 1: Complexity of SC1 (basis of the exponential) for some values of q.

To conclude this section, let us remark that we can derive from the previous analysis a result
on the running time of SC1 with respect to m instead of d. Measuring complexity with m instead
of d may be useful if m is “small”, for instance if it is smaller than n.

Proposition 2. For any integer q > 1, Algorithm SC1 computes a q-approximation of min set

cover in O∗(2m/q)

Proof. The ratio claimed is proved in Proposition 1. For its running time just observe that,
each time it branches, it removes exactly q subsets from S, i.e., T (m) 6 2T (m − q) that gives
T (m) = O∗(2m/q).

Table 2 deals with Proposition 2 and measures running time of SC1 for some values of q. The
exact algorithm is in O∗(2m), since there is no better algorithm that we are aware of.

Ratio q 1 2 3 4 5 6 7 8
Time 2m 1.414m 1.260m 1.189m 1.149m 1.123m 1.104m 1.091m

Table 2: Complexity of SC1 with respect to m for some values of q.

2.2 A “greedy” approach

In the previous approach, we adapted the technique of pruning the search tree to get approxi-
mation algorithms. Here, we tackle the efficient approximation of min set cover by using the
classical greedy technique. In particular, this leads to good tradeoffs between approximation and
complexity measured with respect to n (see for instance Corollary 1).

Suppose that an algorithm E solves min set cover within approximation ratio ρ, for some
ρ > 1 and consider the following algorithm, denoted by SC2, that uses a greedy approach to
decrease the size of min set cover-instance:

1. fix ǫ > 0 and q > 1 and compute all collections Z ⊂ S of size at most 1/ǫ; if some Z are
covers of C, return the smallest among them;
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2. compute and store a set S∗ ⊂ S of maximum cardinality; C := C \ S∗; S := S \ {S∗};

3. repeat step 2 until the surviving set C verifies |C| 6 ne−r+1; let S ′′ be the the collection
of sets S∗ computed during all the executions of step 2;

4. output S ′ = S ′′ ∪ E(C).

Proposition 3. Assume that an algorithm E is able to compute, for some ρ > 1, a ρ-approx-
imation of min set cover with running time O∗(αn

1αm
2 ). Then, SC2 computes for any r > 0

and for any ǫ > 0, a (r + ρ)-approximation of min set cover with complexity O∗(αne−r+ǫ

1 αm
2 )

Proof. Let us first note that step 1 of Algorithm SC2 is polynomial since ǫ is fixed. If a set cover
of size at most 1/ǫ exists in the instance, then an optimal solution is built in polynomial time;
otherwise, 1/ε is a lower bound to the size of an optimal set cover.

For simplicity, index the surviving set C by the iteration of step 2 that has produced it
(C0 = C). So, execution of this step has stopped for the first i for which |Ci| 6 ne−r+1.
Obviously, at each step k at least |Ck−1|/k

∗ elements are removed from Ck−1, where k∗ is the
size of an optimal solution. Indeed, these elements can be covered by at most k∗ subsets and the
algorithm includes in the solution one of the largest among them. When k subsets have been
chosen, the size of the remaining set Ck to be covered is so at most n(1 − 1/k∗)k 6 ne−k/k∗

.
Algorithm E completes the cover under construction by running on some instance Ck with

complexity O∗(α
|Ck |
1 αm

2 ). In all, if step 2 is executed k times, Algorithm SC2 achieves ratio at
most:

k + ρk∗

k∗
= ρ +

k

k∗
(4)

If k is such that |Ck| < ne−r+ǫ and |Ck−1| > ne−r+ǫ, then:

k

k∗
6

k − 1

k∗
+ ǫ 6 log

(

n

|Ck−1|

)

+ ǫ 6 r (5)

Combination of (4) and (5) immediately derives the approximation ratio claimed.
On the other hand, given that steps 1 and 2 are polynomial, the overall complexity of SC2 is

dominated by the complexity of E, that is O∗(αne−r+ǫ

1 αm
2 ), as claimed.

A similar approach is used by [5] in order to prove that for any k ∈ N it is possible to

get a (1 + k/opt)-approximation of minimum coloring with running time O∗(γn + αne−k/opt
),

where γn (resp., αn) is the running time of some exact algorithm for max independent set

(resp., minimum coloring). At first glance, our result might seem to be a generalization of the
result by [5], since minimum coloring can be naturally modeled as a min set cover (see [21]).
But, this is not true for the following two reasons:

• when minimum coloring problem is handled as a min set cover problem, the size of
the set-system (that is the number of the independent sets of the input graph) may grow
exponentially with n; in this case, the part of the complexity depending on m is dominating;

• the fact that Proposition 3 derives ratios 1 + r for any r and not only for multiples of 1/k∗

is due to the fact that we can solve polynomially any instance whose cover is smaller than
some bounded constant; this is no more possible when m grows exponentially with n.

Corollary 1. If E stands for the inclusion-exclusion method by [5], then SC2 computes for any
r > 0 and for any ǫ > 0, a (1 + r)-approximation of min set cover with running time and
space O∗(2ne−r+ǫ

).
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2.3 Approximation within ratio better than f

Recall that, as we mentioned in Section 1, min set cover is approximable in polynomial time
within ratio f , but improvement of this ratio is very unlikely. Let us also note that Proposition 2
enables achievement of a rf -approximation for any r such that rf ∈ N∗ (hence 1/f 6 r 6 1),
with running time O∗(2m/rf ). In what follows we design another algorithm, denoted by SC3,
that achieves the same ratio with lower complexity in the case where the maximum frequency is
bounded above by a fixed constant. It works as follows:

• fix p, q ∈ N such that p/q = r − (1/f) and λ < r/2;

• compute a first solution S1 as follows:

1. pick some c1 ∈ C; let F1 be the family of sets in S that contain c1 (f1 = |F1| 6 f);
remove ∪S∈F1S from C;

2. repeat step 1 until C is empty; let t be the number of iterations of step 1; set S1 =
∪i6tFi, where Fi is the sub-family of S removed at iteration i;

• compute a second cover S2 as follows:

– set S2 = ∅;

– for any i 6 t, fix at random a partition of Fi into q sets and add to S2 p among these
sets such that their union has maximum size;

– run an exact algorithm E on the remaining instance and add the result to S2;

• compute a last solution S3 as follows:

– fix at random an equipartition of S into m/rf sets F1, . . . ,Fm/rf of size rf ;

– compute all the unions of at most λm/rf Fi’s; if some of them form a cover of C
set S3 a smallest among them;

• output S ′ = argmin{|S1|, |S2|, |S3|}.

Proposition 4. Assume that an algorithm E is able to compute min set cover with running
time O∗(αn

1αm
2 ). Then, SC3 computes, for any r > 0, an rf -approximation of min set cover

with complexity O∗(max(βm/rf , α
(1−µ)n
1 α

(1−λµ)m
2 )), where:

β =
1

(

λ
r

)
λ
r
(

1 − λ
r

)1−λ
r

< 2

µ = r −
1

f

Proof. Let S∗ be some optimal set cover. Since any ci ∈ C has to be covered, |S∗| > t.
Assume first |S∗| > t/r. Then:

|S1|

|S∗|
6

tf
t
r

= rf (6)

On the other hand, assume t > λm/rf and
∑

fi 6 λm. Then:

|S1|

|S∗|
6

λm

t
6

λm
λm
rf

= rf (7)
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So, under the assumptions just made, and given that solution S1 is computed in polynomial
time, a ratio rf is achieved in polynomial time.

We now consider that |S∗| 6 t/r and either t 6 λm/rf , or
∑

fi > λm. In the first case, we
get |S∗| 6 λm/r2f . Consider the set F = ∪Fi∩S∗ 6=∅Fi. Of course |F| 6 rf |S∗| and it is a cover.
Since the number of Fi that intersects S∗ is at most |S∗|, an exhaustive search on all the unions
of at most λm/r2f , Fi’s reaches it; hence, |S3| 6 |F|. So:

|S3|

|S∗|
6

|F|

|S∗|
6 rf (8)

Using Stirling’s formula, computation of S3 takes time at most
(

m/rf
λm/r2f

)

= O(βm/rf ).

Assume finally: t > λm/rf and
∑

i6t fi > λm. Solution S2 contains at most
∑

i6t fi ×p/q +
|S∗| subsets. So:

|S2|

|S∗|
6

∑

i6t
fi

(

r − 1
f

)

|S∗|
+ 1 6

ft
(

r − 1
f

)

t
+ 1 6 rf (9)

Computation of S2 requires running of the exact algorithm E on an instance whose size (m′, n′)
is:

n′
6 n

(

1 −
p

q

)

6 n

(

1 − r +
1

f

)

m′
6 m −

p

q

∑

i6t

fi 6 m

(

1 − λ

(

r −
1

f

))

where the first inequality holds since in each ∪S∈FiS at least a fraction p/q of elements is covered.
This, together with (6), (7), (8) and (9) conclude the proof of the proposition.

For instance, if we wish to get a ratio rf = f/2, we can use the exact min set cover-
algorithm (with running time O∗(1.236n+m)) and fix λ = 1/6 < r/2. Then the running time
of SC3 is O∗(max(1.89m/rf , 1.236(1/2+1/f)n+(11/12+1/6f)m)). In fact, optimal value for λ obviously
depends on maximum frequency f and on m/n. According to Propositions 1 and 2, SC1 has
running time O∗(min(2m/rf , α(rf)n+m)).

A comparison of the running times of Algorithms SC1, SC2 and SC3 is not easy: when n is
very small w.r.t. m, then SC2 associated with the inclusion-exclusion algorithm by [5] dominates
the two other algorithms, but in the other cases, each of the three algorithms can dominate the
others depending on the approximation ratio we seek and on the relative values of n and m.

3 A Randomized Algorithm

We give in this section a randomized algorithm for min set cover that improves results in
Section 2. But first, consider the following (deterministic) algorithm Divide that will be used
later:

1. group the m sets of S into m/2 groups of size 2, Fi = {S2i−1, S2i};

2. consider the 2m/2 subsets of S constituted by either none or the two sets S2i−1, S2i of any
group Fi;

3. for any of the subsets produced at step 2, test if this is a cover of C;

4. output the best solution computed.

8



Lemma 1. Divide is a 2-approximation algorithm for min set cover. Its running time
is O∗(2m/2).

Proof. Consider an optimal solution S∗ and the particular solution S ′ defined as follows:

• if S2i−1 or S2i belongs to S∗, then both S2i−1 and S2i belong to S ′;

• otherwise, neither S2i−1 nor S2i belong to S ′.

Note that S ′ is a particular solution built by Divide and, since S∗ ⊆ S ′, it is a feasible solution.
Furthermore, its approximation ratio is 2 since in each groupe Fi we take at most twice the
number of subsets in S∗.

Note that Divide can be easily generalized by partitioning in m/q groups Fi of size q. This
would lead to a q-approximation algorithm, running in time O∗(2m/q). This is the same bound
as in Proposition 2.

We now show how to use randomization to get a q-approximation algorithm (for q < 2)
in time much smaller than O∗(2m/q). The idea of the randomized algorithm is the following.
The worst case for Divide is a ratio 2, but it may perform better. Indeed, when both S2i−1

and S2i belong to S∗ then on the set Fi = (S2i−1, S2i), Divide has ratio 1. If this is the case
for a significant part of the Fi’s, then the ratio achieved by Divide is better than 2. If we
partition S in groups of size 2 at random, we estimate the probability that it achieves a ratio
r < 2. Unfortunately, this probability decreases exponentially to 0. But, by repeating this
partition an exponential (sufficiently large) number of times, we get an r approximation with
probability 1. This is the idea leading to Algorithm RandomDivide. The interesting fact is that,
with a suitable choice of the number of repetitions, the global running time is much smaller than
the running time O∗(2m/r) claimed in Proposition 2.

In what follows, given a partition P = (F1, . . . ,Fm/2) of S in groups of size 2, and an optimal
solution S∗, we denote by q1 and q2 the number of groups Fi where S∗ takes, respectively, one or
two sets. Then, as shown in the proof of Lemma 1, we return a solution of size at most 2q1 +2q2.
Hence, the ratio ρ of this solution verifies:

ρ 6
2q1 + 2q2

q1 + 2q2
= 2 −

2q2

q1 + 2q2
(10)

Then, P being a random partition of S in groups of size 2, assume that we are able to lower
bound the probability Pr[q2 > km] that q2 equals at least km by a function t(k,m). and consider
the following algorithm, denoted RandomDivide parameterized by the ratio r < 2 that we wish
to guarantee:

1. set k = 1/r − 1/2 and apply m/t(k,m) times Algorithm Divide using randomized (inde-
pendent) partitions of S;

2. output the best solution among the solutions computed at step 1.

Proposition 5. RandomDivide computes with probability at least 1 − e−m an r-approximate
solution for min set cover in time O∗(2m/2/t(1/r − 1/2,m)).

Proof. If, for at least one random partition, q2 is at least km, then, using (10) (and q1 + q2 6

m/2), the solution computed has ratio at most 1/(k + 1/2) = r.
Since the probability that q2 is smaller than km is at most 1− t(k,m), the probability p that

it is always smaller than km verifies:

p 6 (1 − t(k,m))
m

t(k,m) 6 e−m

9



and the result follows.
Now, the main part of randomization consists of lower bounding probability Pr[q2 > km].

Before explaining how to obtain such a bound, let us present the results achieved by Random-

Divide(r). Figure 1 and Table 3 compare the running times (more exactly the basis of the
exponential in the running time) of RandomDivide versus a deterministic algorithm in 2m/r. In
Table 3 (the exponential basis of) the number of random partitions we use is also given.

Figure 1: RandomDivide (lower curve) versus 2m/r

Ratio 21/r RandomDivide # of random partitions

1.1 1.88 1.63 1.15
1.2 1.79 1.52 1.08
1.3 1.71 1.48 1.05
1.4 1.65 1.55 1.03
1.5 1.59 1.44 1.02
1.6 1.55 1.43 1.007
1.7 1.51 1.42 1.003
1.8 1.47 1.42 1.002
1.9 1.45 1.42 1.0003

Table 3: RandomDivide versus 2m/r

Let us now compute the probabilities; we define the function f (for 0 < x < y) as:

f(x, y) =
yy

xx(y − x)y−x

Lemma 2. Let P be a random partition of S into groups of size 2. Let λ be such that S∗ = λm.
The probability Pr[q2 = km] that q2 = km verifies:

Pr [q2 = km] = Θ (p(m)α(k, λ)m)

10



for some suitable polynomial p, where α is given by:

α(k, λ) =
f
(

k, 1
2

)

f
(

λ − 2k, 1
2 − k

)

2λ−2k

f(λ, 1)

Proof. Consider a partition P of S into groups F1, . . . ,Fm/2 of size 2. We have
( m
λm

)

possibilities
for the λm subsets of S∗ in S. Among these possibilities, to get q2 = km, we have:

•
(m/2

km

)

choices for the km groups with two sets in the optimum solution;

•
((m/2)−km

λm−2km

)

choices for the λm − 2km groups with one set in the optimum solution;

• 2λm−2km choices for placing these λm − 2km sets, since there are two possible places in
each group.

In all, the probability Pr[q2 = km] is:

Pr [q2 = km] =

(m/2
km

)

×
(m/2−km
λm−2km

)

× 2λm−2km

( m
λm

) (11)

Now, using Stirling’s formula, we have, for any s and t:
(

tm

sm

)

= q(m) ×

(

tt

ss(t − s)t−s

)m

= q(m) × (f(s, t))m (12)

for some suitable polynomial q.
The result follows from equations 11 and 12.
Of course we have to consider the worst case for the size of an optimum solution, i.e. the

value λ leading to the worst value for Pr[q2 > km]. Since only the exponential part matters, the
bound is:

g(k) = min
06λ61

max
l>k

{α(l, λ)} (13)

Then, according to Lemma 2 and using (13), we can choose in the definition of RandomDivide

t(k,m) = c × p(m)g(k)m, for some suitable constant c and polynomial p.
Note that, in order to simplify the computation of g(k), we can try to study directly the

quantity minλ{α(k, λ)} (for a fixed k < 1/2). Unfortunately, this value is 0: this is very natural
since, when S∗ is very close to m, q1 is close 0 and q2 close to m/2, hence q2 > km but q2 6= km.
In other words, to get the result, we have to directly bound Pr[q2 > km] since we cannot only
lower bound Pr[q2 = km]. But, a remark allows to significantly simplify study of α(k, λ): one can
show that α(k, 2k) = 1. Using this, we can easily, by a simple function minimization, determine
(eventually using a computer) g(k).

4 Application to min dominating set

Consider the following reduction from min dominating set to min set cover, originally
proposed by [25]. Let G(V,E) be an instance of min dominating set. We construct an
instance I(S, C) of min set cover as follows: C = V , S = {Sv = {v}∪Γ(v), v ∈ V }, where Γ(v)
is the set of neighbors of vertex v (|S| = |V |). Consider now a cover S ′ = {Sv1 , . . . , Svk

} of C.
Obviously, the set {v1, . . . , vk} is a dominating set of G, since set Svi (resp., vertex vi) covers
(resp., dominates) elements corresponding to vertex vi itself and to its adjacent vertices.

Proposition 6. Assume there exists an r-(standard)-approximation algorithm A for min set

cover (r > 1) with running time O∗(αn
1αm

2 ). Then, an r-(standard)-approximation for min

dominating set can be computed with running time O∗((α1α2)
n).

11



To the best of our knowledge, there does not exist exact algorithm for min set cover that is
fast enough to allow SC2 or SC3 to be faster than SC1 when used to solve min dominating set.
Recall that SC2 or SC3 are faster than SC1 only when m is smaller than n and this is not the
case for the reduction just described. For instance, Table 4 shows performances of SC1 and SC2

for some ratio’s values and with E having running time O∗(1.236n).

Ratio SC1 SC2

1 1.904n 1.526n

2 1.232n 1.335n

3 1.077n 1.272n

4 1.028n 1.249n

5 1.010n 1.241n

6 1.004n 1.238n

7 1.001n 1.237n

8 1.0006n 1.236n

Table 4: Complexities of SC1 and SC2 when used for solving min dominating set.

5 Approximation with differential ratio

In this section we propose efficient approximation algorithm for min set cover using the dif-
ferential ratio (or equivalently for the maximization of unused sets problem with the standard
ratio). Recall that ω(I) = m and that the differential ratio is always smaller than 1. We propose
three different algorithms: a first one, quite simple, that basically performs exhaustive search on
solutions of particular sizes; a second one that prunes the search tree; a third one that combines
the first exhaustive approach and a greedy method.

5.1 Generating candidate solutions

Consider the following algorithm, called DSC1:

1. fix a differential ratio r ∈ Q (0 6 r 6 1) to be achieved;

2. compute all the combinations of at most rm/(1+r) subsets from S; if some of them cover C
return a minimum-size one;

3. otherwise, compute all the combinations of at least m/(1 + r) subsets from S and return
a minimum-size one.

Proposition 7. For any r 6 1, Algorithm DSC1 returns a r-differential approximation of min

set cover with running time O∗(βm), where:

β = β(r) =
1 + r

r
r

1+r

Proof. Assume first |S∗| 6 rm/(1 + r). Then step 2 of DSC1 returns an optimal solution, so
does step 3 if |S∗| > m/(1 + r).

Assume now rm/(1 + r) 6 |S∗| 6 m/(1 + r). Then the solution returned by DSC1 has been
computed at step 3 and its size is bounded above by m/(1+ r). So, denoting by S ′ this solution:

m − |S ′|

m − |S∗|
>

m
(

1 − 1
1+r

)

m
(

1 − r
1+r

) = r

12



On the other hand, the algorithm has running time:

rm
1+r
∑

i=1

(

m

i

)

+

m
∑

i= m
1+r

(

m

i

)

= 2

rm
1+r
∑

i=1

(

m

i

)

6 2m

(

m

rm/(1 + r)

)

= O∗
(

m2βm
)

where β is as claimed in the proposition’s statement.
Remark that |S ′|/|S∗| 6 1/r. In other words, algorithm DSC1 also guarantees standard

approximation ratio 1/r, but is dominated in complexity by the algorithms presented in Section 2
since 2r 6 β(r) 6 2.

Table 5 gives execution times of Algorithm DSC1 for some ratio’s values.

q 1 2 3 4 5 6 7 8
β(1/q) 2 1.89 1.755 1.649 1.569 1.507 1.458 1.417

Table 5: Execution times of DSC1 for some values of q = 1/r.

5.2 A branch-and-bound-like algorithm

We now devise a tree search based algorithm, in the spirit of Algorithm SC1 seen in Section 2,
that improves the results of Section 5.1. In order to guarantee a differential ratio, we have to
ensure that the output solution is far from m, which was not true in Algorithm SC1. This leads
to the modification of the branching step; the algorithm, called DSC2, works as follows:

• fix q ∈ Q;

• repeat steps 1 to 4 below until C is covered:

1. if there exists an item of C that belongs to a single subset S ∈ S, it adds S to the
solution;

2. if there exist two sets S,R in S such that S is included into R, S is removed without
branching;

3. if all the surviving subsets have cardinality at most 2 exactly solve min set cover;

4. determine q sets S1, . . . , Sq from S such that S1 is of maximum cardinality and
∪26i6qSi has maximum cardinality in C \S1 and perform the the following branching:
either add S1 in the solution, or do not add it and add {Si : 2 6 i 6 q}.

Formally, until step 3 is executed, Algorithm DSC2 returns:

DSC2(C,S) =

argmin

{

|S1 ∪ DSC2 (C \ S1,S \ {S1})| ,

∣

∣

∣

∣

∣

{S2, . . . , Sq} ∪ DSC2

(

C \
⋃

26i6q

Si,S \ {S1, . . . , Sq}

)∣

∣

∣

∣

∣

}

(14)

On the other hand, when maximum cardinality of the instance is at most 2, min set cover is
polynomial since it becomes an edge covering problem ([4]).

Proposition 8. For any integer q > 1, algorithm DSC2 computes an 1/q-differential approxi-
mation of min set cover with running time O∗(αd), where α is the solution of:

x4q−3 − x4q−7 − 1 = 0 (15)

13



Proof. Algorithm DSC2 obviously returns a set cover. Assume that |S| − | opt(C,S)| 6 q(|S| −
|DSC2(C,S)|) for any instance (C,S) such that |C|+|S| < D, consider some instance (C,S), where
|C|+ |S| = D, set |S| = m, fix some optimal solution S∗, and denote by S∗

1̄
an optimal solution of

the instance (C \S1,S\{S1}) and by S∗
q̄,q̄ an optimal solution of the instance (C \∪i6qSi,S\{Si :

i 6 q}).
If S1 ∈ S∗, then according to (14), we get:

m − |DSC2(C,S)| = m − 1 − |DSC2 (C \ S1,S \ {S1})| >
m − 1 −

∣

∣S∗
1̄

∣

∣

q
>

m − |S∗|

q

since instance (C \ S1,S \ {S1}) under consideration has d < D.
If, on the other hand, S1 /∈ S∗, let k 6 q − 1 be the number of subsets that belong to S∗ and

our algorithm added to the solution. Then, always according to (14):

m − |DSC2(C,S)| = m − q − |DSC2 (C \ ∪i6qSi,S \ {Si : i 6 q})| + 1

>
m − q −

∣

∣S∗
q̄,q̄

∣

∣

q
+ 1 (16)

>
m − q − |S∗| + k

q
+ 1 >

m − |S∗|

q

where inequality in (16) holds because instance (C \ ∪i6qSi,S \ {Si : i 6 q}) also has d < D.
Based upon the above, an easy induction on d establishes that the ratio claimed is true for

any value of d.
Let us now study complexity of Algorithm DSC2. Any time it branches, every set Si ∩ (C \

∪j<iSj), i 6 q contains at least 3 items (otherwise the surviving instance would be polynomial
and would met step 3). Then, | ∪i6q Si| > 3q, and the parameter of instance were all these
sets except S1 are taken is at most (m − q) + (n − 3(q − 1)) = d − 4q + 3. Consequently,
T (d) 6 T (d− 4) + T (d− 4q + 3) and αd, where α is the solution of (15) verifies this inequality.

Table 6 presents examples of running time (basis of the exponential) for Algorithm DSC2 for
some values of q (ratio achieved 1/q).

q 1 2 3 4 5 6 7 8
α 1.380 1.167 1.119 1.095 1.081 1.071 1.063 1.057

Table 6: Complexity (basis of the exponential) of DSC2 for some values of q = 1/r.

As in the case of standard approximation paradigm (Proposition 2), the following analogous
result holds here.

Proposition 9. For any integer q > 1, Algorithm DSC2 computes an 1/q-differential approxi-
mation for min set cover with running time O∗(γm), where γ is solution of:

γq − γq−1 − 1 = 0 (17)

In order to show complexity claimed in Proposition 9 just observe that each time DSC2 branches,
either 1 (if taken) or q (if dismissed) subsets are fixed. So, T (m) 6 T (m − 1) + T (m − q) that
leads to (17).

In Table 7 examples of running times are given for Algorithm DSC2 are given for some values
of q (ratio 1/q).
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q 1 2 3 4 5 6 7 8
Time 2m 1.618m 1.466m 1.380m 1.345m 1.285m 1.255m 1.232m

Table 7: Complexity of DSC2 for some values of q = 1/r.

5.3 Combining greedy and exhaustive approaches

We now propose an algorithm, called DSC3 that combines greedy and exhaustive methods in the
same spirit as in Section 2.2. Assume in what follows an exact Algorithm E that is able to solve
(exactly) min set cover with running time O∗(αm

1 αn
2 ).

1. fix: a ratio r ∈ Q (0 6 r 6 1) to be achieved, a λ < 1 and ǫ > 0;

2. compute all the combinations of at least (rλ+1− r)m subsets from S; let S1 be one of the
minimum-size covers so computed;

3. compute and store a set S∗ ⊂ S of maximum cardinality; C := C \ S∗; S := S \ {S∗};

4. repeat step 3 until the surviving set C verifies |C| 6 ne−(1−r)((1/λ)−1); S2 := S ′′ ∪ E(C);

5. output S ′ = argmin{|S1|, |S2|}.

Proposition 10. Assume that an Algorithm E exactly solves min set cover with running
time O∗(αn

1αm
2 ). Then, DSC3 computes, for any r > 0 and for any ǫ > 0, an r-differential

approximation of min set cover with complexity O∗(max{βm, αne−(1−r)(1/λ)+ǫ

1 αm
2 }), where:

β =
1

(rλ + 1 − r)rλ+1−r(r − rλ)r−rλ
< 2

Proof. Assume first |S∗| > (rλ + 1 − r)m. Then, Algorithm DSC3 is optimal. Furthermore, if
λm 6 |S∗| 6 (rλ + 1 − r)m, then S1 is a cover of size (rλ + 1 − r)m and:

m − |S1|

m − |S∗|
>

m − m(rλ + 1 − r)

m − λm
= r

Assume now λm > |S∗| and, as in the proof of Proposition 3 (Section 2.2), index the surviving
set C by the iteration of step 3 that has produced it. At each iteration k, at least |Ck−1|/|S

∗| ele-
ments are removed from Ck−1. Indeed, Ck−1 can be covered by at most |S∗| subsets and DSC3 adds
the largest one to solution S2. When k subsets have been chosen, the size of the remaining set Ck

to be covered is at most n(1− (1/|S∗|))k 6 ne−k/|S∗|. Fix k such that |Ck| < ne−(1−r)((1/λ)−1)+ǫ

and |Ck−1| > ne−(1−r)((1/λ)−1)+ǫ. Note that k 6 (1 − r)((1/λ) − 1)|S∗|.

According to our assumptions, Algorithm E runs on Ck with complexity O∗(α
|Ck |
1 αm

2 ). Putting
this together with the complexity of step 2 derives the overall complexity claimed.

In order to conclude the proof, remark that the differential ratio achieved by steps 3 and 4
is:

m − |S2|

m − |S∗|
>

m − |S∗| − (1 − r)
(

1
λ − 1

)

|S∗|

m − |S∗|
>

m −
(

r + 1
λ − r

λ

)

|S∗|

m − |S∗|

>
1 − (rλ + 1 − r)

1 − λ
= r

as claimed.
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For instance, if one wishes to attain ratio r = 1/2, one can use the (best known) exact
algorithm for min set cover, whose running time is O∗(1.236n+m) and one can fix λ = 4/5.
Then, running time of DSC3 is O∗(max(1.384m, 1.2360.535n+m)).

Once again, optimal value for λ depends on quantity m/n. Also, it is easy to see that when
ratio m/n is small enough, it is always possible to determine some λ such that DSC3 is faster
than both DSC1 and DSC2.
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