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Abstract

This article analyzes the effect of risk and risk-aversion on the long-term

equilibrium technology mix in an electricity market. It develops a model

where firms can invest in baseload plants with a fixed variable cost and peak

plants with a random variable cost, and demand for electricity varies over

time but is perfectly predictable. At equilibrium the electricity price is partly

determined by the random variable cost and the returns from the two kinds

of plants are negatively correlated. When the variable cost of the peak tech-

nology is high the return of peak plants is low but the return to baseload

plants is high. Risk-averse firms reduce the capacity of the riskiest technol-

ogy and develop the capacity of the other, compared to risk-neutral firms.

In the particular case where a risk-neutral firm invests heavily in baseload

technology and only sparely in peak capacity, a risk-averse firm would invest

less in baseload, increase peak capacity, and increase total installed capacity.
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1. introduction

The purpose of this article is to analyze the influence of firms’ risk aver-

sion on the technology mix in an electricity market if the variable cost of

a technology is random. In the electricity industry, the fundamental expla-

nation for the existence of a technology mix is the great variability of the

demand for electricity over the course of a year and the limited potential

to utilize intertemporal arbitrage to smooth these variations. To address

the time-variable nature of electricity demand, firms invest in several types

of technology; baseload technologies are more efficient for frequent produc-

tion, whereas peak technologies are employed for more sporadic production.

In addition to this well-known variability of the electricity demand curve,

electricity producers face numerous uncertainties with respect to costs of

production. In particular, the prices of fossil fuels and CO2 emissions are un-

certain. These uncertainties are likely to influence the technology mix that

is chosen to meet the variable demand, particularly if firms are risk-averse.

A canonical model of an electricity market is used to consider a situation

in which the demand curve is variable and two different technologies are avail-

able to produce electricity: a baseload technology and a peak technology. The

variable cost of the peak technology is random. It is assumed that electricity

producers anticipate the variability of the demand curve; moreover, these

producers are regarded as risk-averse. In the risk-neutral benchmark situa-

tion, these firms invest in the technology mix that minimizes the expected

cost of servicing the electricity demand. We consider how risk aversion mod-

ifies the equilibrium technology mix and investigate how this modification is

related to the cost structure and the variability of electricity demand.

2



This study demonstrates that risk-aversion modifies the technology mix in

either one of two directions: (i) the baseload capacity is increased, although

the peak and total capacity are reduced; or (ii) the baseload capacity is

reduced, but the peak and the total capacity are increased. In the latter

situation, compared with the risk-neutral benchmark, risk-averse firms over-

invest in both the risky technology and their total capacity.

The uncertainty with respect to the variable cost of the peak technology

translates into an uncertainties in the electricity prices during the fraction

of the year in which the peak technology establishes these prices. Both

technologies have risky returns. The risk faced by peak units is related to the

fraction of the year in which the peak technology is a sub-marginal source of

electricity, whereas the risk faced by baseload units is related to the fraction

of the year during which the peak technology establishes the price. Thus, the

two technologies face negatively correlated risks. In certain circumstances,

the baseload technology involves higher risk than the peak technology, and

risk-averse firms will therefore tend to decrease their quantity of baseload

capacities and increase their capacities of the risky peak technology to hedge

against the risk incurred by baseload capacities.

The influence of the cost structure and the variability of electricity de-

mand is also investigated. Among other conclusions, this study demonstrates

that over-investment in the peak technology is more likely to arise when de-

mand is less variable. This result is of particular interest if the framework

of this study is applied to considerations of environmental policy because in

these considerations, the peak technology may represent a polluting method

of generating electricity. Thus, the development of renewable intermittent
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electricity production might induce an increase in peak capacity through in-

creasing the variability of the (residual) load (Lamont, 2008). Our results

reveal that this effect could be softened if firms are risk-averse and if the

future price of CO2 emissions is uncertain. However, the environmental ben-

efit from real-time-pricing (Holland and Mansur, 2011) might be reduced if

producers are risk-averse.

The questions of whether firms are risk-averse and what the consequences

of firms’ potential risk aversion may be are issues that have received a con-

siderable attention both in the general literature and in studies of energy and

resource economics. With a complete sets of markets (Arrow and Debreu,

1954), firms’ profits are not random and whether they are risk-averse or not

does not matter. If markets are incomplete, Diamond (1967) suggests that

firms should be risk-neutral, and shareholders should use capital-asset mar-

kets to hedge their risks. However, there are several theoretical arguments

(for a review, see Banal-Estanol and Ottaviani, 2006) and certain empirical

evidence that suggests that firms are risk-averse or at least behave as if they

are risk-averse.2

Numerous authors have considered how risk aversion influence produc-

tion choices in situations that feature random demand and perfect competi-

tion (Dhrymes, 1964; McCall, 1967; Baron, 1970; Sandmo, 1971; Appelbaum

and Katz, 1986) or scenarios that involve monopolies (Baron, 1971; Leland,

1972) or oligopolies (Tessitore, 1994; Wambach, 1999; Asplund, 2002; Banal-

2For instance risk aversion can explain corporate hedging activity (Amihud and Lev,

1981; Nance et al., 1993; May, 1995), and Wolak and Kolstad (1991) have empirically

investigated how risk aversion can explain Japanese firms’ choices of coal suppliers.
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Estanol and Ottaviani, 2006). The assumption regarding the risk aversion

of firms has also been used to analyze the firms’ use of not only financial

futures and option contracts (McKinnon, 1967; Newbery and Stiglitz, 1981;

Moschini and Lapan, 1995) but also vertical integration (Hirshleifer, 1988;

Aı̈d et al., 2011).

In a situation featuring random input prices, Stewart (1978) demonstrates

that a risk-averse firm over-invests in riskless factors. Input price risks have

also been analyzed by Blair (1974) and by Okuguchi (1977), but none of these

analyses have addressed the issue of technological diversification. Recently,

Meunier (2012) considers the effect of risk aversion on choices between two

risky technologies; however, he does not consider the variability of the de-

mand but instead regards risk-aversion as the sole explanation for technolog-

ical diversification. Furthermore, he assumes the existence of an exogenous

correlation that arises endogenously in the current study.

In the electricity industry, the influence of producers’ risk-aversion on in-

vestment decisions is a central issue because electricity prices demonstrate

a high variability and because of the uncertainty that surround the devel-

opment of fossil fuel markets and environmental regulations. Neuhoff and

De Vries (2004) provide a formal analysis of the influences of risk and of

electricity producers’ risk-aversions on the producers’ investment choice with

respect to a single technology. Willems and Morbee (2010), who build on

the framework of Bessembinder and Lemmon (2002), consider the effect of

financial options on both welfare and investment decisions. They do not con-

sider the choice of technology mix but consider the incentive of a risk-averse

producer to invest in one plant. They show that the initial development of
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financial markets can reduce the incentive to invest in peak plants. They do

not consider the fact that investment in one type of plant can be used to

hedge risks associated with other types of plants.

In the presence of several risky technologies, a financial portfolio frame-

work (à la Markowitz, 1952) has been utilized by Bar-Lev and Katz (1976) to

analyze the “technology portfolio”. In particular, Bar-Lev and Katz (1976)

evaluate the mix of fossil fuels of regulated electricity utilities. 3 Roques

et al. (2008) adopt a more positive perspective and determine the efficiency

frontier (the expected return versus variance) of portfolios that are composed

of combined cycle gas turbine (CCGT) plants, coal plants and nuclear plants

for a price-taking firm that faces random electricity and gas prices. These re-

searchers consider exogenous electricity prices and do not analyze the market

equilibrium. In particular, they stress the role of the correlation between elec-

tricity and gas prices; however they had to assume this correlation, whereas

this relationship arises endogenously in our framework.

Two recent works possess similarities to the present study. Ehrenmann

and Smeers (2011) use numerical simulation of an electricity industry equilib-

rium to assess the influence of electricity producers’ risk-aversion on the total

capacity that is built and on the producers’ technology mix. They consider

several sources of uncertainty, including the design of the EU CO2 permit

trading scheme and the evolution of fossil fuel markets. Fan et al. (2010,

2011) also perform numerical simulations of the equilibrium of an electricity

3This framework has been used by several authors to evaluate national portfolios

(Humphreys and McClain, 1998; Awerbuch, 2000; Awerbuch and Berger, 2003; Jansen

et al., 2006).
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industry; they focus on the uncertainty surrounding CO2 prices and the effect

of rules for allocating free allowances. They show that risk-aversion tends

to favor investment in peak units (using gas) if permits are auctioned and

not grandfathered. Compared with these two articles, we provide a tractable

model; this model allows us to perform a formal analysis that contributes to

a better understanding of the effects that risk produces on the technological

mix and capacity of electricity producers.

The rest of the article is organized as follows: Section 2 introduces the

model for this investigation. Subsequently, Section 3 describes the equilib-

rium in the risk-neutral benchmark situation and in the case of a risk-averse

firm. Section 4 provides a generalized version of the model that incorporates

more than two technologies. Section 5 considers the normative aspects of the

model. Section 6 concludes.

2. The model

We consider a simple electricity system. The demand side is represented

by a variable inelastic demand with a year’s duration normalized to a value

of 1. Electricity demand x is assumed to be distributed in [0, X] with a

cumulative distribution function F (x). The function F is positive, increasing

and differentiable, and its derivative F ′ = f is the distribution of the load;

in other words, f(x) represents the duration of the year during which the

demand for electricity is x. The “load duration curve” is the curve F−1(1−t).4

4The load duration curve is obtained by ranking hourly demands in decreasing order,

so that for each date t the corresponding quantity is such that the demand is larger than

this quantity during t.
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The typical shape of a load duration curve is depicted in Figure 1(b).

The real time demand for electricity is x if the price is below v and 0

otherwise, v is the “value of the lost load” (VoLL). The instantaneous surplus

when the demand is x and a quantity y < x (resp. y > x) of electricity is

served is vy (resp. vx) in $ per time. The total surplus is the sum over the

year of the flow of instantaneous surplus.

There are two technologies to produce electricity; these are labeled t = b

and t = p to represent the baseload and peak technologies. As a concrete

illustration we have in mind nuclear for the baseload technology and CCGT

for peak units. Each technology t is characterized by a variable cost ct ($

per W yr) and a capacity cost It ($ per W ). The variable cost of the peak

technology is assumed to be random at the time of investment. We assume

that the variations of cp are sufficiently small to ensure that v > cp > cb

for all realizations. Finally, the expected value of cp is c̄p and its standard

deviation σ.

The baseload technology b provides less costly production per unit of

electricity throughout the year than the peak technology p, but the baseload

technology is more costly than the peak technology for production over a

short period:

cb + Ib < c̄p + Ip, and Ip < Ib

$/W.yr× 1 yr + $/W

The ratio r = (Ib− Ip)/(c̄p− cb) is the portion of a year such that technology

b is more efficient than p for production over a longer period than r. The

ratios rp = Ip/(v − c̄p) and rb = Ib/(v − cb) are the minimal duration of

production with the peak and baseload technologies, respectively, such that
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the aggregate expected cost from each technology is lower than the consumer

surplus. The duration rp is assumed to be less than one, i.e. v > c̄p+ Ip, and

lower than r, rp < r; this last assumption ensures that technology p is used

at equilibrium; it is equivalent to the statements that rp < rb and rb < r.

These features are illustrated in figure 1(a).

It is assumed that there is a set I of n firms. Individual capacities of firm

i ∈ I for each technology are denoted by ki
b and ki

p and its aggregate capacity

is ki = ki
b + ki

p. Thus, the aggregate quantities of the capacities of all firms

for each technology are: kt =
∑

i k
i
t for t = b, p and k = kb + kp.

Once capacities are fixed, in the short term, the price is set at the marginal

cost of the last unit that is utilized when all demand is satisfied, and at v in

case of “rationing”, i.e., when x > k. If demand is less than kb, the wholesale

price is cb, and baseload capacities produce. When demand is greater than

kb and smaller than k the price is cp, baseload capacities are fully utilized

and the quantity x − kb that remains is produced by peak capacities. For

higher levels of the demand the price is v; because only k units of electricity

are consumed, a portion x− k of the demand is not satisfied.

The profit of a firm i ∈ I may be expressed as follows:

πi =

∫ k

kb

(cp − cb)k
i
bf(x) dx+

∫ X

k

[

(v − cp)k
i
p + (v − cb)k

i
b

]

f(x)dx (1)

−Ibk
i
b − Ipk

i
p.

The portion of the year during which rationing occurs is T = 1−F (k) and

the portion of the year during which the baseload capacity is fully utilized is

Tb = 1− F (kb). With these notations, the profit of a firm may be rewritten

9



as a function of its aggregate capacity and baseload capacity:

πi(ki
b, k

i, cp) = [T (v − cp)− Ip]k
i + [Tb(cp − cb)− (Ib − Ip)]k

i
b. (2)

For i ∈ I, the risk-aversion of firm i is denoted by λi, a positive real

number. The objective function of firm i is

U i = E[πi]−
λi

2
var(πi). (3)

Firms are assumed to be price takers, they consider the distribution of elec-

tricity prices to be given and they choose their capacity in a manner that

maximizes their objective. The risk-aversion of firms is related to the un-

certainty of the variable cost cp but not to the variability in the demand for

electricity which is perfectly anticipated.

The essential feature of the framework is that the variable cost cp deter-

mines the price of electricity during a fraction of the year. Consequently, with

endogenous electricity prices, the revenues from peak plants and baseload

plants are negatively correlated: when cp is large, the former is low and the

latter is large. Risk-averse firms adjust their technology mix in order to re-

duce the variation of their profit. The influence of the variable cost cp on the

profit of a firm determines in which type of plant the firm invest to smooth

its profit’s variation.

The effect on a firm’s profit of an increase of the variable cost cp depends

on the quantities of each type of plants and on the number of hours the peak

technology is marginal and inframarginal. The overall effect of an increase of

cp is dπ/dcp = −Tki + Tbk
i
b, which is either positive or negative; depending

on this sign, a risk-averse firm will tend to distort its mix toward the peak

or the baseload technology to hedge its risk.
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3. Risk aversion and equilibrium.

Before we examine the effect of risk aversion, we consider the risk-neutral

benchmark situation.

3.1. The risk-neutral case

If a firm is risk-neutral, i.e. λi = 0, then the equilibrium technology mix

will generate a null expected profit for the firm (because of the linearity of

the framework). From equation (2), it implies the following relationships for

the risk-neutral duration T ∗ and T ∗

b :

(v − c̄p)T
∗ = Ip ⇔ T ∗ = rp; (4)

(c̄p − cb)T
∗

b = Ib − Ip ⇔ T ∗

b = r. (5)

The first of these two relationships states the typical association that relates

the value of lost load v and the loss of load probability T to the variable

and capacity costs of the peak technology. The second of these equations

indicates the technology mix that minimizes the expected production cost.

From these equations, an expression for the risk-free technology mix is:

k∗ = F−1(1− rp), k
∗

b = F−1(1− r) (6)

In Figure 1, the risk-neutral benchmark scenario is depicted. The optimal

mix is obtained from the load duration curve, F−1(1− t), and the durations

r and rp.

The quantities k∗ and k∗

b correspond to the technology mix chosen in

the absence of risk aversion or in the absence of risk; in these cases, they

correspond to the welfare-maximizing investment. In Section 4, we further

elaborate on the normative properties of this technology mix.
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Duration
Ip

Ib

€�W
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Ib+cbt

v.t

(a) Cost and production durations

1r=Tb
*rp=T*

Duration

X
k*

kb
*

W

rationning

(b) Load curve and equilibrium in-

vestment

Figure 1: Cost structure, load curve (F−1(1− t)) and equilibrium investment in the risk-

neutral case

3.2. Risk aversion

Consider the situation in which all firms are risk-averse. Each firm i ∈ I

maximizes its objective function, expressed by equation (3). Given our choice

of variables, the firm will choose its total capacity as if the entire capacity

was based on the peak technology, and the firm will determine the share of

baseload capacity by considering the effects of substituting a peak unit for

a baseload unit. At an interior solution, the marginal increase in expected

profit is equalized with the marginal increase in weighted variance for each

technology.

Lemma 1. At equilibrium, both technologies are used and the following equa-

tions are satisfied

(v − c̄p)T − Ip = Λσ2T (Tk − Tbkb) (7)

(c̄p − cb)Tb − (Ib − Ip) = Λσ2Tb (Tbkb − Tk) (8)
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in which

Λ =

[

∑

i∈I

1

λi

]

−1

. (9)

This lemma allows for a representative firm with risk aversion Λ and

capacities k and kb to be considered through the analysis of equations (7)

and (8).5

Compared to the risk-neutral benchmark, described by (4) and (5), a

risk-averse firm has an incentive to soften the variations of its profit. This

incentive is reflected in the right-hand sides of equations (7) and (8) which

are null in the risk-neutral case. When cp is large the return from peak

plants is low and the return from baseload plants is large. The short-term

revenue is either increasing or decreasing with respect to cp. Depending on

this monotonicity investing in a peak plant will tend to either increase or

reduce the variability of the firm’s profit. Overall, the effect on the variance

of a firm’s profit of adding a peak plant or substituting a peak plant to a

baseload plant have opposite sign. The former is T (Tki − T i
bk

i
b) and the

latter Tb(Tbk
i
b − T iki). This feature implies that the comparison with the

risk-neutral benchmark is clear-cut.

Proposition 1. There is at least one equilibrium in the case of risk aversion.

Each equilibrium with risk aversion is of one of the following two types:

Type B: the total capacity is lower than k∗, the baseload capacity is larger than

k∗

b , and the peak capacity is lower than k∗

p.

5At equilibrium, each firm has a degree of freedom with respect to its choices. Each

firm is indifferent with respect to its total capacity but not to its technological mix.
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Type P: the total capacity is larger than k∗, the baseload capacity is lower than

k∗

b , and the peak capacity is larger than k∗

p.

The proof is presented in Appendix B.6 There are only two possible

distortions of the technology mix; the effect on the total capacity is similar

to the effect on the quantity of peak plants because those plants are the

marginal ones. It is possible to specify conditions for the parameters of a

particular scenario that ensures that a Type B or a Type P equilibrium will

exist.

Proposition 2. If T ∗k∗ > T ∗

b k
∗

b , then there is one equilibrium of Type B; if

T ∗k∗ < T ∗

b k
∗

b , then there is one equilibrium of Type P.

The proof is presented in Appendix C. The difference T ∗k∗ − T ∗

b k
∗

b cor-

responds to the risk exposure of the firm in the risk-neutral benchmark. It

could be rewritten as the difference:

T ∗k∗
− T ∗

b k
∗

b = T ∗(k∗
− k∗

b )− (T ∗

b − T ∗)k∗

b

The quantity T ∗(k∗ − k∗

b ) is the quantity of electricity that is sold at price

v and costs cp, and (T ∗

b − T ∗)k∗

b is the quantity of electricity from baseload

capacity that is sold at price cp. The difference between the two determines

whether the profit of a firm with the risk-neutral portfolio is positively cor-

related to the marginal cost cp. And this sign, in turn, determines in which

direction the firm should modify its mix to smooth the variations of its profit.

6Because of market incompleteness there might be several equilibria, and some restric-

tions on the load duration curve would ensure uniqueness of the equilibrium.
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If T ∗k∗−T ∗

b k
∗

b is positive (resp. negative), the profit of the firm is increasing

(resp. decreasing) with respect to cp and developing its baseload capacity

(resp. peak capacity) smooths its profit variations.

In Figure 2, an equilibrium of Type P is depicted. The difference T ∗k∗ −

T ∗

b k
∗

b is the difference between the two areas below the load duration curve, it

is negative for the case depicted. From equations (7) and (8), the risk-averse

equilibrium is similar to a risk-neutral equilibrium with an adjusted peak

variable cost. The equilibrium “risk premium” added to the variable cost is

equal to the difference Λσ2(Tk − Tbkb).
7 The effect of risk aversion could be

visualized by rotating the peak line Ip + cpt; on Figure 2(a), the rotation is

clockwise. The corresponding shift of capacity is indicated in Figure 2(b).

In Figure 2, relative to the risk-neutral situation, risk-averse firms will

tend to display lower shares of the baseload technology but greater total ca-

pacity. In this situation, the expected return from peak capacity is negative,

whereas both the return from baseload capacity and the overall expected

profit are strictly positive.

7This risk premium is not common to all firms, firm i premium is λiσ2(Tki − Tbk
i
b).
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wise rotation of the peak plant cost.
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lines) compared to the risk-neutral

benchmark (dotted lines).

Figure 2: A Type P equilibrium. This equilibrium involves a larger total capacity and a

lower baseload capacity than the equilibrium in the risk-neutral benchmark scenario.

3.3. The influence of the cost structure

The answer to whether an equilibrium with risk-averse firms will be of

Type B or Type P relates to the cost structure and the shape of the load

duration curve. We begin this facet of the analysis with a discussion of the

influence of the cost structure and subsequently consider the influence of the

load duration curve. The Voll and the four cost parameters determine the

two durations r and rp that will be used to conduct the discussion.

From Proposition 2, the existence of an equilibrium of Type B or Type P

is related to the sign of the difference T ∗k∗−T ∗

b k
∗

b . The risk that is associated

with a technology is the product of two factors: the duration of the full use of

this technology, which is either r or rp, and the corresponding capacity. The

latter is decreasing with respect to the former so that the product of the two

is not monotonic. For any r there is a value of the parameter rp such that
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the difference T ∗k∗ − T ∗

b k
∗

b is strictly negative; moreover, if r is sufficiently

large there is another value such that the aforementioned difference is strictly

positive. By constraining the shape of the distribution F , it is possible to

obtain a stronger result.

Corollary 1. If tF−1(1 − t) is strictly concave, then for any r there is a

threshold r̃p such that there is a Type B (resp. Type P) equilibrium if rp < r̃p

(resp. rp > r̃p).

Proof. If tF−1(1 − t) is strictly concave, there is a unique tmax ∈ (0, 1)

that maximizes tF−1(1 − t) (because this function is null at 0 and 1). For

r ≤ tmax, rpF
−1(1 − rp) < rF−1(1 − r) for all rp ∈ [0, r), and r̃p = r.

For r > tmax there is r̃p < r such that r̃pF
−1(1 − r̃p) = rF−1(1 − r) and

rpF
−1(1− rp) < rF−1(1− r) ⇔ rp < r̃p.

In Corollary 1, the duration r is maintained at a fixed level, and varia-

tions of the duration rp are considered. Figure 3(b) graphically illustrates

this corollary. Three extreme situations are worth considering: the two tech-

nologies could be very different (large r and small rp) or relatively similar

with both technologies being used for baseload supply (large r and rp) or to

meet peak demand (small r and rp).

If the two technologies are very different (r is large and rp is small), there

is a large investment in the peak technology, and the variable cost of this

technology establishes the price of electricity for a large portion of the year;

however firms are not frequently at full capacity (rp is small). Consequently,

the risk that is faced by technology p is small, while the risk that is faced by
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the baseload technology is large. As a result, relative to the benchmark case

of risk-neutrality, the overall investment of these firms will be increased, and

the technological mix will be adjusted towards the peak technology.

If both technologies are similar and peak-oriented, p is effectively a peak

technology and b could be described as a midload one. There is a large invest-

ment in this technology and a small investment in the peak technology. The

technology b faces a large risk and risk-averse firms increase their investment

in the peak technology to hedge this risk. Compared to the previous case,

the large risk associated with technology b has a different explanation. In the

previous case, this risk was due to a large duration of full use with a price

at cp; by contrast, in the current case it comes from the large investment in

this technology.

If both technologies have similar cost structure and both r and rp are close

to 1, technology p is a midload technology and the two technological options

are substitutable for production throughout the course of the year. In this

situation, there is a small investment in technology p, it is frequently fully

utilized and is rarely infra-marginal. In this scenario, technology p is highly

risky and risk-averse firms will therefore attempt to reduce their risks by

decreasing their quantities of this technology and increasing their quantities

of the baseload technology.

3.4. The influence of the variability of the load

It has been shown that risk-aversion tends to modify the technology mix

in either one of two directions. This is related to the variability of the load.

A linear load duration curve is used on Figure 3(a) to consider the influence
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of the variability of the load on the equilibrium type.8

rp r
Duration

k*

kb
*

Capacity

u=0.4

u=0.9

(a) Two load duration curves and

the corresponding technological

mixes

rr
�

p

Duration

rΦHrL

Energy

u=0.4

u=0.9

(b) The marginal risk from invest-

ment T.k with the two load dura-

tion curves, and the threshold r̃p

of Corollary 1

Figure 3: The effect of the load duration curve on the marginal risk from investment, with

a linear load duration curve X̄[(1 + u)/2− u.t].

In Figure 3(b), two load duration curves with different variability are

depicted. With a more variable load, the quantity of total capacity increases,

and the quantity of baseload capacity decreases. With a highly variable load,

as represented by the thick line in Figure 3, the riskiest component of firms’

profits are obtained from their total capacities rather than from their baseload

capacities; in these cases, a Type B equilibrium exists, and firms will tend to

increase their baseload capacities and reduce their total capacities.

8The demand x is homogeneously distributed over [X̄(1 − u)/2, X̄(1 + u)/2], the cor-

responding load duration curve is X̄[(1+ u)/2− u.t]. The quantity X̄ represents the total

quantity of electricity that is demanded over the course of one year, and u represents the

variability of the load.

19



With a relatively stable load, as represented by the thin line in Figure 3,

firms will possess small quantities of peak capacity and a Type P equilibrium

will exist. In these situations, the return from peak units will be negatively

correlated with the overall profit of the firm, and the firm will tend to increase

its investment in peak units to hedge the risk from the baseload production,

which constitutes its main source of profit.

4. Welfare

In the above analysis, we determined how risk and risk aversion modify

the technology mix. The benchmark used was the risk-neutral situation that

also described the absence of risk. However, it is also interesting to compare

the long-run equilibrium with a welfare maximizing mix that would account

for risk-aversion.

4.1. Welfare function and 1st best technology mix

For a realization cp of the variable cost of the peak technology, the con-

sumer surplus is the sum of the difference between the gross surplus and the

price:

CS(k, kb, cp) =

∫ kb

0

(v − cb)xf(x)dx+

∫ k

kb

(v − cp)xf(x)dx (10)

If consumers are risk-neutral, their expected surplus is CS(k, kb, c̄p). Welfare

is defined as the sum of the expected consumer surplus and the firms’ utility:

W (k,kb) = CS(k, kb, c̄p) +
∑

i

U(λi, ki
b, k

i) (11)

With this welfare function, it is implicitly assumed that transfers between

consumers and firms are feasible ex-ante, when cp is unknown, and not ex-

post, when cp is known.
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If transfers could be implemented ex-post and made conditional on the

realization of the marginal cost cp, a social planner would ensure that firms

earns a constant profit to cancel out the cost due to risk-aversion.9 In such

a case, the first-best optimal investment would be equal to the risk-neutral

equilibrium investment, and it could be decentralized via a complete set of

markets. Such a complete set of markets would associate a price for electricity

for each realization of cp and each hour of the year (i.e., each demand level

x in our framework).

4.2. Constrained optimum

From the equation (11), the second best optimal investment schedule

would satisfy:

(v − c̄)T − Ip = λiσ2T (Tki
− Tbk

i
b) +

∑

j∈I

λjσ2(Tkj
− Tbk

j
b)T

′kj

(12)

(c̄− cb)Tb − (Ib − Ip) = λiσ2Tb(Tbk
i
b − Tki) +

∑

j∈I

λjσ2(Tbk
j
b − Tkj)T ′

bk
j
b

(13)

Compared with the risk-neutral (and first best) investment, there are ad-

ditional terms related to risk aversion. The investment of a firm does not

only directly affect its own risk but also indirectly affects the risk of all firms

(including itself) via the change of the durations T and Tb.

9If a transfers scheme ti(cp) could be implemented, then, for a variable cost cp, the

profit of firm i would be πi + ti(cp) and consumers surplus CS −
∑

i t
i(cp). The regulator

could set ti(cp) = π̄i − πi to stabilize the firm revenue and strictly increase the welfare.
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Because of market incompleteness, there is an externality associated with

each firm investment. The sign of the externality associated with the peak

capacity of a firm is opposite to the sign of the externality associated with

the baseload capacity of this firm. At the market equilibrium, these signs are

related to the equilibrium type. For instance, if the equilibrium is of Type

B, an increase of the total capacity of a firm and a decrease of its baseload

capacity would reduce the risk faced by all firms. The reverse holds for an

equilibrium of Type P.

In order to compare the equilibrium portfolio with the second best, a

representative firm could be considered so that the second best technology

mix satisfies the two equations:

(v − c̄)T − Ip = Λσ2(Tk − Tbkb)(T + T ′k) (14)

(c̄− cb)Tb − (Ib − Ip) = Λσ2(Tbkb − Tk)(Tb + T ′

bkb). (15)

The comparison between the market equilibrium and the second best is not

straightforward because of the substitutability between the two types of ca-

pacity. Even though at an equilibrium of Type B an increase of k or a de-

crease of kb would increase welfare,10 it is not possible to conclude that there

is an under-investment in total capacity and an over-investment in baseload

capacity. This is so because an increase of the total capacity can increase the

marginal benefit from a baseload capacity via its effect on the risk-exposure

of firms. In such a case there might be an under-investment in both types of

technology.

10At an equilibrium of Type B, the derivative of welfare w.r.t. k (resp. kb) is −(Tk −

Tbkb)T
′k (resp. (Tk − Tbkb)T

′

bkb) which is positive (resp.negative).
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Formally this issue is related to the sign of the cross derivative of welfare

with respect to k and kb, which is ∂2W/∂kb∂k = Λσ2(T + T ′k)(T + T ′kb).

The sign of this expression varies with capacities; if both quantities are close

(so that kb is a large share of k) it is positive which would ensure that

the comparison is intuitive. However, if the two quantities are sufficiently

different it could be negative and the comparison cumbersome. This issue

would require further work. However, if the risk-aversion of firms or the risk

are sufficiently small, the cross effect would be dominated by the direct effect

and the comparison between the market equilibrium and the second best mix

would be similar than the comparison between the market equilibrium and

the first best mix.11

5. A generalization to a situation with more than two technologies

In this section, a broader version of the model is developed to understand

the generalizability of results that have previously been described.

In this broader version of the model, there are m technologies labeled

j = 1..m, which are ordered in terms of increasing variable cost cj and

decreasing capacity cost Ij:

0 < c1 < c2 < ... < cm < v and 0 < Im < Im−1 < ... < I1

The variable costs are assumed to be independently distributed random vari-

ables with mean c̄j and standard variation σj. The risks are assumed to be

11Note that the comparison between the first best (i.e. risk-neutral) mix and the 2nd

best mix is ambiguous because the signs of T + T ′k and Tb + T ′

bkb vary with k and kb.

23



sufficiently small such that the merit order is never modified. In accordance

with the two-technology framework, the duration rj is defined as:

rm =
Im

v − c̄m
and rj =

Ij − Ij+1

c̄j+1 − c̄j
for j ≤ m− 1

Moreover, we assume that 0 < rm < rm−1 < ... < r1 < 1 to ensure that all

technologies are used.

We consider a representative firm with risk aversion Λ. This firm’s capac-

ity of technology j is kj, and we use Kj to denote the sum of the capacities

of technologies lower than j, that is

Kj =

j
∑

l=1

kl, and K0 = 0

The price of electricity is the variable cost cj if Kj−1 ≤ x < Kj and the price

is v in case of rationing. Therefore, the price of electricity is cj during a

portion F (Kj)−F (Kj−1) of the year and v during the remaining 1−F (Kn)

of the year. We use Tj to denote the portion of the year during which the

price is strictly above cj: Tj = 1 − F (Kj). The profit of the representative

firm may then be expressed as follows:

Π(k, c) = [Tn(v − cn)− In]Kn +
m−1
∑

j=1

[Tj(cj+1 − cj)− (Ij − Ij+1)]Kj. (16)

In the risk-neutral benchmark situation, the values of Tj are equal to the

ratios rj for j = 1..m. The risk-averse firm has an objective function that is

similar to (3). The variance of this firm’s profit may be expressed as follows:

var(Π) =
m
∑

j=2

σ2
j (TjKj − Tj−1Kj−1)

2 + σ2
1T1K

2
1 . (17)
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At equilibrium, the following first-order conditions are satisfied:

Tm(v − c̄m)− Im = ΛTmσ
2
m (TmKm − Tm−1Km−1) (18)

Tj(c̄j+1 − c̄j)− (Ij − Ij+1) = ΛTj

[

σ2
j+1(TjKj − Tj+1Kj+1)

+σ2
j (TjKj − Tj−1Kj−1)

]

(19)

T1(c̄2 − c̄1)− (I1 − I2) = ΛT1

[

σ2
2(T1K1 − T2K2) + σ2

1T1K1

]

. (20)

5.1. If only one technology is risky

If l > 1 is the sole risky technology, then the right-hand sides of the above

first-order conditions are null for all j except for l and l − 1, and for these

two technologies the first-order conditions are:

Tl(cl+1 − c̄l)− (Il − Il+1) = ΛTlσ
2
l (TlKl − Tl−1Kl−1)

Tl−1(c̄l − cl−1)− (Il−1 − Il) = ΛTl−1σ
2
l (Tl−1Kl−1 − TlKl)

These two equations are similar to the first-order conditions (7) and (8) in

the two technology framework with the VoLL v replaced by the variable cost

of technology l + 1. Thus, the two aggregate capacities Kl and Kl−1 are

the only capacities modified by the introduction of risk aversion. The two

technology case can then be applied to understand how the mix is distorted.

If we further assume that the two technologies l and l− 1 are sufficiently

similar to ensure that rl and rl−1 are close to each other, then we can deduce

from the previous analysis that there will be an over-investment in the risky

technology if it is a peak technology and that there will otherwise be an

under-investment in this technology.
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5.2. If several technologies are risky

If several technologies are risky, the effect of risk aversion is more difficult

to assess. Indeed, if the risky technologies are “isolated”, that is, if technology

l is risky but technologies l − 1 and l + 1 are not risky, then there will be

local distortions of the technology mix that could be analyzed in isolation.

If all the available technologies except for the baseload technology are

risky, then the sum of the right-hand sides of equations (18), (19) and (20)

will be null; thus, except for a single specific case, the introduction of risk

aversion into the situation causes at least one of the Kj to increase and at

least one Kj to decrease.

Furthermore, if the technologies, i.e. the rj, are sufficiently close to each

other, then it is possible to develop a notion of the effect of risk aversion on

the two extreme technologies. In this situation, it is likely that the right-

hand side of equation (18) will be negative and that the right hand side of

equation (20) will be positive; this result would imply that the introduction of

risk aversion into the scenario would produce an increase in the total capacity

and a reduction in the baseload capacity.

6. Conclusion

In an electricity market, the technology mix is fundamentally driven by

the variability of the load. In this article, we have investigated the effect of

the risk aversion of firms on these firms’ technology mixes when the cost of

a technology is random.

In the model that was developed for this investigation, two technologies,

a baseload technology and a peak technology, were assumed to be available

26



to satisfy a variable demand for electricity. The variable cost of the peak

technology was assumed to be random. In the presence of risk aversion,

the total capacity may be either smaller or larger than the total capacity

in the risk-neutral benchmark case. In the latter situation, the quantity of

baseload capacity is lower and the quantity of peak capacity is larger with risk

aversion than without. In this case firms tend to over-invest in the risky peak

technology to hedge the risks associated with the baseload technology. These

risks originate from the peak variable costs because those costs determine the

electricity prices and the baseload short-term revenue.

This work clarifieq the effects of risk aversion on firms’ investment deci-

sions and hels to elucidate the mechanisms underlying these decisions. This

study contributes to a greater understanding of how uncertainties surround-

ing fossil fuel prices impact the investment decisions of electricity producers.

For instance the uncertainty surrounding gas prices has consequences for gas

plants but also for other technologies with lower variable costs (e.g. nuclear,

coal, renewable). Because the variable cost of a technology determines the

short-term rent of technologies with lower variable costs, uncertainty only

propagates down the merit order.

Moreover, this investigation might also be applicable to an analysis of the

ways in which electricity producers may be affected by certain environmental

regulations, such as the uncertainty surrounding the future regulation of

greenhouse gas emissions. For instance, if the baseload technology is a CO2-

free process, the analysis of this study could demonstrate how the uncertainty

surrounding the CO2 price could lead to a reduction of investment in the clean

baseload technology because of the risks that are associated with the CO2-
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emitting technology. This putative environmentally detrimental distortion

would be most likely to occur in situations that involve the least variable

loads.
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Appendix A. Proof of Lemma

Consider that an equilibrium exists.

• If technology b is not used, then, Tb = 1 and the derivative of the

objective of firm i, with respect to ki
b, would be (c̄p − cb) − (Ib − Ip) +

λi

T
ki

which is strictly positive; therefore, firm i would invest in technology b.
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• If technology p is not used, then k = kb and T = Tb, the profits of

the firms would not be random and the quantity kb would be such that

(v− cb)Tb = Ib, and the effect of a peak unit on the objective function would

be (v − c̄p)
Ib

v−cb
− Ip which is strictly positive, because rp > r. Hence, firm i

would invest in peak units.

Therefore, both technologies are used at equilibrium.

Then, with the expression of profit (2), the objective function (3) of a

firm is

U i = [T (v− c̄p)− Ip]k
i+[Tb(c̄p− cb)− (Ib− Ip)]k

i
b−

λi

2
σ2(Tki

−Tbk
i
b)

2 (A.1)

This function is maximized for positive and finite quantities if and only if

(v− c̄p)−Ip/T = −(c̄p−cb)−(Ib−Ip)/Tb. Therefore, this equality is satisfied

and firms choose their capacities so that ki > ki
b ≥ 0 and the following two

first order conditions are satisfied:

(v − c̄p)T − Ip = λiσ2T
(

Tki
− Tbk

i
b

)

(A.2)

(c̄p − cb)Tb − (Ib − Ip) = λiσ2Tb

(

Tbk
i
b − Tki

)

. (A.3)

Then, dividing all sides by λi and summing over i ∈ I one gets that the

aggregate quantities of capacity are the solution of the two equations (7) and

(8) with the expression of Λ given by (9).

Appendix B. Proof of Proposition 1

Existence of an equilibrium

We show that there is k and kb with k > kb > 0 such that (7) and (8) are

satisfied. Then, if these quantities exist, there are individual quantities ki
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and ki
b that maximize firm i objective for each i ∈ I and such that

∑

i k
i
t = kt,

for instance ki = Λ/λik and ki
b = Λ/λikb (but they are not unique).

From equations (7) and (8), we will use the fact that the risk-averse

equilibrium is identical to a risk-neutral equilibrium with a peak variable

cost c̄p +Λσ2(Tk−Tbkb). Graphically, on Figure 2, we will rotate the line of

the cost of the peak technology until the premium is equal to Λσ2(Tk−Tbkb).

Let us denote by k(ρ), kb(ρ), T (ρ) and Tb(ρ) the risk-neutral equilibrium

quantities and durations for a variable cost c̄p+ρ. These are the solutions of

T (ρ) = Ip
v−(c̄p+ρ)

, Tb(ρ) =
Ib−Ip

c̄p+ρ−cb
, k = F−1(1− T ) and kb = F−1(1− Tb)

for ρ between ρmin = (Ib+ cb)− (Ip+ c̄p) and ρmax = (v− c̄p)+ Ip/rb, at ρmin

(resp. ρmax) the peak (resp. base) technology is the sole technology used.

Finally, let us define

Ψ(ρ) = T (ρ)k(ρ)− Tb(ρ)kb(ρ). (B.1)

This function is continuous. For ρ = ρmin it is strictly positive because

kb(ρmin) = 0, and for ρ = ρmax it is strictly negative because kp(ρmax) = 0.

Consequently, there is at least one solution to ρ = Ψ(ρ). For any such

solution, the corresponding quantities k(ρ) and kb(ρ) describe an equilibrium.

Type of equilibrium

At an equilibrium the difference Tk − Tbkb is either positive or negative.

Let us show that in the former case the equilibrium is of Type B, and that

in the latter case it is of Type P.

• If at the equilibrium Tk − Tbkb > 0:

34



- (v − c̄p) − Ip/T > 0 by (7), so T > T ∗

p and the total quantity is lower

than the risk-neutral total quantity.

- (c̄p − cb) − (Ib − Ip)/Tb < 0 by (8), so Tb < T ∗

b and the quantity of

baseload capacity is lower than in the risk-neutral benchmark.

- The quantity of peak capacity is k−kb, from the two previous compar-

isons it is lower than the risk-neutral quantity.

• If, at the equilibrium Tk − Tbkb < 0:

- (v − c̄p)− Ip/T < 0 by (7), so T < T ∗

p and the total quantity is larger

than the risk-neutral total quantity.

- (c̄p − cb) − (Ib − Ip)/Tb > 0 by (8), so Tb > T ∗

b and the quantity of

baseload capacity is larger than in the risk-neutral benchmark.

- The quantity of peak capacity is k−kb, from the two previous compar-

isons it is larger than the risk-neutral quantity.

Appendix C. Proof of proposition 2

We use the function Ψ defined by (B.1) to establish the result. The

risk-neutral situation corresponds to ρ = 0, and

Ψ(0) = T ∗k∗
− T ∗

b k
∗

b = rpF
−1(1− rp)− rF−1(1− r).

If rpF
−1(1 − rp) − rF−1(1 − r) > 0 then Ψ(0) > 0 and, because Ψ(ρmax)

is negative, there is a solution to the equation ρ = Ψ(ρ) in (0, ρmax). Such

a solution corresponds to an equilibrium of Type B because Tk − Tbkb =

Ψ(ρ) = ρ > 0. A similar procedure could be performed for rpF
−1(1 − rp) −

rF−1(1− r) < 0.
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