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ABSTRACT

The context of this work is the analysis of depth 
electroencephalographic signals recorded with depth 
electrodes during seizures in patients with drug-resistant 
epilepsy. Usually, different phases are observed during the 
seizure process and we aim to determine how cerebral 
structures get involved during these phases, in particular 
whether some structures can “drive” other ones. To this end, 
we consider a pair of signals and use transfer entropy which 
needs beforehand to choose efficiently the size of two 
conditioning vectors built on the past values of these signals. 
In this contribution, we extend a partial mutual information 
based technique, first developed for monochannel prediction 
models, to the case of two channels. Experimental results on 
signals generated either by a linear autoregressive model or 
by a physiology-based model of coupled neuronal 
populations support the relevance of the proposed approach. 

Index Terms — Effective connectivity, partial mutual 
information, transfer entropy

1. INTRODUCTION 

Over the last decade, some measures have been developed 
to deal with functional connectivity and effective 
connectivity between different cortical sites, such as in 
chaotic systems and multivariate neurobiological signals [1-
4], which is an important topic in neuroscience. In [2], a 
theoretical information measure named Transfer Entropy 
(TE) was proposed to identify the direction of the 
information flow and to quantify the strength of coupling 
between complex systems. This model-free technique can 
be considered as an extension of the linear Granger 
causality index, which is based on a parametric linear 
modeling of observations, to a non parametric index well 
suited to non linear signals. When defined from signal Y  to 
X , TE depends on two transition (conditional) probabilities 

measures characterizing stochastic dynamical links. One of 
them considers transitions from past values of X  to the 
current value, and the other one considers transitions from 

past values of X  and  to the same current value. Its 
estimation can be strongly dependent on the sizes (named k
and  in the sequel) of the two vectors containing the past 
values of 

Y

l
X  and Y  respectively. The problem addressed in 

this contribution is to choose k  and  for pairs of signals 
that could be not well characterized by linear AR models. If 
we assume AR modeling, the standard Akaike methodology 
can be used. If we do not assume it, a possible approach is 
to select nonlinear predictors in a given class. This implies 
order determination and parameters estimation. For one 
channel (signal 

l

X  conditioned only on its own past), a 
simpler approach based on partial mutual information (PMI) 
was first proposed by Sharma in [5] to build a robust and 
effective probabilistic forecast model. The corresponding 
algorithm requires only computation of mutual information 
for 2D distributions. Compared to the Mutual Information 
criterion (MI) [6], PMI takes interdependences between 
candidate variables into account and is suitable for both 
linear and nonlinear models. In this paper, transfer entropy 
is first presented in section 2.1, before giving some details 
on PMI (section 2.2.1). In section 2.2.2, we extend PMI to 
select predictors in two-channel signals using two 
approaches for characterizing models orders and we 
introduce them in TE estimation algorithm. Experimental 
results are presented in section 3 before drawing some 
conclusions. 

2. METHODS AND MATERIALS 

2.1. Transfer Entropy 
In the sequel, p

nu denotes 1 1, ...,n n n pu u u .

Considering a k -th order Markov process X , we have 
' '
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By considering the auxiliary random process Y , relation (1) 
can be extended to formalize the absence of information 
flow from Y  to X  (for given  and  values): k l
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The deviation from this assumption can be quantified using 
the Kullback pseudo-metric, which leads to define the 
transfer entropy from Y  to X
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where the ratio in (3) corresponds to the Radon-Nikodym 
derivative of the numerator conditional probability measure 
with respect to the denominator's one [7]. TE is not 
symmetric. It can be estimated from observations 

, , 1,...,n nx y n N , using a kernel discrete estimation of 

1, ,k l
n n nX X Y  distribution [2]: 
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which depends on a neighborhood size (radius r ). Then, it 
can be used to compute the estimation 

1
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where conditional probabilities in (5) are obtained from 
estimated joint probabilities in (4).  is defined by .

0 1x , 0 0x ;  is the sup-norm and 

summation is performed on 1,..., 1k N . The value of 

is chosen in the linear region of the curve 

r

ln lnr C r

where  is the average of the  values. In [4], the 
value of k  is determined heuristically from the auto-
correlation function of 

C r ,n rC

X  and the parameter  is set to 1. l

2.2. Determination of k and l using PMI 

2.2.1. Order determination for one signal 
PMI measures the amount of information shared by X and

 while discounting the possibility that a third variable Y Z
drives both X  and . It was used in [5] to select efficient 
regressors (predictors) in past values of a process to predict 
(linearly or non-linearly) its current value. It takes the 
interdependences among candidate variables into account, 
and hence can be more relevant than the Mutual Information 
(MI) criterion [6]. PMI of 

Y

,X Y  given Z  is defined as 

' '

' '

,' ' ' 'PMI , MI , = ln ,X Y

X Y

dP
X Y X Y E X Y

d P P

]

(6)

where ' [ |X X E X Z  and .' [ | ]Y Y E Y Z

' ',X YP 'XP,  and  are the joint and marginal probability 

measures for the pair ( '
'YP

, ')X Y . As in [5] the joint density 
probability of the pair ( , )X Z  is estimated as a kernel 
estimation from realizations ( , )i ix z , . With a 
Gaussian kernel whose covariance is chosen to be equal to 
the sample joint covariance of ( ,

1,..,i n

)X Z , then |E X Z  can 
be written as 

1[ | ]
1

i i i ZZ XZ
n TE X Z w x Z z S S

i
 (7) 

where  is the sample cross-covariance between XZS X  and 
Z , ZZS is the sample covariance of Z , and  is given by: iw

1,..,
( ) / ( )i i

l n
w GK Z z GK Z zl  (8) 

with 
11/22

2( ) 2 exp
2

T
K ZZ

ZZ
u S u

GK u S .

 is a smoothing parameter chosen as in [5]. Let us 
consider a univariate stationary process nX  and suppose we 
want to choose an efficient subset Z  of regressors in the set 

max, 1,..,c n iZ X i n  to predict nX  (i.e. nY X  in 
Figure 1), where  is the maximal predictor lag value. 
The algorithm proposed by Sharma to build 

maxn
Z  is described 

in Figure 1.

2.2.2. Extension of PMI to 2 signals 
We proposed two approaches (Method 1 and Method 2) to 
extend the original PMI to a bivariate time series to 
determine the orders  and l needed to compute 
as in section 2.1. 

k Y XTE

Method 1: At the first step, the candidate set 
c cx cyZ Z Z  initially contains lag versions of both X

( cxZ ) and Y  ( cyZ ), and the forecasting target is nX .
Running PMI algorithm (see Figure 1), we get 

xx xZ yZ Z  where xxZ  and xyZ  are subsets of selected 
predictors extracted from past values of X  and 
respectively. The orders k  and  are finally equal to the 
maximal lags in 

Y
l

xxZ  and xyZ .

Method 2: We run PMI algorithm twice. Firstly, we do not 
use Y . From the initial lag versions of X , cxZ , we obtain 
a new set xxZ . In a second step, we keep this set xxZ  and 
the algorithm searches in the set xx cyZ Z  to get 

Zxx xyZ . Finally, the orders  and l are obtained as in 
the first method. 

k



Start

Fig. 1. Algorithm flow chart of PMI 

3. EXPERIMENTAL RESULTS 

In this section, we used Method 1 and Method 2 to compute 
X YTE  and  on two types of signals. The first one 

was a toy linear AR model and the other one was a realistic 
EEG model. Each experiment was repeated 100 times and 
the following results correspond to averaged values. 

Y XTE

3.1. Linear Model 

For the linear stochastic system we considered, the 
following two signals were generated: 

1 4
'

1

0.6 0.4

0.6
n n n

n n n

nX X X

Y X W

W
 (9) 

where  and  were independent white Gaussian noises 
with zero means and unit variances. Figure 2 displays 
(in ln space) between signals 

nW '
nW

( )C r
X  and  (Figure 2.A) and 

the corresponding TE values vs. ln r  (Figure 2.B). 
According to Figure 2, transfer entropy is well estimated 
using both methods. The flow propagation from signal 

Y

X
to signal Y  is correctly established, the highest dynamics 
being obtained using Method 1. It is also clear that there 
was no influence of signal  to Y X .
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Fig. 2. Results of Transfer Entropy between X  and Y

in AR4 model (Eq. (9)). 
Top: Results for method 1. Bottom: Results for method 2. 
A. Plot of the mean of C r  (in ln scale) over the trials. 

B. Plot of TE (bits) vs. radius  (in ln scale), for direction 
of flow 

r
X Y  (blue solid line) and  (red dotted 

line). 
Y X

3.2. Physiology-based Model 

We used a physiology-based time continuous SDE 
(Stochastic Differential Equation) model to represent the 
electrical activity of two distant — and possibly coupled —
neuronal populations  and . This model 
produces two outputs 

XPop YPop
X  and  which can be interpreted as 

two iEEG (intracranial EEG) signals similar to those 
recorded with proximal electrodes [8]. In the model, each 
population contains three subpopulations of neurons that 
mutually interact via excitatory or inhibitory feedback 
linking main pyramidal cells with two other types of local 
interneurons. Since pyramidal cells are excitatory neurons 
that project their axons to other areas of the brain, the model 
accounts for this organization by using the average pulse 
rate of action potentials from the main cells of one 
population, , as an excitatory input to main cells 
inputs of another population, . The connection from 
the first population to the second one is represented by a 
parameter  which is proportional to the number of 
corresponding axonal links. An appropriate setting of this 

Y

XPop

YPop

XYK

For each candidate predictor in cZ Z
com Xpute PMI ( n-k, Y) conditional to Z

Choose *k k  which maximizes PMI 

Add *n kX  to Z, remove *n kX  from Zc

Significant? End

NO
YES

NO YES

cZ ?



parameter allows adjusting effective connectivity. Other 
introduced parameters are intra-population parameters 
whose tuning allows modifying the type of activity 
(normal/epileptic). This model was used to simulate 100 
blocks of 4-second length signals. Sampling rate was equal 
to 256 Hz. Model parameters were such that a fast quasi-
sinusoidal (25 Hz) activity (similar to that observed at 
seizure onset) was generated by the two populations which 
were unidirectionally coupled as already mentioned. 
Referencing to [8], we used parameters values for ( A , , 

) equal respectively to (5, 3, 20) and (3.5, 3.5, 84) in 
 and  with  (unidirectional flow). 

Experimental results are shown in Figure 3. Even if the 
dynamics of transfer entropy is reduced compared to the 
linear model, the second method appears relevant and 
outperforms the first one in detecting the flow propagation 
from 

B
G

XPop YPop 1500XYK

X  to .Y

4. CONCLUSIONS 

In this paper, we focused on information propagation 
between two observations using TE and employed the 
extended PMI method in the determination of models orders. 
The proposed approach appeared efficient to reveal the 
information flow direction between two signals in 
unidirectional case. In a future work, we will test it on 
multivariate systems including bidirectional flows. We also 
plan (i) to conduct statistical analysis on the estimators we 
proposed to compare them with other order determination 
methods, and (ii) to take into account supplementary EEG 
observations for conditioning surrounding information. 
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