
HAL Id: hal-00906932
https://hal.science/hal-00906932v1

Preprint submitted on 20 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple criteria sorting with a set of additive value
functions

Salvatore Greco, Vincent Mousseau, Roman Slowinski

To cite this version:
Salvatore Greco, Vincent Mousseau, Roman Slowinski. Multiple criteria sorting with a set of additive
value functions. 2008. �hal-00906932�

https://hal.science/hal-00906932v1
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision

CNRS UMR 7024

CAHIER DU LAMSADE

282

Décembre 2008

Multiple criteria sorting with a set of additive value

functions

S. Greco, V. Mousseau, R. Slowinski

Multiple criteria sorting
with a set of additive value functions

Salvatore Greco1, Vincent Mousseau2, Roman S lowiński3

Abstract

We present a new multiple criteria sorting method that aims at assigning actions eval-
uated on multiple criteria to p pre-defined ordered classes. The preference information
supplied by the decision maker (DM) is a set of assignment examples concerning reference
actions. Each assignment example specifies a desired assignment for a reference action
to one or several contiguous classes. The assignment examples used to build a preference
model based on a set of general additive compatible value functions. For each compatible
value function one can associate a set of p−1 thresholds on the value function separating
consecutive classes. For each action a, the method computes two kinds of assignments to
classes, concordant with the DM’s preference model. The necessary assignment specifies
the range of classes to which the action can be assigned considering all compatible value
functions simultaneously. The possible assignment specifies, in turn, the range of classes
to which the action can be assigned considering any compatible value functions individ-
ually. The compatible value functions and the necessary and possible assignments are
computed through the resolution of linear programs. Based on the concepts of necessary
and possible assignments, an interactive methodology is proposed, and illustrated on a
real world example

Keywords: Multiple criteria sorting, Additive value function, Disaggregation-aggregation
procedure.

1Faculty of Economics, University of Catania, Corso Italia, 55, 95129 Catania, Italy, e-mail: salgreco@mbox.unict.it
2LGI, Ecole Centrale Paris, Grande Voie des Vignes, 92 295 Châtenay Malabry France, e-mail: vin-

cent.mousseau@ecp.fr
3Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, and Systems Research Institute,

Polish Academy of Sciences, 01-447 Warsaw, Poland, e-mail: roman.slowinski@cs.put.poznan.pl

i

Tri multicritère fondé sur un ensemble de fonctions de
valeurs additives

Résumé

Nous présentons une nouvelle méthode de tri multicritère visant à affecter des actions
évaluées sur différents critères à p classes pre-définies et ordonnées. L’information préférentielle
fournie par le décideur (DM) est un ensemble d’exemple d’affectation correspondant à
un sous-ensemble d’actions (appelées actions de référence) relativement bien connues du
DM. Chaque exemple d’affectation spécifie l’affectation souhaitée (une classe ou un in-
tervalle de classes) pour l’action de référence. Les exemples d’affectations sont utilisés
pour bâtir un modèle de préférence du DM. Dans notre cas, le modèle de préférence
sous-jacent est l’ensemble de fonctions de valeur additives compatible avec les exemples
d’affectation. pour chaque fonction de valeur compatible, il est possible d’associer p− 1
seuils séparant les classes consécutives sur l’échelle de cette fonction de valeur. Pour
chaque action a, la méthode calcule une affectation possible et une affectation nécessaire.
L’affectation nécessaire spécifie l’intervalle de classes auxquelles l’action peut être af-
fectée pour toute fonction de valeur compatible tandis que l’affectation possible spécifie
l’intervalle de classes auxquelles l’action peut être affectée pour au moins une fonction de
valeur compatible. Le calcul de ces affections est effectué par résolution de programmes
linéaires.

Cette méthode est conçue pour être utilisées interactivement, c’est-à-dire que le décideur
peut fournir progressivement des exemple d’affectation. La méthode permet également
d’aider le DM lorsqu’il fournit un ensemble d’exemples d’affectation qu’il n’est pas pos-
sible de représenter par une fonction de valeur additive. De plus, le DM peut spécifier
des niveaux de confiance qualitatifs (“certain”, “sûr”, “assez sûr”) pour les exemples
d’affectation. Dans ce cas, les affectations possibles et nécessaires s’expriment comme des
intervalles de classes correspondant aux niveaux de confiance.

Mots-clés: Tri multicritère, Fonction de valeur additive value, Procédure d’agrégation
désagrégation.

ii

1 Introduction

Real-world decision problems can be represented by multiple criteria models in which each point
of view from which actions under consideration should be analyzed, is formulated by a criterion
function. When using such multicriteria approach to decision modeling, several problematiques (or
problem formulations) can be considered. [Roy96] distinguishes three fundamental problematiques
for decision aiding: choice, ranking and sorting. Given a set A of actions, the choice problematique
consists in a choice of a subset (as small as possible) composed of actions being judged as the most
satisfying. The ranking problematic consists in establishing a preference pre-order (either partial
or complete) on the set of actions. These two problematiques are said to be comparative, as they
require to compare actions one to another to elaborate the choice set and the preference pre-order.
The sorting problematic consists in formulating the decision problem in terms of a classification so as
to assign each action to one of the predefined classes. The assignment of an action to the appropriate
class relies on the intrinsic value of a (and not on the comparison to others).

In this paper, we are interested in the multiple criteria sorting problematique and, more precisely,
in an multicriteria sorting methods based on value functions. Multiple attribute value theory (see
[KR93]) is a well established compensatory preference model to represent how a Decision Maker
(DM) account for tradeoffs among criteria. Several value based sorting methods have been proposed
in the literature, namely [DGJL80], [Jac95], [ZD00a], [ZD00b], [KU03] [KBO09] (see also [ZD02] for
a review).

However, a major difficulty when implementing value based sorting models comes from the fact
that the value function must be elicited from the DM. Therefore, several authors (see e.g. [DGJL80],
[ZD00b]) proposed methodologies that avoids direct elicitation of the value function, but elicit the
value function indirectly from assignment examples (typical actions that should be assign to classes)
supplied by the DM. The value function is then inferred through a certain form of regression on
assignment examples. Such indirect elicitation is usually called disaggregation. Namely, [KBO09]
method involve indirect specification of preferences through assignment of reference actions and pro-
vide possible assignments for non-reference actions based on a piecewise linear additive value function.

In this paper, we present a new multiple criteria value based sorting method called UTADISGMS.
This method requires that the DM expresses his/her preferences providing a set of assignment ex-
amples on a subset of actions (s)he knows relatively well. Each assignment example specifies a
desired assignment of a corresponding reference action to one or several contiguous classes. The set
of assignment examples is a preference information used to build a preference model. Here, the un-
derlying preference model is a set of general additive value functions compatible with the assignment
examples. For each action a, the method computes two kinds of assignments to classes, concordant
with the DM’s preference model: necessary and possible. The necessary assignment specifies range of
classes to which the action can be assigned considering all compatible value functions simultaneously.
The possible assignment specifies, in turn, the range of classes to which the action can be assigned
considering any compatible value functions individually. The compatible value functions and the
necessary and possible assignments are computed through the resolution of linear programs.

The paper is organized as follows. Notation and definitions are introduced in the next Section.
Section 3 considers sorting procedures grounded on a single value function and studies the relation
between two particular procedures: “threshold based” and “example based” sorting procedures.
Considering simultaneously all value functions compatible with assignment examples requires to
study sorting procedures based on a set of value function. Such analysis is provided in section 4.
Section 5 is devoted to the presentation of the new sorting method called UTADISGMS. In section
6, we study the case in which the DM provides assignment example that can not be represented by

1

a value function. Section 7 propose an extension of the method that makes it possible to account
for confidence judgments attached to the assignment examples. Section 8 presents an illustrative
example of the proposed method on a real world case study. The last section groups conclusions and
presents some proposals for future research.

2 Notation and definitions

We shall use the following notation:

• A = {a1, a2, . . . , aj, . . . , am} - a finite set of m actions to be assigned to classes,

• g1, g2, . . . , gi, . . . , gn - n evaluation criteria, gi : A → R for all i ∈ G = {1, 2, . . . , n},

• C1, C2, . . . , Cp - p predefined preference ordered classes, where Ch+1 ≫ Ch (≫ a complete order
on the set of classes), h = 1, . . . , p− 1, moreover, H = {1, . . . , p},

• Xj = {xj ∈ R : gj(ai) = xj , ai ∈ A} - the set of all different evaluations on gj, j ∈ G,

• x0
j , x

1
j , . . . , x

mj

j - the ordered values of Xi, x
k
i < xk+1

i , k = 0, 1, . . . , mi − 1, mi ≤ m (mi < m
when at least two actions have the same evaluation on criterion gi).

In order to represent DM’s preferences, we shall use a value function U such that:

U(a) =

n∑

j=1

uj(gj(a)) (1)

where the marginal value functions uj are defined by uj(x
k
j), k = 0, 1, . . . , mj , such that:

uj(x
k
j) ≤ uj(x

k+1
j), k = 0, 1, . . . , mj − 1, j ∈ G. (2)

To normalize the value function so that U(a) ∈ [0, 1], ∀a ∈ A, we set:

uj(x
0
j) = 0, ∀j ∈ G

∑n

j=1 uj(x
mj

j) = 1

}

(3)

In this paper, we are interested in sorting procedures that aim at assigning each action to one
class or to a set of contiguous classes. The procedures we consider are value driven sorting procedures,
that is, they use a single value function U (or a set of value functions) to decide the assignments in
such a way that if U(a) > U(b) then a is assigned to a class not worse than b.

3 Sorting with a single additive value function

Given a value function U defined as (1), two different sorting procedures can be considered:

• threshold-based value driven sorting procedure, in which the limits between consecutive classes
are defined by thresholds on the utility scale,

• example-based value driven sorting procedure, in which classes are implicitly delimited by some
assignment examples.

2

Definition 3.1. A threshold-based value driven sorting procedure is driven by a value function U
and its associated thresholds bUh , h ∈ H, in the following way:

a ∈ A is assigned to class Ch, denoted as a → Ch, iff U(a) ∈ [bUh−1, b
U
h [,

where bUh−1 is the minimum value for an action to be assigned to class Ch, and bUh is the supremum
value for an action to be assigned to class Ch. Obviously, we set bU0 = 0 and, moreover, we impose
bUh−1 < bUh , ∀h ∈ H.

Such a threshold-based value-driven sorting procedure has been used in the UTADIS method
[DGJL80], [ZD00b].

In order to define the example-based value driven sorting procedure, let us consider preference
information provided by the DM in terms of assignment examples on a subset of actions A∗ ⊆ A, as
defined bellow.

Definition 3.2. An assignment example consists of an action a∗ ∈ A∗ for which the DM defined a
desired assignment a∗ → [CLDM (a∗), CRDM (a∗)], where [CLDM (a∗), CRDM(a∗)] is an interval of contiguous
classes CLDM(a∗), CLDM (a∗)+1, ..., CRDM (a∗), LDM(a∗) ≤ RDM(a∗). Each such action is called a
reference action. A∗ ⊆ A is called the set of reference actions. An assignment example is said to be
precise if LDM (a∗) = RDM(a∗), and imprecise, otherwise.

Given a value function U , a set of assignment examples is said to be consistent with U iff

∀a∗, b∗ ∈ A∗, U(a∗) ≥ U(b∗) ⇒ RDM(a∗) ≥ LDM(b∗) (4)

In this section, we suppose that the DM provides a set of assignment examples consistent with U .

Definition 3.3. An example-based value driven sorting procedure is driven by a value function U
and its associated assignment examples a ∈ A∗. It assigns an action a ∈ A to an interval of classes
[CLU (a), CRU (a)], in the following way:

LU(a) = Maxa∗∈A∗

{
LDM(a∗) : U(a∗) ≤ U(a)

}
(5)

RU(a) = Mina∗∈A∗

{
RDM(a∗) : U(a∗) ≥ U(a)

}
(6)

Let us remark that such example-based sorting procedure has been used in [KU03] along with a
linear value function. The following lemma states that the interval [CLU (a), CRU (a)] is not empty.

Proposition 3.1. For any action a ∈ A \ A∗, the example-based sorting procedure provides an
assignment a → [CLU (a), CRU (a)], such that LU(a) ≤ RU(a).

Proof. See Appendix A.1

Proposition 3.2. The example-based sorting procedure assigns each reference action a∗ ∈ A∗ to an
interval of classes [CLU (a∗), CRU (a∗)], such that:

LU (a∗) ≥ LDM(a∗) (7)

RU(a∗) ≤ RDM(a∗) (8)

Proof. See Appendix A.2

3

Now, let us study the relationship between the threshold-based (Definition 3.1) and example-
based (Definition 3.3) sorting procedures.

Proposition 3.3. Consider the case where the DM provides precise assignment examples only, i.e.,
LDM(a∗) = RDM(a∗), for each a∗ ∈ A∗. Assuming the use of a single value function U in the
example-based sorting procedure, if we choose, for each h = 1, ..., p−1, the threshold bUh in the interval
]Maxa∗→Ch

{U(a∗)},Mina∗→Ch+1
{U(a∗)}], we obtain a threshold-based sorting procedure that restores

the assignment examples and assigns each non-reference action a ∈ A \ A∗ to a single class in the
interval [CLU (a), CRU (a)] stemming from the example-based sorting procedure.

Proof. See Appendix A.3

Figure 1 illustrates Proposition 3.3 in a sorting example involving 3 classes and 18 reference actions.
In this case, assignment examples are such that a∗1, a

∗
2, a

∗
3, a

∗
4, a

∗
5 and a∗6 are assigned to class C1;

a∗7, a
∗
8, a

∗
9, a

∗
10, a

∗
11 and a∗12 are assigned to C2, and the remaining actions are assigned to C3. Consider

a non-reference action a′ ∈ A \ A∗. According to the value of U(a′), the example-based sorting
procedure assigns a′ as follows:

• If U(a′) ≤ U(a∗6), then a′ → C1

• If U(a′) ∈]U(a∗6), U(a∗7)[, then a′ → [C1, C2]

• If U(a′) ∈ [U(a∗7), U(a∗12)], then a′ → C2

• If U(a′) ∈]U(a∗12), U(a∗13)[, then a′ → [C2, C3]

• If U(a′) ≥ U(a∗13), then a′ → C3

Consistently with Proposition 3.3, it appears that if we fix the thresholds such that b1 ∈]U(a∗6, U(a∗7)]
and b2 ∈]U(a∗12, U(a∗13)], the threshold-based sorting procedure will assign a new actions a′ consis-
tently with the example-based sorting procedure, i.e.:

• If U(a′) ≤ U(a∗6), then a′ → C1,

• If U(a′) ∈]U(a∗6), U(a∗7)[, then a′ → C1 or C2, depending whether U(a′) < bU1 or not,

• If U(a′) ∈ [U(a∗7), U(a∗12)], then a′ → C2,

• If U(a′) ∈]U(a∗12), U(a∗13)[, then a′ → C2 or C3, depending whether U(a′) < bU2 or not,

• If U(a′) ≥ U(a∗13), then a′ → C3.

U

bU1 bU2

a∗1 a∗2 a∗
3

a∗4 a∗5 a∗6 a∗7 a∗8 a∗9 a∗
10

a∗11 a∗12 a∗13a∗
14

a∗15 a∗16 a∗17 a∗18

︷ ︸︸ ︷

reference actions
assigned to C1

︷ ︸︸ ︷

reference actions
assigned to C2

︷ ︸︸ ︷

reference actions
assigned to C3

Figure 1: Intervals for the thresholds separating classes (precise assignments)

Proposition 3.4. Consider the case where the DM provides possibly imprecise assignment examples,
i.e., LDM(a∗) ≤ RDM(a∗) for each a∗ ∈ A∗. Assuming the use of a single value function U in the
example-based sorting procedure, if we choose, for each h = 1, ..., p − 1, the threshold bUh in the
interval I(bUh) =]Maxa∗ :RDM (a∗)≤h {U(a∗)} ,Mina∗ :LDM(a∗)>h {U(a∗)} [, with bUh < bUh+1 we obtain a
threshold-based sorting procedure that assigns each reference action a∗ ∈ A∗ to a single class in the
interval [CLDM(a∗), CRDM (a∗)], and assigns each non-reference action a ∈ A \ A∗ to a single class in
the interval [CLU (a), CRU (a)] stemming from the example-based sorting procedure.

4

Proof. See Appendix A.4

Figure 2 illustrates Proposition 3.4 in an example involving 5 classes and 11 reference actions. In
this case, assignment examples are the following:

• a∗1 and a∗3 → [C1, C2]

• a∗2 → [C1, C3]

• a∗4 and a∗6 → [C2, C3]

• a∗5 → [C2, C5]

• a∗7 and a∗9 → [C3, C4]

• a∗8 → [C3, C5]

• a∗10 and a∗11 → [C4, C5]

Consider a non-reference action a′ ∈ A \A∗. According to the value of U(a′), the example-based
sorting procedure assigns a′ as follows:

• If U(a′) < U(a∗3), then a′ → [C1, C2]

• If U(a′) ∈ [U(a∗3), U(a∗4)[, then a′ → [C1, C3]

• If U(a′) ∈ [U(a∗4), U(a∗6)[, then a′ → [C2, C3]

• If U(a′) ∈ [U(a∗6), U(a∗7)[, then a′ → [C2, C4]

• If U(a′) ∈ [U(a∗7), U(a∗9)[, then a′ → [C3, C4]

• If U(a′) ∈ [U(a∗9), U(a∗10)[, then a′ → [C3, C5]

• If U(a′) ≥ U(a∗10), then a′ → [C4, C5]

Let us study now the value of thresholds b1, b2, b3, and b4 (in the threshold-based sorting proce-
dure) which are compatible with the assignment examples.

• b1 is necessarily smaller or equal than U(a∗4) as a∗4 is assigned to at least C2.

• b2 is necessarily smaller or equal than U(a∗7) as a∗7 is assigned to at least C3.

• b3 is necessarily greater than U(a∗6) as a∗6 is assigned to at most C3, and lower or equal than
U(a∗10) as a∗10 is assigned to at least C4.

• b4 is necessarily greater than U(a∗9) as a∗9 is assigned to at most C4.

Obviously, in order to build a consistent thresholds-based sorting procedure, these thresholds
should also be such that bi < bi+1, i = 1, ..., 4. Consistently with Proposition 3.3, it appears that
if we fix the thresholds as above, the threshold-based sorting procedure will assign a new action a′

consistently with the example-based sorting procedure, i.e.:

• If U(a′) < u(a∗3), then a′ → C1 or C2, depending whether U(a′) < bU1 or not,

• If U(a′) ∈ [u(a∗3), u(a∗4)[, then a′ → C1, C2 or C3, depending whether U(a′) < bU1 , U(a′) ∈ [b1, b2[,
or U(a′) ≥ b2,

• If U(a′) ∈ [u(a∗4), u(a∗6)[, then a′ → C2 or C3, depending whether U(a′) < bU2 or not,

• If U(a′) ∈ [u(a∗6), u(a∗7)[, then a′ → C2, C3 or C4, depending whether U(a′) < bU2 , U(a′) ∈ [b2, b3[,
or U(a′) ≥ b3,

• If U(a′) ∈ [u(a∗7), u(a∗9)[, then a′ → C3 or C4, depending whether U(a′) < bU3 or not,

• If U(a′) ∈ [u(a∗9), u(a∗10)[, then a′ → C3, C4 or C5, depending whether U(a′) < bU3 , U(a′) ∈
[b3, b4[, or U(a′) ≥ b4,

• If U(a′) ≥ u(a∗10), then a′ → C4 or C5, depending whether U(a′) < bU4 or not,

5

U(a)[C1, C2]

a∗1

[C1, C3]

a∗2

[C1, C2]

a∗3

[C2, C3]

a∗4

[C2, C4]

a∗5

[C2, C3]

a∗6

[C3, C4]

a∗7

[C3, C5]

a∗8

[C3, C4]

a∗9

[C4, C5]

a∗
10

[C4, C5]

a∗
11

U(a′)
[C1, C2] [C1, C3] [C2, C3] [C2, C4] [C3, C4] [C3, C5] [C4, C5]

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

bU1

bU2

bU3

bU4

Ranges of

thresholds {

Assignment of

non-reference

action a′
{

examples
Assignment{

Figure 2: Intervals for the thresholds separating classes (imprecise assignments)

Hence, Propositions 3.3 and 3.4 show that the example-based and the threshold-based sorting
procedures provide consistent results, the former being more general than the latter, as it implicitly
considers intervals of possible thresholds instead of single values for the thresholds. Therefore, in the
rest of the paper, we will consider the example-based sorting model only.

4 Sorting with a set of value functions

In this section we consider value driven sorting procedures based on a set U of value functions, and
we will restrict to the example-based sorting procedure.

Definition 4.1. Considering a set A∗ of assignment examples, the set UA∗ of compatible value
functions is defined by all value functions U , satisfying U(a∗) > U(b∗) for all a∗, b∗ ∈ A∗ such
that RDM(b∗) < LDM(a∗).

Definition 4.2. Given a set A∗ of assignment examples and a corresponding set UA∗ of compatible
value functions, for each a ∈ A, we define the possible assignment CP (a) as the set of indices of
classes Ch for which there exists at least one value function U ∈ UA∗ assigning a to Ch, and the
necessary assignment CN(a) as set of indices of classes Ch for which all value functions U ∈ UA∗

assign a to Ch, that is:
CP (a) = {h ∈ H : ∃U ∈ UA∗ for which h ∈ [LU (a), RU(a)]} (9)

CN(a) = {h ∈ H : ∀U ∈ UA∗ it holds h ∈ [LU(a), RU(a)]} (10)

It is obvious to observe that it holds for each a ∈ A:

CP (a) =
⋃

U∈UA∗
[LU (a), RU(a)],

CN (a) =
⋂

U∈UA∗
[LU(a), RU(a)],

CN (a) ⊆ CP (a)

∀a ∈ A (11)

Proposition 4.1. For any a ∈ A, there exists U ∈ UA∗ and values of the thresholds bh, h ∈ H
such that for any h ∈ CP (a) the threshold-based sorting model assigns a to class Ch, for each h ∈
[LU(a), RU(a)].

Proof. Since CP (a) = {h ∈ H such that ∃U ∈ UA∗ for which h ∈ [LU (a), RU(a)]}, considering that
according to proposition 3.4 we have that for all U ∈ UA∗ , there exist values for the thresholds bh,
h ∈ H such that for any h ∈ CP (a) the threshold-based sorting model assigns a to class Ch, for each
h ∈ [LU(a), RU(a)], we get the thesis.

6

Definition 4.3. Given a set A∗ of assignment examples and a corresponding set UA∗ of compatible
value functions, for each a ∈ A, we define the following indices of classes:

• Minimum possible class: LU
P (a) = Maxa∈A∗

{
LDM(a∗) : ∀U ∈ UA∗ , U(a∗) ≤ U(a)

}

• Minimum necessary class:
LU
N(a) = Maxa∈A∗

{
LDM(a∗) : ∃U ∈ UA∗ for which U(a∗) ≤ U(a)

}

• Maximum necessary class:
RU

N(a) = Mina∈A∗

{
RDM(a∗) : ∃U ∈ UA∗ for which U(a) ≤ U(a∗)

}

• Maximum possible class: RU
P (a) = Mina∈A∗

{
RDM(a∗) : ∀U ∈ UA∗ , U(a) ≤ U(a∗)

}

An analysis of these indices is provided by the following Proposition, namely, in what concerns how
these indices relates to CP (a) and CN(a).

Proposition 4.2. Given a set A∗ of assignment examples and a corresponding set UA∗ of compatible
value functions, it holds, for each a ∈ A,

• LU
P (a) ≤ LU

N(a),

• RU
N(a) ≤ RU

P (a),

• LU
P (a) ≤ RU

P (a).

Moreover, for any a ∈ A, we have:

• CP (a) ⊆ [LU
P (a), RU

P (a)],

• if LU
N (a) ≤ RU

N(a), then CN(a) = [LU
N (a), RU

N(a)],

• if LU
N (a) > RU

N (a), then CN(a) = ∅.

Proof. See Appendix B.1

In this context, two important questions arise:

• under which condition on value functions U ∈ UA∗ we have CN(a) 6= ∅ ?

• under which condition on value functions U ∈ UA∗ the following “no jump property property”
holds? If h, h′ ∈ CP (a) with h ≤ h′, then h′′ ∈ CP (a), ∀h′′ ∈ [h, h′] (12)

Let us observe that the first question is related to the robustness of the assignment, in the sense
that it concerns classes to which a is assigned by all compatible value functions U ∈ UA∗ . The second
question instead regards the presence of a “jump” in the classes of the possible assignment. In fact,
the “no jump property” (12) is equivalent to CP (a) = [LU

P , R
U
P], which means that no class between

the worst, CLU
P

, and the best, CLU
P

, is absent in the possible assignment. These two questions are

studied in Propositions (4.3)-(4.6)

Proposition 4.3. CN(a) 6= ∅ if and only if the following strict continuity condition is satisfied:
for all a∗, b∗ ∈ A∗ such that LDM (a∗) > RDM(b∗) there are no two compatible value functions U, U ′ ∈
UA∗ for which U(a) ≥ U(a∗) and U ′(b∗) ≥ U ′(a).

Proof. See Appendix B.2

The following condition is important with respect to the absence of jumps in in the classes of the
possible assignment.

7

Definition 4.4. (Weak continuity) For all a∗, b∗ ∈ A∗ such that LDM(a∗) > RDM(b∗), if there
exist U ′, U ′′ ∈ UA∗ for which U ′(a) ≥ U ′(a∗) and U ′′(b∗) ≥ U ′′(a), then there exists U ′′′ ∈ UA∗ for
which U ′′′(a∗) ≥ U ′′′(a) ≥ U ′′′(b∗).

Proposition 4.4. The no jump property (12) holds, and therefore CP (a) = [LU
P , R

U
P], if and only if

the weak continuity (4.4) holds.

Proof. See Appendix B.3

Corollary 4.1. If the set UA∗ of compatible value functions satisfies the weak continuity (4.4),
the example-based sorting procedure assigns each reference action a∗ ∈ A∗ to an interval of classes
[LU

P (a∗), RU
P (a∗)] ⊆ [LDM(a∗), RDM(a∗)].

Proof. See Appendix B.4

Definition 4.5. A set U of value functions is convex if for all U, U ′ ∈ U and for all α ∈ [0, 1],
αU + (1 − α)U ′ ∈ U .

Proposition 4.5. If the set UA∗ of compatible value functions is convex, the CP (a) = [LU
P (a), RU

P (a)],
i.e. the no jump property (12) holds.

Proof. See Appendix B.5

Proposition 4.6. If UA∗ is the set of all additive compatible value functions, then CP (a) =
[LU

P (a), RU
P (a)], i.e. the no jump property (12) holds.

Proof. See Appendix B.6

5 A new sorting method using a set of additive value func-

tions

The new UTADISGMS method (GMS stands for Greco Mousseau Slowinski) is an ordinal regres-
sion method for sorting problems using a set of additive value functions U(a) =

∑n

i=1 ui(gi(a)) as a
preference model. One of its characteristic features is that it takes into account the set of all value
functions compatible with the preference information provided by the DM. Moreover, it considers
general non-decreasing marginal value functions instead of piecewise linear only.

The DM is supposed to provide preference information in form of possibly imprecise assign-
ment examples on a reference set A∗, i.e., for all a∗ ∈ A∗ the DM defines a desired assignment
a∗ → [CLDM(a∗), CRDM (a∗)]. According to definition (4) a value function is compatible if ∀a∗, b∗ ∈
A∗, U(a∗) ≥ U(b∗) ⇒ RDM(a∗) ≥ LDM(b∗). Definition (4) is equivalent to

∀a∗, b∗ ∈ A∗, LDM(a∗) > RDM(b∗) ⇒ U(a∗) > U(b∗) (13)

On the basis of (13), we can state that, formally, a general additive compatible value function is
an additive value function U(a) =

∑n

i=1 ui(a) satisfying the following set of constraints:

8

U(a) > U(b) ⇔ LDM(a∗) > RDM(b∗), ∀a∗, b∗ ∈ A∗

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1

(EA∗

)

where αi and βi are the the minimum and maximum possible evaluation on the scale Xi of criterion gi
and where τi is the permutation on the set of indices of actions from A∗ that reorders them according
to the increasing evaluation on criterion gi, i.e.

gi(aτi(1)) ≤ gi(aτi(2)) ≤ . . . ≤ gi(aτi(m−1)) ≤ gi(aτi(m))

Let us observe that the set of constraints (EA∗

) is equivalent to

U(a∗) ≥ U(b∗) + ε ⇔ LDM(a∗) > RDM(b∗), ∀a∗, b∗ ∈ A∗

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1

(EA∗

)′

with ε > 0. Thus, to check if the set of all compatible value functions UA∗ is not empty it is sufficient
to verify if ε∗ > 0, where ε∗ = max ε, subject to set of constraints (EA∗

)′.
Remark that, due to this formulation of the ordinal regression problem, no linear interpolation is

required to express the marginal value of any reference action. Thus, one cannot expect that increas-
ing the number of characteristic points will bring some “new” compatible additive value functions. In
consequence, UTADISGMS considers all compatible additive value functions while classical UTADIS
deals with a subset of the whole set of compatible additive value functions, more precisely the subset
of piecewise linear additive value functions relative to the considered characteristic points.

Note that considering all criteria values as characteristics points in the modeling of the marginal
value functions gives the preference model a great descritive ability, but this has however a conter-
part with respect to an increased size of the mathematical program to be solved (all mathematical
programs corresponds however to linear programming, such issue is manageable from an operational
point of view). Note also that this increased description ability can require the DM to express addi-
tional preference information in order to obtain rich recommandation about the alternative outside
the reference set.

On the basis of the set of all compatible value functions UA∗ , we can define two binary relations
on the set of all actions A:

• necessary weak preference relation %N , in case U(a) ≥ U(b) for all compatible value functions,

• possible weak preference relation %P , in case U(a) ≥ U(b) for at least one compatible value
function.

Using necessary weak preference relation %N and possible weak preference relation %P , taking
into account definition 4.3 we can redefine indices LU

P (a), LU
N (a), RU

N(a) and RU
P (a) as follows:

9

• minimum possible class: LU
P (a) = Max

{
LDM(a∗) : a %N a∗, a∗ ∈ A∗

}
(14)

• Minimum necessary class: LU
N (a) = Max

{
LDM(a∗) : a %P a∗, a∗ ∈ A∗

}
(15)

• Maximum necessary class: RU
N (a) = Min

{
RDM(a∗) : a∗ %P a, a∗ ∈ A∗

}
(16)

• maximum possible class: RU
P (a) = Min

{
RDM(a∗) : a∗ %N a, a∗ ∈ A∗

}
(17)

Thus, using necessary weak preference relation %N and possible weak preference relation %P it
is possible to deal quite simply with the sorting problem.

Necessary weak preference relation %N and possible weak preference relation %P can be calculated
as follows [GMS08, FGS09]. For all actions a, b ∈ A, let πi be a permutation of the indices of actions
from set A∗ ∪ {a, b} that reorders them according to increasing evaluation on criterion gi, i.e.

gi(aπi(1)) ≤ gi(aπi(2)) ≤ ... ≤ gi(aπi(ω−1)) ≤ gi(aπi(ω))

where

• if A∗ ∩ {a, b} = ∅, then ω = m + 2

• if A∗ ∩ {a, b} = {a} or A∗ ∩ {a, b} = {b}, then ω = m + 1

• if A∗ ∩ {a, b} = {a, b}, then ω = m.

Then, we can fix the characteristic points of ui(gi), i = 1, ..., n, in g0i = αi, gji = gi(aπi(j)) for
j = 1, ..., ω, gω+1

i = βi

Let us consider the following sets E(a, b) and E(b, a) of ordinal regression constraints, with
i = 1, ..., n, j = 1, ..., ω + 1, as variables:

U(a) ≥ U(b)
U(a∗) ≥ U(b∗) + ε ⇔ LDM(a∗) > RDM(b∗), ∀a∗, b∗ ∈ A∗

ui(g
j
i) − ui(g

j−1
i) ≥ 0, i = 1, ..., n, j = 1, ..., ω + 1

ui(g
0
i) = 0, i = 1, ..., n

∑n

i=1 ui(g
ω+1
i) = 1.

(E(a, b))

and
U(b) ≥ U(a)
U(a∗) ≥ U(b∗) + ε ⇔ LDM(a∗) > RDM(b∗), ∀a∗, b∗ ∈ A∗

ui(g
j
i) − ui(g

j−1
i) ≥ 0, i = 1, ..., n, j = 1, ..., ω + 1

ui(g
0
i) = 0, i = 1, ..., n

∑n

i=1 ui(g
ω+1
i) = 1.

(E(b, a))

The above sets of constraints depend on the pair of actions a, b ∈ A because their evaluations gi(a)
and gi(b) give coordinates for two of (ω + 1) characteristic points of marginal value function ui(gi),
for each i = 1, . . . , n.

10

Let us suppose that the polyhedron defined by E(a, b) as well as the one defined by E(b, a) are
not empty. In this case we have that:

a %N b ⇔

{
min ε < 0

s.t. set E(b, a) of constraints
(18)

and

a %P b ⇔

{
max ε > 0

s.t. set E(a, b) of constraints
(19)

Therefore, on the basis of the above results, the following example-based sorting procedure can
be proposed:

1. Ask the DM for sorting examples.

2. Verify that the set of compatible value functions UA∗ is not empty.

3. Calculate the necessary and the possible weak preference relations a %N a∗, a %P a∗, a∗ %N a
and a∗ %N a, for a∗ ∈ A∗ and a ∈ A.

4. Calculate for each a ∈ A the indices LU
P (a), LU

N (a), RU
N(a) and RU

P (a) using (14), (15),(16) and
(17).

5. Specify for each a ∈ A its possible assignment CP (a) = [LU
P (a), RU

P (a)].

6. Specify for each a ∈ A its necessary assignment which is CN(a) = [LU
N (a), RU

N(a)] in case
LU
N(a) ≤ RU

N (a), and CN(a) = ∅, otherwise.

Observe that the above procedure is an example based sorting procedure rather than a threshold
based procedure. It is also possible to define a threshold based sorting procedure as follows. In a
threshold based sorting procedure, a pair (U,b), where U is a value function and b = [b1, . . . , bp−1],
is a vector of thresholds bh, h = 1, . . . , p− 1 such that 0 < b1 < b2 < ... < bp−1 < 1, is consistent, if
for all a∗ ∈ A∗

bRDM (a∗) − 1 > U(a∗) ≥ bLDM (a∗). (20)

On the basis of (20), we can state that, formally, a pair (U,b), where U is an additive value function
U(a) =

∑n

i=1 ui(a) and b = [b1, . . . , bp−1] is a vector of thresholds, is compatible, if it satisfies the
following set of constraints:

U(a∗) ≥ bLDM (a∗)−1

U(a∗) < bRDM (a∗)

}

∀a∗ ∈ A∗

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
b1 > 0, bp−1 < 1,
bh > bh−1, h = 2, . . . , p− 1,

(EA∗

T)

11

where τi is the permutation on the set of indices of actions from A∗ that reorders them according to
the increasing evaluation on criterion gi, i.e.

gi(aτi(1)) ≤ gi(aτi(2)) ≤ . . . ≤ gi(aτi(m−1)) ≤ gi(aτi(m))

Let us also consider the following set of constraints (EA∗

T)’:

U(a∗) ≥ bLDM (a∗)−1

bRDM (a∗) − U(a∗) ≥ ε

}

∀a∗ ∈ A∗

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
b1 ≥ ε, bp−1 < 1,
bh − bh−1 ≥ ε, h = 2, . . . , p− 1,

(EA∗

T)′

Set of constraint (EA∗

T) is equivalent to set (EA∗

T)′ if ε > 0. Thus, to check if the set of all compatible
pairs (U,b) is not empty it is sufficient to verify if ε∗ > 0, where ε∗ = max ε, subject to set of
constraints (EA∗

T)’.

A compatible pair (U,b) assigns action a ∈ A to a class Ck with k ≥ h, h ∈ H , if it satisfies
set of constraints (EA∗

T (a → C≥h)) obtained by adding to set of constraints (EA∗

T) the constraint
U(a) ≥ bh−1. Analogously, a compatible pair (U,b) assigns action a ∈ A to a class Ck with k ≤ h,
h ∈ H , if it satisfies set of constraints (EA∗

T (a → C≤h)) obtained by adding to set of constraints
(EA∗

T) the constraint U(a) < bh.

From a computational point of view, it is more convenient to express set of constraints EA∗

T (a →
C≥h) as the set of constraints obtained by adding to (EA∗

T)′ the two further constraints, ε > 0 and
U(a) ≥ bh−1. Consequently, to verify if there is a compatible pair (U,b) assigning action a ∈ A to a
class Ck with k ≥ h, h ∈ H , it is enough to verify if ε∗(C≥h, a) > 0, where ε∗(C≥h, a) = max ε, sub-
ject to set of constraints (EA∗

T)′ plus the constraint U(a) ≥ bh−1. Instead, all compatible pairs (U,b)
assign action a ∈ A to a class Ck with k ≥ h, h ∈ H , if ε∗(C≥h, a) > 0 where ε∗(C≥h, a) = min ε
subject to set of constraints (EA∗

T)′ plus the constraint U(a) ≥ bh−1.

Analogously, from a computational point of view, it is more convenient to express set of con-
straints (EA∗

T (a → C≤h)) as the set of constraints obtained by adding to (EA∗

T)′ the two further
constraints ε > 0 and bh − U(a) ≥ ε. Consequently, to verify if there is a compatible pair (U,b)
assigning action a ∈ A to some class Ck with k ≤ h, h ∈ H , it is enough to verify that ε∗(C≤h, a) > 0,
where ε∗(C≤h, a) = max ε subject to set of constraints (EA∗

T)′ plus the constraint bh − U(a) ≥ ε.
Instead, all compatible pairs (U,b) assign action a ∈ A to some class Ck with k ≤ h, h ∈ H , if
ε∗(C≤h, a) > 0 where ε∗(C≤h, a) = min ε, subject to set of constraints (EA∗

T)′ plus the constraint
bh − U(a) ≥ ε.

On the basis of the above considerations, indices LU
P (a), LU

N(a), RU
N(a) and RU

P (a) can be redefined
as follows:

• minimum possible class: LU
P (a) = Max {h ∈ H : ε∗(C≥h, a) > 0} , (21)

• Minimum necessary class: LU
N(a) = Max {h ∈ H : ε∗(C≥h, a) > 0} , (22)

12

• Maximum necessary class: RU
N (a) = Min {h ∈ H : ε∗(C≤h, a) > 0} , (23)

• maximum possible class: RU
P (a) = Min {h ∈ H : ε∗(C≤h, a) > 0} . (24)

Therefore, on the basis of the above observations, the following threshold-based sorting procedure
can be proposed:

1. Ask the DM for sorting examples.

2. Verify if the set of compatible pairs (U,b) is not empty.

3. Calculate for each a ∈ A the indices LU
P (a), LU

N (a), RU
N(a) and RU

P (a) using (21), (22),(23) and
(24).

4. Specify for each a ∈ A its possible assignment CP (a) = [LU
P (a), RU

P (a)].

5. Specify for each a ∈ A its necessary assignment, which is CN(a) = [LU
N(a), RU

N (a)] in case
LU
N(a) ≤ RU

N (a), and CN(a) = ∅, otherwise.

6 Management of inconsistencies

6.1 Analysis of incompatibility

Let us consider now the case where there is no value function U in an example-based sorting pro-
cedure, or equivalently, no pair (U,b) in a threshold-based sorting procedure, compatible with the
assignment examples . We say, this is the case of incompatibility. In such a case, the polyhedron
generated by constraints EA∗

is empty or, equivalently, the maximal value of ε satisfying set of
constraints (EA∗

)′ is not positive. Such a case may occur in one of the following situations:

• the exemplary assignments of the DM do not match the additive model,

• the DM may have made an error in his/her statements; for example stating that LDM (a) >
RDM(b) while b dominates a (that is gi(b) ≥ gi(a)),

• the statements provided by the DM are contradictory because his/her exemplary assignments
are unstable, some hidden criteria are taken into account, ...

In such a case, the DM may want either to pursue the analysis with such an incompatibility or to
identify its reasons in order to remove it and, therefore, to define a new set of exemplary assignments
whose corresponding constraints EA∗ext generate a non empty polyhedron. Let us consider below the
two possible solutions.

6.1.1 Situation where incompatibility is accepted

If the DM wants to pursue the analysis with the incompatibility, he/she has to accept that some
of his/her exemplary assignments of reference actions will not be reproduced by any value function.
Note that, from a formal viewpoint, if the polyhedron generated by EA∗

is empty, then possible and
necessary assignment CP (a) and CN(a) are meaningless for all a ∈ A. Thus, the acceptance of the
inconsistency means that the DM does not change the exemplary assignments and computes CP (a)
and CN(a) on a new set of constraints (EA∗

)′ext differing from the original set (EA∗

)′ by an additional
constraint on the acceptable total error:

13

U(a∗) ≥ U(b∗) + ε ⇔ LDM(a∗) > RDM(b∗), ∀a∗, b∗ ∈ A∗

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
ε ≥ εext

(EA∗

)′ext

where εext < ε∗, such that, remembering that ε∗ = max ε subject to set of constraints (EA∗

)′ext, we
have that the resulting new set of constraints (EA∗

)′ext is not empty.

On the basis of (EAR

)′ext, for any pair (a, b) ∈ A, the set of constraints E(a, b)ext can be built
as the union of the constraints (EAR

)′ext and the constraints relative to the breakpoints introduced
by those actions a, b that possibly do not belong to AR. Then preference relations %′N and %′P can
be computed by minimizing and maximizing ε subject to E ′(a, b), rather than to E(a, b), respectively.

Obviously, the necessary and possible rankings resulting from these computations will not fully
respect the exemplary assignment provided by the DM, i.e. there is at least one couple a∗, b∗ ∈ A∗

such that LDM(a∗) > RDM(b∗) and nevertheless U(a) ≤ U(b).
Of course, also in this context indices LU

P (a∗), LU
N (a∗), RU

N(a∗) and RU
P (a∗) maintain all their main

properties stated in proposition 4.2.

6.1.2 Situation where incompatibility is not accepted

If the DM does not want to pursue the analysis with the incompatibility, it is necessary to identify
the troublesome exemplary assignments responsible for this incompatibility, so as to remove some
of them. Remark that there may exist several sets of pairwise comparisons which, once removed,
make set (EA∗

) of constraints non-empty. Hereafter, we outline the main steps of a procedure which
identifies these sets.

Recall that the exemplary assignments of reference actions are represented in the ordinal regres-
sion constraints EA∗

by linear constraints. Hence, identifying the troublesome pairwise comparisons
of reference actions amounts at finding a minimal subset of constraints that, once removed from EA∗

,
leads to a set of constraints generating a non-empty polyhedron of compatible value functions. The
identification procedure is to be performed iteratively since there may exist several minimal subsets
of this kind.

Let associate with each couple of actions a, b ∈ A∗ such that LDM(a) > RDM(b) a new binary
variable va,b, i.e. va,b = 0 or va,b = 1. Using these binary variables, we rewrite the first constraint of
set EA∗

as follows:

LDM (a) > RDM(b) ⇔ U(a) − U(b) + Mva,b > 0 (25)

where M > 1. Remark that if va,b = 1, then the corresponding constraint is satisfied whatever
the value function is, which is equivalent to elimination of this constraint. Therefore, identifying
a minimal subset of troublesome pairwise comparisons can be performed by solving the following
mixed 0-1 linear program:

14

Min → f =
∑

a,b∈A∗: LDM (a)>RDM (b) va,b
s. t.

LDM(a) > RDM(b) ⇔ U(a) − U(b) + Mva,b ≥ ε, ∀a, b ∈ A∗

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
ε ≥ ε′

(26)

where ε′ is a small positive value.
The optimal solution of (26) indicates one of the subsets of smallest cardinality being the cause

of incompatibility. Alternative subsets of this kind can be found by solving (26) with additional
constraint that forbids finding again the same solution. Let f ∗ be the optimal value of the objective
function of (26) and v∗a,b the values of the binary variables at the optimum. Let also S1 = {(a, b) ∈
A∗ × A∗ : LDM(a) > RDM(b) and v∗a,b = 1}. The additional constraint has then the form

∑

(a,b)∈S1

va,b ≤ f ∗ − 1 (27)

Continuing in this way, we can identify other subsets, possibly all of them. These subsets of
pairwise comparisons are to be presented to the DM as alternative solutions for removing incompat-
ibility. Such procedure has been described in [MDF+03]. Note however that when the number of
alternatives in the reference set increases, solving 26 can become computationally difficult.

7 Specifying assignments with gradual confidence levels

The UTADISGMS method presented in the previous section is intended to support the DM in an
interactive process. Indeed, defining a large set of exemplary assignments of reference actions can be
difficult for the DM. Therefore, one way to reduce the difficulty of this task would be to permit the
DM an incremental specification of exemplary assignments. This way of proceeding allows the DM
to control the evolution of the necessary and possible assignments.

Another way of reducing the difficulty of the task is to extend the UTADISGMS method so as to
account for different confidence levels given to exemplary assignments. Let [LDM

1 (a∗), RDM
1 (a∗)] ⊇

[LDM
2 (a∗), RDM

2 (a∗)] ⊇ ... ⊇ [LDM
s (a∗), RDM

s (a∗)] be embedded sets of DM’s exemplary assignments
of reference action a ∈ A∗. To each set of exemplary assignments [LDM

t (a∗), RDM
t (a∗)], t = 1, . . . s,

a∗ ∈ A∗, corresponds a set of constraints EA∗

t generating a polyhedron of compatible value func-
tions PA∗

t . Polyhedrons PA∗

t , t = 1, . . . s, are embedded in the order of the exemplary assignments
[LDM

t (a∗), RDM
t (a∗)], t = 1, . . . s, a∗ ∈ A∗, i.e. PA∗

1 ⊇ PA∗

2 ⊇ ... ⊇ PA∗

s .

We suppose that PA∗

s 6= ∅ and, therefore, as PA∗

1 ⊇ PA∗

2 ⊇ ... ⊇ PA∗

s , we have PAR

t 6= ∅, for all
t = 1, . . . , s. If PAR

s = ∅ we consider only exemplary assignments until [LDM
p (a∗), RDM

p (a∗)], a∗ ∈ A∗

with p = max
{
t : PA∗

t 6= ∅
}

.

Definition 7.1. Given a set of exemplary assignments [LDM
t (a∗), RDM

t (a∗)], t = 1, . . . s, a∗ ∈ A∗, and
corresponding sets U t

A∗ of compatible value functions of level t, for each a ∈ A, the following indices
have to be considered:

• minimum possible class: L
t,U
P (a) = Max

{
LDM(a∗) : ∀U ∈ U t

A∗ ,U(a∗) ≤ U(a), a∗ ∈ A∗
}
, (28)

15

• minimum necessary class:
Lt,U
N (a) = Max

{
LDM(a∗) : ∃U ∈ U t

A∗ for which U(a∗) ≤ U(a), a∗ ∈ A∗
}
, (29)

• maximum necessary class:
Rt,U

N (a) = Min
{
RDM(a∗) : ∃U ∈ U t

A∗ for which U(a) ≤ U(a∗), a∗ ∈ A∗
}
, (30)

• maximum possible class:R
t,U
P (a) = Min

{
RDM(a∗) : ∀U ∈ U t

A∗ ,U(a) ≤ U(a∗), a∗ ∈ A∗
}

(31)

Definition 7.2. Given a set of exemplary assignments [LDM
t (a∗), RDM

t (a∗)], t = 1, . . . s, a∗ ∈ A∗, and
corresponding sets U t

A∗ of compatible value functions of level t, for each a ∈ A, we define the possible
assignment of level t, t = 1, ..., s, Ct

P (a) as the set of indices of class Ch for which there exist at least
one value function U ∈ U t

A∗ assigning a to Ch and the necessary assignment Ct
N(a) as set of indices

of class Ch for which all value functions U ∈ U t
A∗ assign a to Ch, that is:

Ct
P (a) = {h ∈ H such that ∃U ∈ U t

A∗ for which h ∈ [LU(a), RU(a)]} (32)

Ct
N(a) = {h ∈ H such that ∀U ∈ U t

A∗ it holds h ∈ [LU(a), RU(a)]} (33)

In order to compute possible and necessary assignments Ct
P (a) and Ct

N(a), t = 1, . . . , s we can
use an example based assignment sorting as well as a threshold based sorting.

Using example based assignment sorting we can proceed as follows. For all a, b ∈ A, we say that
there is a necessary weak preference relation of level t, denoted by a %N

t b (t = 1, ..., s), if for all
value functions U ∈ U t

A∗ , we have U(a) ≥ U(b). Analogously, for all a, b ∈ A, we say that there is a
possible weak preference relation of level t, denoted by x %P

t y (t = 1, ..., s), if for at least one value
function U ∈ U t

A∗ , we have U(x) ≥ U(y).

In order to compute possible and necessary weak preference relations %P
t and %N

t , we can proceed
as follows. For all x, y ∈ A, set of constraints Et(x, y) can be obtained from set EA∗

t by adjoining the
constraints relative to the breakpoints introduced by those actions a, b that possibly do not belong
to A∗. For each t = 1, . . . , s, and binary preference relations %N

t and %P
t , we have

x %N
t y ⇔

{
min dt(x, y) = Min{U(x) − U(y)} ≥ 0

s.t. set Et(x, y) of constraints
(34)

and

x %P
t y ⇔

{
max Dt(x, y) = Min{U(x) − U(y)} ≥ 0

s.t. set Et(x, y) of constraints
(35)

Each time we pass from %t−1 to %t, t = 1, . . . , s − 1, we add to EA∗

t−1 and, consequently, to
Et−1(a, b), new constraints concerning pairs (a∗, b∗) ∈ A∗ × A∗, such that LDM

t (a) > RDM
t (b) but

not LDM
t−1 (a) > RDM

t−1 (b), thus the computations of dt(x, y) and Dt(x, y), for all x, y ∈ A× A proceed
iteratively.

Binary preference relations %N
t and %P

t , t = 1, . . . , s satisfies the following properties [GMS08]:

Proposition 7.1. It holds:

• %N
t ⊆%P

t ,

• %N
t is a complete preorder (i.e. transitive and strongly complete),

• %P
t is strongly complete and negatively transitive.

• %N
t−1 ⊆ %N

t and %P
t ⊇ %P

t−1, t = 2, . . . , s.

On the basis of binary preference relations %N
t and %P

t , t = 1, . . . , s it is possible to calculate
iteratively the indices (28)-(31) in the same way as in Section 5.

16

8 Illustrative example

In this section, a real world multiple criteria sorting problem will be presented followed by the
application of the UTADISGMS software.

A transport company is about to classify 76 buses into 4 pre-defined and preference ordered
classes C1-C4, such that C1 will group the buses being in the worst technical state, needing a vary
major revision, C2 will group the buses being in the lower-intermediate technical state, needing a ma-
jor revision, C3 will group the buses being in the upper-intermediate technical state, needing a minor
revision, and C4 will group the buses being in the best technical state, needing no revision. The buses
were evaluated according to a total of 8 quantitative criteria reflecting their performance and tech-
nical parameters. The names and types of the criteria are given in Table 1, and the performance
matrix for a subset of buses is presented in Table 2 (see [ZS95]).

Table 1: Table of criteria

Code Name Type

g1 Maximum speed gain
g2 Compression pressure gain
g3 Blacking cost
g4 Torque gain
g5 Summer fuel consumption cost
g6 Winter fuel consumption cost
g7 Oil consumption cost
g8 Horse power gain

Table 2: Performance matrix

Bus g1 g2 g3 g4 g5 g6 g7 g8

a1 90 2.52 38 481 21.8 26.4 0.7 145
a2 76 2.11 70 420 22.0 25.5 2.7 110
a3 63 1.98 82 400 22.0 24.8 3.7 101
a4 90 2.48 49 477 21.9 25.1 1.0 138
a5 85 2.45 52 460 21.8 25.2 1.4 130
a6 72 2.20 73 425 23.1 27.4 2.8 112
a7 88 2.50 50 480 21.6 24.7 1.1 140
a8 87 2.48 56 465 22.8 27.6 1.4 135
a9 90 2.56 16 486 26.5 27.3 0.2 150
a10 60 1.95 95 400 23.3 24.8 4.4 96
.

a74 87 2.48 52 465 21.9 24.6 1.4 135
a75 86 2.50 55 456 22.0 25.1 1.5 130
a76 88 2.52 46 472 21.8 23.8 1.1 141

The diagnostic expert, assisted by a decision analyst, is able to make a more or less precise
assignment of few buses to the classes of technical state. The state of these buses, called reference
buses, is relatively well known to the expert, so they will serve to provide assignment examples in
successive iterations. In the first iteration, the expert provides a typical example for each one of
the four classes, and makes, moreover, an imprecise assignment of two other reference buses to the
two intermediate classes. This preference information is given in Table 3. For this initial preference
information, the possible and necessary assignments have been computed using the UTADISGMS

17

method implemented on the DecisionDeck Platform (http://decision-deck.sourceforge.net/)
as an open source software.

Table 3: Exemplary assignments of some reference buses in the first iteration

Reference bus Lower class (LDM) Upper class (RDM)

a1 C2 C2

a5 C3 C3

a7 C4 C4

a28 C2 C3

a40 C1 C1

a42 C2 C3

The resulting possible assignments review all possible consequences of the preference information
on sorting of the whole set of buses (see Table 4). One can see that the inferred model has assigned
all reference buses to their respective desired classes: a1 is assigned to C2, a5 to C3, etc. For most
of non-reference buses the possible assignment is non-univocal. Precisely, we have 9 non-reference
buses assigned to single class C1 or C4, 12 and 38 buses assigned, respectively, to the range of two
and three contiguous classes, and 11 busses which can be possibly assigned to all four classes.

Table 4: Possible assignments in the first iteration

LU
1

P
RU

1

P
Assigned buses

C1 C1 a6, a23, a40, a60, a62, a69
C1 C2 a8, a14, a17, a19

C1 C3

a2, a10, a12, a21, a24, a26, a27, a30, a34, a36, a38,
a39, a45, a46, a47, a48, a50, a53, a63, a66, a67

C1 C4 a3, a9, a11, a15, a16, a20, a31, a52, a58, a68, a70

C2 C2 a1
C2 C3 a25, a28, a42

C2 C4

a4, a13, a22, a33, a37, a41, a43, a44, a55, a56, a59,
a64, a65, a71, a73, a74, a75

C3 C3 a5
C3 C4 a32, a35, a51, a54, a57, a61, a76

C4 C4 a7, a18, a29, a49, a72

In the first iteration, when the preference information is yet rather poor, the possible weak
preference relation used to assess the necessary assignments is very rich, i.e., for most of pairs of buses
(ai, aj) it is true ai %

P aj , as well as aj %
P ai. Therefore, in most cases, one can observe that RU1

N (a) <
LU1

N (a) and, consequently, C1
N(a) = ∅. Table 5 summarizes the non-empty necessary assignments in

the first iteration. The necessary assignment is non-empty for the 4 reference buses and for 9 non-
reference ones assigned to the extreme classes. Remember that the method does not guarantee
that all imprecise assignments of reference actions are repeated in the necessary assignments. For
example, the range of necessary assignment for bus a28 is empty because for some compatible value
functions it is assigned to C2 and for some others to C3, but there is no compatible value function for
which the assignment of a28 to both classes would be feasible). Obviously, for every bus ai it holds
C1

N(a) ⊆ C1
P (a).

The UTADISGMS method is intended to be used interactively, so that the DM and the analyst
could provide assignment examples incrementally, looking at consequences of the introduced pref-

18

Table 5: Necessary assignments in the first iteration

LU
1

N
RU

1

N
Assigned buses

C1 C1 a6, a23, a40, a60, a62, a69
C2 C2 a1
C3 C3 a5
C4 C4 a7, a18, a29, a49, a72

erence information on the possible assignments of all actions. Let us suppose that considering the
results of the first iteration, our diagnostic expert feels confident that a30, a19, and a35 should be
assigned to class C1, C2 and C3, respectively. It appears, however, that the introduced preference
information is inconsistent, and no additive value function is compatible with the reference assign-
ments. The method states that the newly introduced assignments (a30 → C1) and (a19 → C2) cannot
be represented together by any additive value function. Then, the DM may want either to pursue
the analysis with this incompatibility, or to remove it. Suppose that our DM will remove one of
the two inconsistent exemplary assignments, precisely the one concerning a19. In consequence, the
system becomes consistent, and the corresponding results are presented in Table 7.

Table 6: Additional exemplary assignments in the second iteration

Reference bus Lower class (LDM) Upper class (RDM)

a30 C1 C1

a35 C3 C3

One can observe that the assignments are more tight with the growth of the preference infor-
mation. There are 10 non-reference buses, for which the possible assignments have changed with
respect to the first iteration (those buses are marked in bold in the table). For example, a11 and a41
are possibly assigned to classes C1, C2, and C3, but not to C4, as previously. As far as necessary
assignments are concerned, there are 5 additional buses assigned to the same class by all compatible
value functions: reference bus a35 and 4 non-reference buses have been assigned to class C1.

In the third iteration, the diagnostic expert provides two additional exemplary assignments (see
Table 8). As a consequence, 4 non-reference buses got a tighter range of possible assignments (those
buses are marked in bold in the table). Moreover, two of them are necessarily assigned to a non-empty
range of classes which they were not in the previous iteration.

The illustration of the use of the UTADISGMS method will be stopped at this stage. The DM
may be satisfied with the results, or may want to pursue the iterative process, either by adding some
new assignments of reference buses or by revising the previous judgments, which would result in new
possible and necessary assignments.

9 Conclusion

In this paper we presented a new multiple criteria method called UTADISGMS which sorts actions into
ordered class. The underlying preference model is a set of monotone non decreasing additive value
functions. The method applies to the case in which the classes are explicitly defined by thresholds
on the value that separated consecutive classes, and to the case where classes are implicitly defined
through the sorting examples. In order to specify the sorting model, the DM is asked to provide

19

Table 7: Possible and necessary assignments in the second iteration

LU
2

P
RU

2

P
Assigned buses

C1 C1 a6, a19, a23, a30, a40, a47, a60, a62, a63, a69
C1 C2 a8, a14, a17

C1 C3

a2, a10, a11, a12, a15, a20, a21, a24, a26, a27, a31, a34,
a36, a38, a39, a45, a46, a48, a50, a53, a66, a67, a70

C1 C4 a3, a9, a16, a52, a58, a68

C2 C2 a1
C2 C3 a25, a28, a41, a42, a43, a64

C2 C4

a4, a13, a22, a33, a37, a44, a55, a56, a59, a65, a71, a73,
a74, a75

C3 C3 a5, a35

C3 C4 a32, a51, a54, a57, a61, a76

C4 C4 a7, a18, a29, a49, a72

LU
2

N
RU

2

N
Assigned buses

C1 C1 a6, a19, a23, a30, a40, a47, a60, a62, a63, a69
C2 C2 a1
C3 C3 a5, a35

C4 C4 aa7, a18, a29, a49, a72

Table 8: Additional exemplary assignments in the third iteration

Reference bus Lower class (LDM) Upper class (RDM)

a26 C2 C2

a74 C4 C4

assignment examples (desired assignment for specific actions) which yield a set of compatible value
function.

In reference to the set of sorting examples, the method provides, for each action a, two intervals
of classes: the possible assignment corresponds to the interval of classes to which the action can
be assigned considering any compatible value functions individually, while the necessary assignment
corresponds to the interval of classes to which the action a can be assigned considering all compatible
value functions simultaneously. The necessary and possible assignments are computed through the
resolution of linear programs.

This new method provides new capabilities as compared to existing value based sorting methods
in several ways: firstly, it consider possible and necessary assignments which no previous method
did consider. Second, UTADISGMS make use of a very general and flexible preference model as it
considers all non-decreasing marginal value functions (rather than piece-wise linear marginal value
function). Third, it considers, when computing assignments all value functions compatible with the
assignment examples provided by the DM (and not only a representative one). Lastly, the method
makes it possible to account for both the threshold based and example based sorting procedures. We
envisage the following possible developments for future research:

• consideration of other type of preference information such as intensity of preferences and trade-

20

Table 9: Possible and necessary assignments in the third iteration

LU
3

P
RU

3

P
Assigned buses

C1 C1 a6, a19, a23, a30, a40, a47, a60, a62, a63, a69
C1 C2 a8, a14, a17, a27

C1 C3

a2, a10, a11, a12, a15, a20, a21, a24, a34
a36, a38, a39, a45, a46, a48, a50, a53, a66, a67, a70

C1 C4 a3, a9, a16, a52, a58, a68

C2 C2 a1, a26

C2 C3 a25, a28, a31, a41, a42, a43, a64
C2 C4 a4, a13, a22, a33, a37, a44, a55, a56, a59, a65, a71, a73, a75

C3 C3 a5, a35
C3 C4 a32, a51, a54, a61

C4 C4 a7, a18, a29, a49, a57, a72, a74, a76

LU
3

N
RU

3

N
Assigned alternatives

C1 C1 a6, a19, a23, a30, a40, a47, a60, a62, a63, a69
C2 C2 a1, a26

C3 C3 a5, a35
C4 C4 a7, a18, a29, a49, a57, a72, a74, a76

offs,

• extension of the approach to group decision,

• application of this methodology to interactive optimization problems,

• application of the methodology to some classical classification problems such as bankruptcy
risk or global risk evaluation and comparison with classical ordinal regression methodologies
(UTADIS, MHDIS, etc.) and other competitive methodologies such as discriminant analysis,
neural nets or support vector machine.

• improve the interactive process induced by the methodology, to support the DM in the elabo-
ration of robust recommendations

Acknowledgements : The authors acknowledge the support of the COST Action IC0602 “Algo-
rithmic Decision Theory”, www.algodec.org. The authors also wish to thank Mi losz Kadziński who
implemented the UTADISGMS method on the DecisionDeck Platform and run the calculations of
the illustrative example.

21

References

[DGJL80] J.M. Devaud, G. Groussaud, and E. Jacquet-Lagreze. UTADIS: Une methode de construc-
tion de fonctions d’utilite additives rendant compte de jugements globaux. In European
working group on MCDA, Bochum , Germany, 1980.

[FGS09] J. Figueira, S. Greco, and R. Slowinski. Building a set of additive value functions rep-
resenting a reference preorder and intensities of preference: GRIP method. European
Journal of Operational Research, 195(2):460–486, June 2009.

[GMS08] S. Greco, V. Mousseau, and R. Slowinski. Ordinal regression revisited: multiple criteria
ranking using a set of additive value functions. European Journal of Operational Research,
191(2):415–435, December 2008.

[Jac95] E. Jacquet-Lagrèze. An application of the UTA discriminant model for the evaluation
of sc R&D projects. In P. Pardalos, Y. Siskos, and C. Zopounidis, editors, Advances
in Multicriteria Analysis, Nonconvex Optimization and its Applications, pages 203–211.
Kluwer Academic, Dordrecht, 1995.

[KBO09] M. Koksalan and S. Bilgin Ozpeynirci. An interactive sorting method for additive utility
functions. Computers & Operations Research, 36(9):2565–2572, September 2009.

[KR93] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value
tradeoffs. J. Wiley, New York, 1993. second edition.

[KU03] Murat Koksalan and Canan Ulu. An interactive approach for placing alternatives in
preference classes. European Journal of Operational Research, 144:429–439, January 2003.

[MDF+03] V. Mousseau, L.C. Dias, J. Figueira, C. Gomes, and J.N. Cĺımaco. Resolving inconsis-
tencies among constraints on the parameters of an MCDA model. European Journal of
Operational Research, 147(1):72–93, 2003.

[Roy96] B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic, Dordrecht,
1996.

[ZD00a] C. Zopounidis and M. Doumpos. Building additive utilities for multi-group hierarchical
discrimination: The MHDIS method. Optimization Methods & Software, 14(3):219–240,
2000.

[ZD00b] C. Zopounidis and M. Doumpos. PREFDIS: a multicriteria decision support system
for sorting decision problems. Computers & Operations Research, 27(7-8):779–797, June
2000.

[ZD02] C. Zopounidis and M. Doumpos. Multicriteria classification and sorting methods: A
literature review. European Journal of Operational Research, 138(2):229–246, April 2002.

[ZS95] J. Zak and J. Stefanowski. Determining maintenance activities of motor vehicles using
rough sets approach. In Proceedings of the European Conference EUROMAINTENANCE
’ 94, pages 39–44. Amsterdam, 1995.

22

Appendices

A Proofs of section 3

A.1 Proof of Proposition 3.1

Proposition 3.1 For any action a ∈ A \ A∗, the example-based sorting procedure provides an
assignment a → [CLU (a), CRU (a)], such that LU(a) ≤ RU(a).

Proof. Let us suppose that :
LU (a) > RU(a) (36)

Consider the sets A∗+ ⊂ A∗ and A∗− ⊂ A∗ defined as A∗− = {a∗ ∈ A∗ : U(a∗) ≤ U(a)} and
A∗+ = {a∗ ∈ A∗ : U(a∗) ≥ U(a)}. (36) mean that there exists a∗− ∈ A∗− and a∗+ ∈ A∗+ such
that LDM(a∗−) = LU (a), RDM(a∗+) = RU(a) and LDM(a∗−) > RDM(a∗+). As the set of assignment
examples is supposed to be consistent with U , LDM(a∗−) > RDM(a∗+) implies that U(a∗−) > U(a∗+).
However, as a∗+ ∈ A∗+ and a∗− ∈ A∗−, it holds that U(a∗−) ≤ U(a∗+), which contradicts the
hypothesis and concludes the proof.

A.2 Proof of Proposition 3.2

Proposition 3.2 The example-based sorting procedure assigns each reference action a∗ ∈ A∗ to an
interval of classes [CLU (a∗), CRU (a∗)], such that:

LU (a∗) ≥ LDM(a∗) (37)

RU(a∗) ≤ RDM(a∗) (38)

Proof. According to (5) and (6) :

LU (a∗) = Max
{
LDM(a∗′) : U(a∗′) ≤ U(a∗), a∗′ ∈ A∗

}
(39)

RU(a∗) = Min
{
RDM(a∗′) : U(a∗′) ≥ U(a∗), a∗′ ∈ A∗

}
(40)

Since U(a∗) ≤ U(a∗), then LDM(a∗) ∈ {LDM(a∗′) : U(a∗′) ≤ U(a∗), a∗′ ∈ A∗} and, therefore,
Max

{
LDM(a∗′) : U(a∗′) ≤ U(a∗), a∗′ ∈ A∗

}
≥ LDM(a∗), i.e. LU (a∗) ≥ LDM(a∗). Analogous proof

holds for RU(a∗) ≤ RDM(a∗).

A.3 Proof of Proposition 3.3

Proposition 3.3 Consider the case where the DM provides precise assignment examples only, i.e.,
LDM(a∗) = RDM(a∗), for each a∗ ∈ A∗. Assuming the use of a single value function U in the
example-based sorting procedure, if we choose, for each h = 1, ..., p−1, the threshold bUh in the interval
]Maxa∗→Ch

{U(a∗)},Mina∗→Ch+1
{U(a∗)}], we obtain a threshold-based sorting procedure that restores

the assignment examples and assigns each non-reference action a ∈ A \ A∗ to a single class in the
interval [CLU (a), CRU (a)] stemming from the example-based sorting procedure.

23

Proof. As we suppose the assignment examples to be consistent with U , we have ∀a∗, b∗ ∈ A∗,
U(a∗) ≥ U(b∗) ⇒ RDM(a∗) ≥ LDM(b∗). Moreover, since all assignment examples are precise
(LDM(a∗) = RDM(a∗)), we will use LDM (a∗) to refer to the category to which the DM wishes to
assign a∗. Therefore, the fact that assignment examples are consistent with U can be reformulated
as ∀a∗, b∗ ∈ A∗, U(a∗) ≥ U(b∗) ⇒ LDM(a∗) ≥ LDM(b∗). If we choose the threshold values bUh in
the interval]Maxa∗→Ch

{U(a∗)},Mina∗→Ch+1
{U(a∗)}], for each h = 1, ..., p − 1, then any a ∈ A for

which U(a) ∈ [bUh−1, b
U
h [will be assigned by the threshold-based sorting procedure to category Ch (see

Definition 3.1). As a consequence, the assignment examples will be restored by the threshold-based
sorting procedure.

Considering a non-reference action a ∈ A \ A∗, we distinguish two cases:

i) ∃h ∈ {1, ..., p} such that U(a) ∈ [Mina∗→Ch
{U(a∗)},Maxa∗→Ch

{U(a∗)}],

ii) ∃h ∈ {1, ..., p− 1} such that U(a) ∈]Maxa∗→Ch
{U(a∗)},Mina∗→Ch+1

{U(a∗)}[.

case i):
Considering Definition 3.3, we have LU (a) = RU(a) = h, i.e., a is assigned to class Ch by the
example-based sorting procedure. In this case, the interval [CLU (a), CRU (a)] boils down to Ch.
Moreover, since U(a) ∈ [Mina∗→Ch

{U(a∗)},Maxa∗→Ch
{U(a∗)}], a will be assigned to class Ch by the

threshold-based sorting procedure, whatever the value of the thresholds
bh−1 ∈]Maxa∗→Ch−1

{U(a∗)},Mina∗→Ch
{U(a∗)}] and bh ∈]Maxa∗→Ch

{U(a∗)},Mina∗→Ch+1
{U(a∗)}].

case ii):
Considering Definition 3.3, we have LU (a) = h and RU(a) = h + 1, i.e. a is assigned imprecisely to
interval of classes [Ch, Ch+1] by the example-based sorting procedure.
Moreover, since U(a) ∈]Maxa∗→Ch

{U(a∗)},Mina∗→Ch+1
{U(a∗)}[, a will be assigned by the threshold-

based sorting procedure to class Ch+1 if bh ∈]Maxa∗→Ch
{U(a∗)}, U(a)], or to class Ch if bh ∈

]U(a),Mina∗→Ch+1
{U(a∗)}].

A.4 Proof of Proposition 3.4

Proposition 3.4 Consider the case where the DM provides possibly imprecise assignment examples,
i.e., LDM (a∗) ≤ RDM(a∗) for each a∗ ∈ A∗. Assuming the use of a single value function U in
the example-based sorting procedure, if we choose, for each h = 1, ..., p − 1, the threshold bUh in the
interval I(bUh) =]Maxa∗ :RDM (a∗)≤h {U(a∗)} ,Mina∗ :LDM(a∗)>h {U(a∗)} [, with bUh < bUh+1 we obtain a
threshold-based sorting procedure that assigns each reference action a∗ ∈ A∗ to a single class in the
interval [CLDM(a∗), CRDM (a∗)], and assigns each non-reference action a ∈ A \ A∗ to a single class in
the interval [CLU (a), CRU (a)] stemming from the example-based sorting procedure.

Proof. The proof will consist of the five following points:

1. The set of possible values for bh, I(bUh), is a non-empty interval.

2. If bUh ≤ Maxa∗ :RDM (a∗)≤h {U(a∗)}, then the threshold-based sorting procedure assigns each
a∗′ ∈ A∗ such that bUh ≤ U(a∗′) ≤ Maxa∗ :RDM (a∗)≤h {U(a∗)} inconsistently with the statement
of the DM, in the sense that a∗′ is assigned to a class Ck with k > RDM(a∗′).

3. If bUh > Mina∗ :LDM(a∗)>h {U(a∗)}, then the threshold-based sorting procedure assigns each a∗′ ∈
A∗ such that Mina∗ :LDM(a∗)>h {U(a∗)} ≤ U(a∗′) < bUh inconsistently with the statement of the
DM, in the sense that a∗′ is assigned to a class Ck with k < LDM(a∗′).

24

4. If bUh ∈ I(bUh), h = 1, ..., p− 1, then the threshold-based sorting procedure assigns each a∗ ∈ A∗

to a single class Ck in the interval [CLDM (a∗), CRDM(a∗)], and each a ∈ A \ A∗ in a single class
Ck in the interval [CLU (a), CRU (a)].

5. For each each a∗ ∈ A∗, and for each Ck ∈ [CLDM (a∗), CRDM(a∗)], there exist thresholds bUh ∈ I(bUh),
h = 1, ..., p− 1, such that the threshold-based sorting procedure assigns a∗ to Ck; for each each
a ∈ A\A∗, and for each Ck ∈ [CLU (a), CRU (a)], there exist thresholds bUh ∈ I(bUh), h = 1, ..., p−1,
such that the threshold-based sorting procedure assigns a to Ck.

Proof of 1.
Consider b∗, c∗ ∈ A∗ such that U(b∗) = Maxa∗ :RDM (a∗)≤h {U(a∗)} and U(c∗) = Mina∗ :LDM(a∗)>h {U(a∗)}.
Therefore, we have LDM(c∗) > h ≥ RDM(b∗). As we suppose the assignment examples provided by
the DM are consistent with U (see (4)), we have U(b∗) < U(c∗), i.e.,
Maxa∗ :RDM (a∗)≤h {U(a∗)} < Mina∗ :LDM(a∗)>h {U(a∗)}.

Proof of 2.
Consider a∗′ ∈ A∗ such that bUh ≤ U(a∗′) ≤ Maxa∗ :RDM (a∗)≤h {U(a∗)}.
Since bUh ≤ U(a∗′), according to Definition 3.1, a∗′ should be assigned to class Ck with k > h.
As U(a∗′) ≤ Maxa∗ :RDM (a∗)≤h {U(a∗)}, we have RDM(a∗′) ≤ h.
Therefore, the threshold-based sorting procedure assigns a∗′ inconsistently with the DM’s statement.

Proof of 3.
Consider a∗′ ∈ A∗ such that Mina∗ :LDM(a∗)>h {U(a∗)} ≤ U(a∗′) < bUh .
Since U(a∗′) < bUh , according to Definition 3.1, a∗′ should be assigned to class Ck with k ≤ h.
As Mina∗ :LDM(a∗)>h {U(a∗)} ≤ U(a∗′), we have LDM(a∗′) > h.
Therefore, the threshold-based sorting procedure assigns a∗′ inconsistently with the DM’s statement.

Proof of 4.
Consider a∗′ ∈ A∗ such that U(a∗′) ∈ [bUk−1, b

U
k [and, therefore, for Definition 3.1, a∗′ → Ck. Since, by

hypothesis,
bUk−1 ∈]Maxa∗ :RDM (a∗)≤k−1 {U(a∗)} ,Mina∗:LDM (a∗)>k−1 {U(a∗)}]

and
bUk ∈]Maxa∗ :RDM (a∗)≤k {U(a∗)} ,Mina∗ :LDM(a∗)>k {U(a∗)}],

we have

Maxa∗:RDM (a∗)≤k−1 {U(a∗)} < bUk−1 ≤ U(a∗′) < bUk ≤ Mina∗ :LDM(a∗)>k {U(a∗)} .

From
Maxa∗ :RDM (a∗)≤k−1 {U(a∗)} < U(a∗′)

we get RDM(a∗′) ≥ k, while from

U(a∗′) < Mina∗ :LDM(a∗)>k {U(a∗)}

we get LDM(a∗′) ≤ k. Thus, Ck ∈ [CLDM(a∗′), CRDM (a∗′)].

Analogously, for a ∈ A \ A∗ for which U(a) ∈ [bUk−1, b
U
k [and, consequently, a → Ck, we have

Ck ∈ [CLU (a), CRU (a)].

Proof of 5.
Consider a∗′ ∈ A∗ such that Ck ∈ [CLDM (a∗′), CRDM (a∗′)].

Let us fix the thresholds bUh , h = 1, ..., p− 1, such that:

25

• bUh < U(a∗′) for each h < k

• bUh ≥ U(a∗′) for each h ≥ k

with bUh < bUh+1.
For the above thresholds, a∗′ is assigned by the threshold-based procedure to class Ck. Hence, we
need to prove that there always exists a set of thresholds defined as above which verify

bUh ∈ I(bUh) =]Maxa∗ :RDM(a∗)≤h {U(a∗)} ,Mina∗ :LDM(a∗)>h {U(a∗)} [, h = 1, ..., p− 1. (i)

Consider h < k. For (i) we have

U(a∗′) > bUh > Maxa∗ :RDM (a∗)≤h {U(a∗)}

which holds because RDM(a∗′) ≥ k > h.

Consider h ≥ k. For (i) we have

U(a∗′) ≤ bUh < Mina∗ :LDM(a∗)>h {U(a∗)}

which holds because LDM(a∗′) ≤ k ≤ h.

26

B Proofs of section 4

B.1 Proof of Proposition 4.2

Proposition 4.2 Given a set A∗ of assignment examples and a corresponding set UA∗ of compatible
value functions, it holds, for each a ∈ A,

• LU
P (a) ≤ LU

N(a)

• RU
N(a) ≤ RU

P (a)

• LU
P (a) ≤ RU

P (a)

Moreover, for any a ∈ A, we have:

• CP (a) ⊆ [LU
P (a), RU

P (a)],

• if LU
N (a) ≤ RU

N(a), then CN(a) = [LU
N (a), RU

N(a)],

• if LU
N (a) > RU

N (a), then CN(a) = ∅.

Proof. Consider

A∗−
all (a) = {a∗ ∈ A∗ : ∀U ∈ UA∗ , U(a∗) ≤ U(a)},

A∗−
one(a) = {a∗ ∈ A∗ : ∃U ∈ UA∗ for which U(a∗) ≤ U(a)},

A∗+
all (a) = {a∗ ∈ A∗ : ∀U ∈ UA∗ , U(a∗) ≥ U(a)},

A∗+
one(a) = {a∗ ∈ A∗ : ∃U ∈ UA∗ for which U(a∗) ≥ U(a)}.

∀a ∈ A

Observe that A∗−
all (a) ⊆ A∗−

one(a) from which we get:

LU
P (a) = Maxa∗∈A∗

{
LDM(a∗) : ∀U ∈ UA∗ , U(a∗) ≤ U(a)

}

≤ Maxa∗∈A∗

{
LDM(a∗) : ∃U ∈ UA∗ for which U(a∗) ≤ U(a)

}
= LU

N(a)

Analogously, from A∗+
all (a) ⊆ A∗+

one(a), we get:

RU
N (a) = mina∗∈A∗

{
RDM(a∗) : ∃U ∈ UA∗ for which U(a) ≤ U(a∗)

}

≥ mina∗∈A∗

{
RDM(a∗) : ∀U ∈ UA∗ for which U(a) ≤ U(a∗)

}
= RU

P (a)

For all U ∈ UA∗ and for all a∗− ∈ A∗−
all (a) and a∗+ ∈ A∗+

all (a) we have U(a∗−) ≤ U(a) ≤ U(a∗+)
which implies LDM(a∗−) ≤ RDM(a∗+). Therefore

max{LDM (a∗) : a∗ ∈ A∗−(a)} ≤ min{RDM(a∗) : a∗ ∈ A∗+(a)}. (41)

From the definition of LU
P (a) and RU

P (a), we get

LU
P (a) = min{LDM (a∗) : a∗ ∈ A∗−(a)}

and
RU

P (a) = max{RDM (a∗) : a∗ ∈ A∗+(a)},

such that (41) gives
LU
P (a) ≤ RU

P (a).

Observe that for any a ∈ A and for any U ∈ UA∗ , LU (a) ≥ LU
P (a) and RU(a) ≤ RU

P (a), i.e.

[LU(a), RU(a)] ⊆ [LU
P (a), RU

P (a)]. (42)

For (11), (42) gives
CP (a) ⊆ [LU

P (a), RU
P (a)].

27

Observe that for any a ∈ A ,

LU
N (a) = max

{
LU(a) : U ∈ UA∗

}

and
RU

N(a) = min
{
RU(a) : U ∈ UA∗

}
.

For (11), if LU
N (a) ≤ RU

N (a), then CN(a) = [LU
N (a), RU

N(a)]. Instead, again for (11), if LU
N (a) > RU

N (a),
then CN(a) = ∅.

B.2 Proof of Proposition 4.3

Proposition 4.3 CN(a) 6= ∅ if and only if the following strict continuity condition is satisfied:
for all a∗, b∗ ∈ A∗ such that LDM (a∗) > RDM(b∗) there are no two compatible value functions U, U ′ ∈
UA∗ for which U(a) ≥ U(a∗) and U ′(b∗) ≥ U ′(a).

Proof. Let us observe that if for a ∈ A, CN(a) = ∅, then there exist U, U ′ ∈ UA∗ such that

[LU(a), RU(a)] ∩ [LU ′

(a), RU ′

(a)] = ∅. (43)

Supposing without loss of the generality that LU(a) > RU ′

(a), (43) is equivalent to the fact that
there exist a∗, b∗ ∈ A∗ for which LDM(a∗) > RDM(b∗), U(a) ≥ U(a∗) and U ′(b∗) ≥ U ′(a), such that

LU (a) = max{LDM (c∗) : U(c∗) ≤ U(a), c∗ ∈ A∗} ≤ LDM (a∗)

>

RDM(b∗) ≤ min{RDM (c∗) : U ′(c∗) ≥ U ′(a), c∗ ∈ A∗} = RU ′

(a).

Thus, there do not exist U, U ′ ∈ UA∗ for which U(a) ≥ U(a∗) and U ′(b∗) ≥ U ′(a), i.e. strict continuity
holds, if and only if for all U, U ′ ∈ UA∗ , [LU(a), RU(a)] ∩ [LU ′

(a), RU ′

(a)] 6= ∅, and consequently
CN(a) 6= ∅.

B.3 Proof of Proposition 4.4

Proposition 4.4 The no jump property (12) holds, and therefore CP (a) = [LU
P , R

U
P], if and only if

the weak continuity (4.4) holds.

Proof. Let us start by proving that weak continuity (4.4) is necessary for the no jump property (12).
For contradiction, let us suppose that weak continuity does not hold and therefore that:

a) there exist a∗, b∗ ∈ A∗ such that LDM(a∗) > RDM(b∗), and U ′, U ′′ ∈ UA∗ for which U ′(a) ≥
U ′(a∗) and U ′′(b∗) ≥ U ′′(a), but

b) there does not exist U ′′′ ∈ UA∗ for which U ′′′(a∗) ≥ U ′′′(a) ≥ U ′′′(b∗).

28

Consider {
U+
A∗(a, a∗) = {U ∈ UA∗ : such that U(a) ≥ U(a∗)}

U−
A∗(a, b∗) = {U ∈ UA∗ : such that U(b∗) ≥ U(a)}

Since the set of assignment examples is consistent with all value functions U ∈ UA∗ according
to (4), LDM(a∗) > RDM(b∗) implies that for all U ∈ UA∗ we have U(a∗) > U(b∗). Therefore b)
implies that for all U ∈ UA∗ , U(a) ≥ U(a∗) > U(b∗) or U(a∗) > U(b∗) ≥ U(a). This means that
U+
A∗(a, a∗) ∪ U−

A∗(a, b∗) = UA∗ and U+
A∗(a, a∗) ∩ U−

A∗(a, b∗) = ∅. Since from a) U ′(a) ≥ U ′(a∗),
U+
A∗(a, a∗) 6= ∅ because U ′ ∈ U+

A∗(a, a∗). Analogously, since from a) U ′′(b∗) ≥ U ′′(a), U−
A∗(a, b∗) 6= ∅

because U ′′ ∈ U−
A∗(a, b∗). For all U+ ∈ U+

A∗(a, a∗) and U− ∈ U−
A∗(a, b∗) we have

LU+

(a) = Max{LDM (c∗) : U+(c∗) ≤ U+(a), c∗ ∈ A∗} ≥ LDM (a∗)

>

RDM(b∗) ≥ Min
{
RDM(c∗) : U−(c∗) ≥ U−(a), c∗ ∈ A∗

}
= RU−

(a),

such that there is no U ∈ UA∗ for which [LU (a), RU(a)]∩ [RDM +1, LDM −1] 6= ∅, i.e. for all U ∈ UA∗

and h ∈ [RDM + 1, LDM − 1], h /∈ [LU (a), RU(a)]. This means that no jump property (12) does not
hold. Thus we proved that (4.4) is necessary for the no jump property (12).
Now we prove that (4.4) is sufficient for the no jump property (12) to hold. Two cases are possible:

1) for all a∗, b∗ ∈ A∗ such that LDM(a∗) > RDM(b∗) there do not exist U ′, U ′′ ∈ UA∗ for which
U ′(a) ≥ U ′(a∗) and U ′′(b∗) ≥ U ′′(a),

2) there exist a∗, b∗ ∈ A∗ and U ′, U ′′ ∈ UA∗ such that LDM(a∗) > RDM(b∗) and U ′(a) ≥ U ′(a∗)
and U ′′(b∗) ≥ U ′′(a).

Case 1) For 4.3 CN(a) 6= ∅. Remembering that

CN(a) =
⋂

U∈UA∗

[LU (a), RU(a)],

CN(a) 6= ∅ implies that for all U ′, U ′′ ∈ UA∗ ,

[LU ′

(a), RU ′

(a)] ∩ [LU ′′

(a), RU ′′

(a)] 6= ∅, (44)

because CN(a) ⊆ [LU ′

(a), RU ′

(a)] ∩ [LU ′′

(a), RU ′′

(a)]. Remembering that

CP (a) =
⋃

U∈UA∗

[LU(a), RU(a)],

from (44) we have that (12) is satisfied, i.e. there are no jumps in the classes of possible assignment.
Case 2) Let us observe that

LU ′

(a) = max{LDM (c∗) : U ′(c∗) ≤ U ′(a), c∗ ∈ A∗} ≤ LDM(a∗)

>

RDM(b∗) ≤ min{RDM(c∗) : U ′′(c∗) ≥ U ′′(a), c∗ ∈ A∗} = RU ′′

(a)

such that
[LU ′

(a), RU ′

(a)] ∩ [LU ′′

(a), RU ′′

(a)] = ∅

29

and therefore there could be a jump with respect to some classes Ch belonging to [LDM (b∗), RDM(a∗)].
However, for weak continuity (4.4), we have that there exists U ′′′ ∈ UA∗ for which U ′′′(a∗) ≥ U ′′′(a) ≥
U ′′′(b∗) and thus

LU ′′′

(a) = max{LDM (c∗) : U ′′′(c∗) ≤ U ′′′(a), c∗ ∈ A∗} ≥ LDM(b∗)

and
RU ′′′

(a) = min{RDM (c∗) : U ′′′(c∗) ≥ U ′′′(a), c∗ ∈ A∗} ≤ RDM(a∗),

such that, for proposition 3.1,

LDM(b∗) ≤ LU ′′′

(a) ≤ RU ′′′

(a) ≤ RDM(a∗).

If there does not exist any other d∗ ∈ A∗ different from a∗ and b∗ such that U ′′′(a∗) ≥ U ′′′(d∗) ≥
U ′′′(b∗), we have LU ′′′

(a) = LDM (b∗) and RU ′′′

(a) = RDM(a∗), such that

[LU ′′′

(a), RU ′′′

(a)] = [LDM(b∗), RDM(a∗)],

and therefore there is no jump with respect to classes Ch belonging to [LDM (b∗), RDM(a∗)].
If instead there exists some other d∗ ∈ A∗ different from a∗ and b∗, such that U ′′′(a∗) ≥

U ′′′(d∗) ≥ U ′′′(b∗), there could continue to be some jump with respect to to classes Ch belonging
to [LDM(b∗), RDM(a∗)], if

1) U ′′′(a) ≥ U ′′′(d∗) and LDM(d∗) > RDM(b∗), or

2) U ′′′(a) ≤ U ′′′(d∗) and RDM(d∗) < LDM (a∗).

In fact:

• in case 1), we would have

LU ′′′

(a) = max{LDM (c∗) : U ′′′(c∗) ≤ U ′′′(a), c∗ ∈ A∗} ≥ LDM(d∗) > RDM(b∗)

such that [LU ′′

(a), RU ′′

(a)] ∩ [LU ′′′

(a), RU ′′′

(a)] = ∅;

• in case 2), we would have

RU ′′′

(a) = min{RDM(c∗) : U ′′′(c∗) ≥ U ′′′(a), c∗ ∈ A∗} ≤ RDM(d∗) < LDM(a∗)

such that [LU ′

(a), RU ′

(a)] ∩ [LU ′′′

(a), RU ′′′

(a)] = ∅.

However, observe that for weak continuity (4.4), we have that there exist U iv, Uv ∈ UA∗ for which
U iv(a∗) ≥ U iv(a) ≥ U iv(d∗) and Uv(d∗) ≥ U iv(a) ≥ U iv(b∗), such that we can repeat the same
reasoning until there is no more space for some jump.

30

B.4 Proof of Corollary 4.1

Corollary 4.1 If the set UA∗ of compatible value functions satisfies the weak continuity (4.4),
the example-based sorting procedure assigns each reference action a∗ ∈ A∗ to an interval of classes
[LU

P (a∗), RU
P (a∗)] ⊆ [LDM(a∗), RDM(a∗)].

Proof. Since we are supposing that weak continuity (4.4) holds and for 4.4, in this case CP (a) =
[LU

P (a∗), RU
P (a∗)]. Moreover, for proposition each compatible value functions in the corresponding

example-based sorting procedure assigns each reference action a∗ ∈ A∗ to an interval of classes such
that

LU(a∗) ≥ LDM (a∗) (45)

RU(a∗) ≤ RDM(a∗). (46)

Therefore also

LU
P (a∗) ≥ LDM (a∗) (47)

RU
P (a∗) ≤ RDM(a∗), (48)

which gives [LU
P (a∗), RU

P (a∗)] ⊆ [LDM(a∗), RDM(a∗)].

B.5 Proof of Proposition 4.5

Proposition 4.5 If the set UA∗ of compatible value functions is convex, the CP (a) = [LU
P (a), RU

P (a)],
i.e. the no jump property (12) holds.

Proof. We prove that if the set UA∗ of compatible value functions is convex, then weak continuity (4.4)
is satisfied, because, on the basis of 4.4, this is sufficient for no jump property (12). Let us suppose
that there exist a∗, b∗ ∈ A∗ such that LDM(a∗) > RDM(b∗) and U, U ′ ∈ UA∗ for which U(a) ≥ U(a∗)
and U ′(b∗) ≥ U ′(a). Since UA∗ is convex, then for all α ∈ [0, 1], also αU + (1− α)U ′ ∈ UA∗ . Thus we
look for U ′′ = αU + (1 − α)U ′ such that U ′′(a∗) > U ′′(a) > U ′′(b∗), that is

U(a∗) + (1 − α)U ′(a∗) > U(a) + (1 − α)U ′(a) > αU(b∗) + (1 − α)U ′(b∗) (i)

Let us remember that since the set of assignment example is consistent, from LDM (a∗) > RDM(b∗)
we get U(a∗) > U(b∗) and U ′(a∗) > U ′(b∗). Thus from (i) we get

αU(a∗) + (1 − α)U ′(a∗) > αU(a) + (1 − α)U ′(a)

⇔

α[U(a∗) − U ′(a∗) − U(a) + U ′(a)] > U ′(a) − U ′(a∗)

⇔

α[U ′(a∗) − U ′a) + U(a) − U(a∗)] < U ′(a∗) − U ′a)

⇔

α <
U ′(a∗) − U ′a)

[U ′(a∗) − U ′a) + U(a) − U(a∗)]

and
αU(a) + (1 − α)U ′(a) > αU(b∗) + (1 − α)U ′(b∗)

31

⇔

α[U(a) − U ′(a) − U(b∗) + U ′(b∗)] > U ′(b∗) − U ′(a)

⇔

α[U(a) − U(b∗) + U ′(b∗) − U ′(a)] > U ′(b∗) − U ′(a)

⇔

α >
U ′(b∗) − U ′(a)

[U(a) − U(b∗) + U ′(b∗) − U ′(a)]
.

This means that if U ′′ = αU + (1 − α)U ′ and we fix

U ′(a∗) − U ′a)

[U ′(a∗) − U ′a) + U(a) − U(a∗)]
> α >

U ′(b∗) − U ′(a)

[U(a) − U(b∗) + U ′(b∗) − U ′(a)]

we get U”(a∗) > U”(a) > U”(b∗), which concludes the proof.

B.6 Proof of Proposition 4.6

Proposition 4.6 If UA∗ is the set of all additive compatible value functions, then CP (a) =
[LU

P (a), RU
P (a)], i.e. the no jump property (12) holds.

Proof. On the basis of Proposition 4.5, we have simply to prove that if UA∗ is the set of all additive
compatible value functions, then it is convex. Observe that, for any U, U ′ ∈ UA∗UA∗ and all a, b ∈ A
if

U(a) =

n∑

j=1

uj(gj(a)) ≥
n∑

j=1

uj(gj(b)) = U(b),

and

U ′(a) =

n∑

j=1

u′
j(gj(a)) ≥

n∑

j=1

u′
j(gj(b)) = U ′(b),

then also
n∑

j=1

(αuj(gj(a)) + (1 − α)uj(gj(a)) ≥
n∑

j=1

αuj(gj(b)) + (1 − α)u′
j(gj(b))

Therefore, if U, U ′ ∈ UA∗ are additive compatible value functions, also U ′′(x) =
∑n

j=1 u
′′
j (gj(a)

such that for all j ∈ G u′′
j (x) = (αuj(gj(x)) + (1 − α)uj(gj(x)) is an additive compatible value

function. Since U ′′ = αU + (α)U ′, then if UA∗ is the set of all additive compatible value functions, it
is convex.

32

