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BOLTZMANN EQUATION FOR GRANULAR MEDIA WITH

THERMAL FORCE IN A WEAKLY INHOMOGENEOUS SETTING

ISABELLE TRISTANI

Abstract. In this paper, we consider the spatially inhomogeneous diffusively driven
inelastic Boltzmann equation in different cases: the restitution coefficient can be constant
or can depend on the impact velocity (which is a more physically relevant case), including
in particular the case of viscoelastic hard-spheres. In the weak thermalization regime, i.e
when the diffusion parameter is sufficiently small, we prove existence of global solutions
considering the close-to-equilibrium regime and the weakly inhomogeneous regime only
in the case of a constant restitution coefficient. It is the very first existence theorem of
global solution in an inelastic “collision regime” (that is excluding [1] where an existence
theorem is proven in a near to the vacuum regime). We also study the long-time behavior
of these solutions and prove a convergence to equilibrium with an exponential rate. The
basis of the proof is the study of the linearized equation. We obtain a new result on it,
we prove existence of a spectral gap in weighted (stretched exponential and polynomial)
Sobolev spaces. To do that, we develop a perturbative argument around the spatially
inhomogeneous equation for elastic hard spheres and we take advantage of the recent
paper [18] where this equation has been considered. As far as the case of a constant
coefficient is concerned, the present paper improves similar results obtained in [24] in
a spatially homogeneous framework. Concerning the case of a non-constant coefficient,
this kind of results is new and we use results on steady states of the linearized equation
from [5].
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1. Introduction

1.1. Model and main result. We investigate in the present paper the Cauchy theory
associated to the spatially inhomogeneous diffusively driven inelastic Boltzmann equa-
tion for hard spheres interactions and constant or non-constant restitution coefficient.
More precisely, we consider hard-spheres particles described by their distribution density
f = f(t, x, v) ≥ 0 undergoing inelastic collisions in the torus in dimension d = 3. The
spatial coordinates are x ∈ T

3 (3-dimensional flat torus) and the velocities are v ∈ R
3.

The distribution f satisfies the following equation:

(1.1) ∂tf = Qeλ(f, f) + λγ ∆vf − v · ∇xf.

Let us point out that in the case of a constant restitution coefficient, eλ(·) is constant
equal to 1− λ and γ is equal to 1, the equation hence becomes:

(1.2) ∂tf = Q1−λ(f, f) + λ∆vf − v · ∇xf,

The term λγ ∆vf represents a constant heat bath which models particles uncorrelated
random accelerations between collisions. The quadratic collision operator Qeλ models
the interactions of hard-spheres by inelastic binary collisions where the inelasticity is
characterized by the so-called normal restitution coefficient eλ(·) which can be, in contrast
with previous contributions on the subject, constant or non-constant. In the non-constant
case, this restitution coefficient quantifies the loss of relative normal velocity of a pair
of colliding particles after the collision with respect to the impact velocity. Namely, if
v and v∗ denote the velocities of two particles before collision, their respective velocities
v′ and v′∗ after collision are such that

(1.3) (u′ · n̂) = −(u · n̂) eλ(u · n̂),
where eλ(·) := e(λ ·) and e := e(|u · n̂|) is such that 0 ≤ e ≤ 1. The unitary vector n̂ ∈ S

2

determines the impact direction, that is, n̂ stands for the unit vector that points from the
v-particle center to the v∗-particle center at the instant of impact. Here above,

u = v − v∗, u′ = v′ − v′∗,

denote respectively the relative velocity before and after collision. Assuming the granular
particles to be perfectly smooth hard-spheres of mass m = 1, the velocities after collision
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v′ and v′∗ are given, in virtue of (1.3) and the conservation of momentum, by

(1.4) v′ = v − 1 + eλ
2

(u · n̂) n̂, v′∗ = v∗ +
1 + eλ

2
(u · n̂) n̂.

The main assumption on e(·) we shall need is listed in the following (see [1] for more
details).

Assumptions 1.1.

(1) The mapping r → e(r) from R
+ to (0, 1] is absolutely continuous and non-increasing.

(2) The mapping r → r e(r) is strictly increasing on R
+.

(3) There exist a, b > 0 and γ > γ > 0 such that

∀ r ≥ 0, |e(r)− 1 + a rγ | ≤ b rγ .

The assumptions (1) and (2) are trivially satisfied in the constant case which is enough
to apply most of the results from [5]. The assumption (3) is crucial to do a fine study of
spectrum of the linearized operator close to 0 in the non-constant case (see step 4 of proof
of Theorem 2.14). Let us also emphasize that the three assumptions are met by the visco-
elastic hard-spheres model which is the most physically relevant model for applications
(see [12] and Subsection 1.2). In the remaining part of the paper, we suppose that the
restitution coefficient e(·) is constant or satisfies Assumptions 1.1.

We here explain why studying such a rescaled equation is relevant in the case of weak
thermalization regime. The associated stationary equation before rescaling is given by

(1.5) Qe(f, f) + µ∆vf − v · ∇xf = 0

for some positive thermalization coefficient µ > 0. We then introduce the rescaled dis-
tribution gλ(x, v) := λ3 f(x, λv) if f is a solution of (1.5) of mass ρ. Using the following
equalities which hold for any x ∈ T

3 and v ∈ R
3,

λ2Qe(f, f)(x, λv) = Qeλ(gλ, gλ)(x, v),

λ5 (∆vf)(x, λv) = ∆vgλ(x, v),

λ3 (v · ∇xf)(x, λv) = v · ∇xgλ(x, v),

we obtain that gλ satisfies

(1.6) Qeλ(gλ, gλ) +
µ

λ3
∆vgλ − v · ∇xgλ = 0.

Let us notice that this scaling preserves mass and momentum and moreover, eλ(r) tends
to 1 as λ goes to 0, the elastic restitution coefficient. We expect that formally, as λ goes
to 0,

Qeλ(f, f) ≃ Q1(f, f)

and thus that, as λ goes to 0, the dissipation of energy vanishes. We see that if µ > 0 is
fixed, then the second term of (1.6) becomes infinite in the limit λ→ 0. We thus have to
choose µ := µλ such that µλ λ

−3 tends to 0 as λ goes to 0. Such as in [5], we can compute
a parameter µλ such that the energy

Eλ :=
1

ρ

∫

T3×R3

gλ(x, v) |v|2 dx dv

is kept of order one in the limit λ→ 0, which gives µ = µλ = λ3+γ . Equation (1.6) hence
becomes

Qeλ(gλ, gλ) + λγ ∆vgλ − v · ∇xgλ = 0.
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This explains why we study the evolution equation (1.1).

In the sequel, it shall be more convenient to deal with a second, and equivalent,
parametrization of the post-collisional velocities. Fix v and v∗ with v 6= v∗ and let
û = u/|u|. Performing in (1.4) the change of unknown σ = û− 2 (û · n̂) n̂ ∈ S

2 provides an
alternative parametrization of the unit sphere S

2. In this case, the impact velocity reads

|u · n̂| = |u|
√

1−û·σ
2 and the post-collisional velocities v′ and v′∗ are then given by

(1.7) v′ = v − 1 + eλ
2

u− |u|σ
2

, v′∗ = v∗ +
1 + eλ

2

u− |u|σ
2

.

This representation allows us to give a precise definition of the Boltzmann collision oper-
ator in weak form by

(1.8)

∫

R3

Qeλ(g, f)ψ dv =

∫

R3

∫

R3

∫

S2

g(v∗)f(v)
[
ψ(v′) − ψ(v)

]
|v − v∗| dσ dv∗ dv,

for any ψ = ψ(v) a suitable regular test function. Here, the post-collisional velocities
v′ and v′∗ are defined by (1.7). Notice that

(1.9) |v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −|u|2 1− û · σ
4


1− eλ

(
|u|
√

1− û · σ
2

)2

 .

The operator Qeλ defined by (1.8) preserves mass and momentum, and since the Lapla-
cian also does so, the equation preserves mass and momentum. However, energy is not
preserved either by the collisional operator (which tends to cool down the gas because
of (1.9)) or by the diffusive operator (which warms it up).

The formula (1.8) suggests the natural splitting Qeλ = Q+
eλ
−Q−

eλ
between gain and loss

parts. The loss part Q−
eλ

can easily be defined in strong form noticing that

〈Q−
eλ
(g, f), ψ〉 =

∫

R3

∫

R3

∫

S2

g(v∗)f(v)ψ(v)|v − v∗| dσ dv∗ dv =: 〈fL(g), ψ〉,

where 〈·, ·〉 is the usual scalar product in L2 and L is the convolution operator

L(g)(v) = 4π(| · | ∗ g)(v).
In particular, we can notice that L and Q−

eλ
are independent of the normal restitution

coefficient.
We also define the symmetrized (or polar form of the) bilinear collision operator Q̃eλ

by setting∫

R3

Q̃eλ(g, h)ψ dv =
1

2

∫

R3

∫

R3

∫

S2

g(v∗)h(v)|v − v∗|
[
ψ(v′) + ψ(v′∗)

]
dσ dv∗ dv(1.10)

− 1

2

∫

R3

∫

R3

∫

S2

g(v∗)h(v)|v − v∗| [ψ(v) + ψ(v∗)] dσ dv∗ dv.

In other words, Q̃eλ(g, h) = (Qeλ(g, h) + Qeλ(h, g))/2. The formula (1.10) also suggests

a splitting Q̃eλ = Q̃+
eλ

− Q̃−
eλ

between gain and loss parts. We can notice that we have

Q̃+
eλ
(g, h) = (Q+

eλ
(g, h) +Q+

eλ
(h, g))/2 and Q̃−

eλ
(g, h) = (Q−

eλ
(g, h) +Q−

eλ
(h, g))/2.

In the elastic case (λ = 0), we can easily define the collision operator in strong form
using the pre-post collisional change of variables:

Q1(g, f) =

∫

R3

∫

S2

[
f(v′)g(v′∗)− f(v)g(v∗)

]
|v − v∗| dv∗ dσ.
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Our main result is the proof of existence of solutions for the non-linear problem (1.1)
as well as stability and relaxation to equilibrium for these solutions. This work stands
out from others because it is the first time that an existence result is obtained in the
spatially inhomogeneous case in an inelastic “collision regime”, in both cases of constant
and non-constant coefficient of inelasticity.

We know from [5] that there exists Gλ = Gλ(v) a space homogeneous solution of the
stationary equation

Qeλ(f, f) + λγ∆vf = 0

with mass 1 and vanishing momentum. Moreover, Gλ is unique for λ close enough to 0.
We refer to Subsection 2.2 for more details.

Here is the main result that we obtain, a precise statement is given in Subsection 3.3
(Theorems 3.2 and 3.3).

Theorem 1.2. Consider the functional space E0 = W s,1
x W 2,1

v

(
〈v〉eb〈v〉β

)
where b > 0,

β ∈ (0, 1) and s > 6. For λ small enough, and for an initial datum fin ∈ E0 close enough
to the equilibrium Gλ, there exists a unique global solution f ∈ L∞

t (E0) to (1.1) which
furthermore satisfies

∀ t ≥ 0, ‖ft −Gλ‖E0 ≤ C e−α̃ t ‖fin −Gλ‖E0
for some constructive constants C and α̃ > 0.

Moreover, in the case of a constant restitution coefficient, the conclusion of the theorem
also holds true taking an initial datum fin ∈ E0 close enough to a spatially homogeneous
distribution gin = gin(v).

1.2. Physical and mathematical motivation. For a detailed physical introduction to
granular gases we refer to [12, 14]. As can be seen from the references included in the latter,
granular flows have become a subject of physical research on their own in the last decades,
and for certain regimes of dilute and rapid flows, these studies are based on kinetic theory.
By contrast, the mathematical kinetic theory of granular gas is rather young and began in
the late 1990 decade. We refer to [25, 22] for some (short) mathematical introduction to
this theory and a (non exhaustive) list of references. As explained in these papers, granular
gases are composed of grains of macroscopic size with contact collisional interactions,
when one does not consider other additional possible self-interaction mechanisms such as
gravitation – for cosmic clouds for instance – or electromagnetism – for “dusty plasmas” for
instance –. Therefore the natural assumption about the binary interaction between grains
is that of inelastic hard spheres, with no loss of “tangential relative velocity” (according
to the impact direction) and a loss in “normal relative velocity”. This loss is quantified
in some (normal) restitution coefficient. The latter is either assumed to be constant
as a first approximation or can be more intricate: for instance it is a function of the
modulus |v′ − v| of the normal relative velocity in the case of “visco-elastic hard spheres”
(see [3], [4], [5] and [12]). In this paper, we consider both constant and non-constant
restitution coefficients.

We restrict to the case of a small diffusion parameter (weak thermalization regime),
which corresponds to small inelasticity. There are several motivations from mathematics
and physics for such a choice:

• the first reason is related to the regime of validity of kinetic theory: as explained
in [12, Chapter 6] for instance, the more inelasticity, the more correlations between
grains are created during the binary collisions, and therefore the molecular chaos
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assumption, which is the core of the validity of Boltzmann’s theory, suggests weak
inelasticity to be the most effective;

• second, as emphasized in [12] again, the case of small inelasticity has been widely
considered in physics or mathematical physics since it allows to use expansions
around the elastic case, and since conversely it is an interesting question to under-
stand the connection of the inelastic case (dissipative at the microscopic level) to
the elastic case (“Hamiltonian” at the microscopic level);

• finally, this case of a small inelasticity is reasonable from the viewpoint of appli-
cations, since it applies to interstellar dust clouds in astrophysics, or sands and
dusts in earth-bound experiments, and more generally to visco-elastic hard spheres
whose restitution coefficient is not constant but close to 1 on the average.

Let us now describe the most physically relevant model, the one corresponding to vis-
coelastic hard spheres for which the restitution coefficient has been derived in [30]. For
this peculiar model, e(·) admits the following representation as an infinite expansion series

(1.11) e(|u · n̂|) = 1 +
∞∑

k=1

(−1)k ak|u · n̂|k/5, u ∈ R
3, n̂ ∈ S

2

where ak > 0 for any k ∈ N are parameters depending on the material viscosity. We can
see that in this case, e(·) satisfies Assumptions 1.1. More precisely, the assumption (3) is
satisfied with γ = 1/5 and γ = 2/5. In the case of a non-constant restitution coefficient,
this is the principal example of application of the results in the paper, though, as we shall
see, our results will cover more general cases.

1.3. Function spaces. For some given Borel weight function m > 0 on R
3, let us define

Lq
vL

p
x(m), 1 ≤ p, q ≤ +∞, as the Lebesgue space associated to the norm

‖h‖Lq
vL

p
x(m) = ‖‖h(·, v)‖Lp

x
m(v)‖Lq

v
.

We also consider the standard higher-order Sobolev generalizations W σ,q
v W s,p

x (m) for
σ, s ∈ N defined by the norm

‖h‖Wσ,q
v W s,p

x (m) =
∑

0≤s′≤s, 0≤σ′≤σ, s′+σ′≤max(s,σ)

‖‖∇s′
x ∇σ′

v h(·, v)‖Lp
x
m(v)‖Lq

v
.

This definition reduces to the usual weighted Sobolev space W s,p
x,v (m) when q = p and

σ = s, and we recall the shorthand notation Hs =W s,2.

1.4. Known results. Let us briefly review the existing results concerning inelastic hard
spheres Boltzmann models. We shall mention that most of them are established in an
homogeneous framework and that the major part of the investigation has been devoted to
the particular case of a constant restitution coefficient.

For the inhomogeneous inelastic Boltzmann equation, the literature is more scarce; in
this respect we mention the work [1] that treats the Cauchy problem in the case of near-
vacuum data. It is worthwhile mentioning that the scarcity of results regarding existence
of solutions for the inhomogeneous case is explained by the lack of entropy estimates
for the inelastic Boltzmann equation; thus, well-known theories like the DiPerna-Lions
renormalized solutions are no longer available. Let us now give an overview of papers
dealing with homogeneous equations.

We begin by papers considering constant restitution coefficient and dealing with ex-
istence, uniqueness or properties of self-similar profiles (resp. stationary solutions) for
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freely cooling (resp. driven by a thermal bath) inelastic hard spheres. In the paper [11],
existence of self-similar profiles or stationary solutions is assumed and a priori polynomial
and exponential moments bounds are shown. The paper [15] completes the previous one
showing existence of stationary solutions for inelastic hard spheres driven by a thermal
bath, and improving the estimates on their tails of [11] into pointwise ones. The paper [22]
shows, for freely cooling inelastic hard spheres, existence of self-similar profile(s) as well as
propagation of regularity and damping of singularities with time. The paper [23] proves
uniqueness of the stationary solution in the physical regime of a small inelasticity and
provides various results on the linear stability and nonlinear stability of this stationary
solution. Finally, the paper [24] gives similar answers as in [23] adding a thermal bath
term. We can also mention the paper [29] which investigates the long-time behavior of the
solutions for an “anomalous” gas. Existence and uniqueness of blow up profiles for this
model are studied, together with the trend to equilibrium and the cooling law associated.

Let us now mention the papers dealing with inelastic hard spheres models with more
general restitution coefficient. The paper [25] provides a Cauchy theory for freely cooling
inelastic hard spheres with a broad family of collision kernels (including in particular
restitution coefficients possibly depending on the relative velocity and/or the temperature),
and studies whether the gas cools down in finite time or asymptotically, depending on the
collision kernel. The paper [3] shows the generalized Haff’s law yielding the optimal
algebraic cooling rate of the temperature of a granular gas described by the homogeneous
Boltzmann equation for inelastic interactions with non constant restitution coefficient.
The paper [4] improves the previous one giving two simpler proofs of the Haff’s law.
The paper [5] studies uniqueness and regularity of the steady states of the diffusively
driven Boltzmann equation in the physically relevant case where the restitution coefficient
depends on the impact velocity including, in particular, the case of viscoelastic hard-
spheres.

Our results are established in an inhomogeneous setting in a small inelasticity regime
(close to the elastic one). To obtain them, we use results on the linearized elastic equation.
We hence mention the results already obtained on the linearized elastic equation that we
use. We denote µ := G0 the elastic equilibrium which is a Maxwellian distribution.

Let us underline the fact that most of the results on the linearized elastic operator
have been obtained in spaces with a Maxwellian weight prescribed by the equilibrium (see
[19, 20, 13, 16, 17, 8] for the homogeneous case and [31, 28] for the inhomogeneous one).
Some improvements have been made to weights later on. For the spatially homogeneous
case, in [6] a first extension of the decay estimate to L1 with polynomial weight was
obtained by an intricate nonconstructive approach based on decomposition of the solution
and some dyadic decomposition of the velocity variable. This argument was then extended
to Lp spaces in [34, 35]. In [27], another improvement was made, a spectral gap estimate
on the space homogeneous semigroup was extended to the space L1

v(m) for a stretched
exponential weight m, by constructive means, with optimal rate. We also mention that
in [7], some non-constructive decay estimates were obtained in a Sobolev space in position
combined with a polynomially weighted L∞ space in velocity. Finally, the theory of
enlargement of spectral gap developed in [18] gives explicit spectral gap estimates on the
semigroup associated to the linearized non homogeneous operator L0 inW

s,p
x W σ,q

v (m) with
polynomial or stretched exponential weight m.

1.5. Method of proof. The main outcome of this paper is a new Cauchy theory for
the non-homogeneous Boltzmann equation for inelastic hard spheres (1.1). We prove
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existence and stability of solutions for this equation. In order to do so, we first establish
the asymptotic stability of the linearized equation by a perturbation argument which uses
the spectral analysis of the linearized elastic Boltzmann equation.

Let us explain in more details how we deal with the linearized problem, our method is
in the spirit of the one in [24]. However, our study largely improves the one done in [24]
in three aspects:

• we are able to deal with the spatial dependency in the torus;
• we are able to deal with non-constant restitution coefficients;
• we are able to obtain a decay estimate on the semigroup using the localization of
the spectrum.

The perturbative argument around the elastic operator allows us to obtain results on
the localization of the spectrum of the inelastic operator. It is based on the following facts:

• the inelastic operator can be written as the sum of a regularizing part and a
dissipative part (these operators are defined through an appropriate mollification-
truncation process, described later on);

• the inelastic operator is a small perturbation of the elastic one for a diffusion
parameter sufficiently small;

• we know that the spectrum of the elastic operator is well localized.

To prove the first two points, we get estimates on the difference between the elastic
and the inelastic collision operators which is small when taking λ close enough to 0. We
establish these estimates in an inhomogeneous setting; this kind of estimates was only
known to hold in an homogeneous setting (see [23] for the case of a constant restitution
coefficient and [5] for the non-constant case).

About the third point, let us emphasize that equilibriums in the inelastic case do not
decrease enough to belong to spaces with Maxwellian weights. Therefore, a perturbative
theory close to the elastic equation is not possible in spaces of this type. But the results
obtained in [18] via the theory of enlargement of spectral gap allows us to apply a pertur-
bative theory. Indeed, estimates on the elastic collision operator are proved in spaces of
type W s,p

x W σ,q
v (m) where m is a polynomial or stretched exponential weight.

Using these facts, we prove our main result on the linearized inelastic operator. Its
spectrum Σ(Lλ) is well localized: there is a constructive constant α > 0 such that

Σ(Lλ) ∩ {z ∈ C, ℜe z > −α} = {µλ, 0},

0 is a four-dimensional eigenvalue (due to the conservation of mass and momentum) and
µλ ∈ R, the “energy” eigenvalue, is a one-dimensional eigenvalue. We also obtain an
estimate on µλ which is negative for λ close enough to 0. The behavior of µλ is linked
with the fact that the energy is not preserved by the operator. Let us finally emphasize
that we prove that these spectral properties imply the decay of the semigroup associated
with an exponential rate.

Let us now explain how we go back to the nonlinear problem. We construct perturbative
solutions close to the equilibrium or close to the spatially homogeneous case. To do so,
we use the two following points:

• we introduce a dissipative Banach norm for the fully linearized operator which
provides the key a priori estimate to get the “linearization trap”;

• we prove bilinear estimates to control the nonlinear remainder in the equation.
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As far as the close-to-equilibirum regime is concerned, the idea of the proof is to gather
these two points; we can then prove that taking a sufficiently small initial datum, the
solution is trapped close to the equilibrium.

To deal with the weakly inhomogeneous regime, we also prove a local in time stability.
We can then capture a general solution around the subset of spatially homogeneous solu-
tions and then the general solution is driven towards equilibrium thanks to the relaxation
estimates known for the spatially homogeneous solutions. Finally, we use the previous
case once the stability neighborhood is entered by the solution.

1.6. Outline of the paper. In Section 2, we introduce the splitting of the inelastic
linearized Boltzmann operator as the sum of a regularizing part and a dissipative part.
We show that our inelastic operator is a small perturbation of the elastic one. We also
make a fine study of spectrum close to 0, which allows us to prove existence of a spectral
gap. We then obtain a property of semigroup decay in W s,1

x W 2,1
v (〈v〉m) for a stretched

exponential weight m. This section ends by the introduction of a new norm which is
dissipative for the full linearized operator.

In Section 3, we go back to the nonlinear problem. We consider first the close-to-
equilibrium regime and we state our main theorem concerning the weakly inhomogeneous
regime.

Acknowledgments. We thank Stéphane Mischler for fruitful discussions and his numer-
ous comments and suggestions.

2. Properties of the linearized operator

2.1. Notations and definitions. For a given real number a ∈ R, we define the half
complex plane

∆a := {z ∈ C, ℜe z > a} .
For some given Banach spaces (E, ‖ · ‖E) and (E , ‖ · ‖E ), we denote by B(E, E) the

space of bounded linear operators from E to E and we denote by ‖ · ‖B(E,E) or ‖ · ‖E→E

the associated operator norm. We write B(E) = B(E,E) when E = E . We denote by
C (E, E) the space of closed unbounded linear operators from E to E with dense domain,
and C (E) = C (E,E) in the case E = E .

For a Banach space X and Λ ∈ C (X) we denote by SΛ(t) or e
Λt, t ≥ 0, its associated

semigroup when it exists, by D(Λ) its domain, by N(Λ) its null space and by R(Λ) its
range. We introduce the D(Λ)-norm defined as ‖f‖D(Λ) = ‖f‖X + ‖Λf‖X for f ∈ D(Λ).
More generally, for k ∈ N, we define

‖f‖D(Λk) =
k∑

j=0

‖Λjf‖X , f ∈ D(Λk).

We also denote by Σ(Λ) its spectrum, so that for any z belonging to the resolvent set
ρ(Λ) := C\Σ(Λ), the operator Λ− z is invertible and the resolvent operator

RΛ(z) := (Λ− z)−1

is well-defined, belongs to B(X) and has range equal to D(Λ). We recall that ξ ∈ Σ(Λ)
is said to be an eigenvalue if N(Λ− ξ) 6= {0}. Moreover an eigenvalue ξ ∈ Σ(Λ) is said to
be isolated if there exists r > 0 such that

Σ(Λ) ∩ {z ∈ C, |z − ξ| ≤ r} = {ξ}.
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In the case when ξ is an isolated eigenvalue we may define ΠΛ,ξ ∈ B(X) the associated
spectral projector by

ΠΛ,ξ := − 1

2iπ

∫

|z−ξ|=r′
(Λ− z)−1 dz

with 0 < r′ < r. Note that this definition is independent of the value of r′ as the application
C\Σ(Λ) → B(X), z → RΛ(z) is holomorphic. For any ξ ∈ Σ(Λ) isolated, it is well-known
(see [21, Paragraph III-6.19]) that Π2

Λ,ξ = ΠΛ,ξ, so that ΠΛ,ξ is indeed a projector, and
that the “associated projected semigroup”

SΛ,ξ(t) := − 1

2iπ

∫

|z−ξ|=r′
eztRΛ(z) dz, t > 0,

satisfies

∀ t > 0, SΛ,ξ(t) = ΠΛ,ξSΛ(t) = SΛ(t)ΠΛ,ξ .

When moreover the so-called “algebraic eigenspace” R(ΠΛ,ξ) is finite dimensional we
say that ξ is a discrete eigenvalue, written as ξ ∈ Σd(Λ). In that case, RΛ is a meromorphic
function on a neighborhood of ξ, with non-removable finite-order pole ξ, and there exists
α0 ∈ N

∗ such that

R(ΠΛ,ξ) = N(Λ− ξ)α0 = N(Λ− ξ)α for any α ≥ α0.

On the other hand, for any ξ ∈ C we may also define the “classical algebraic eigenspace”

M(Λ− ξ) := lim
α→∞

N(Λ− ξ)α.

We have then M(Λ − ξ) 6= {0} if ξ ∈ Σ(Λ) is an eigenvalue and M(Λ − ξ) = R(ΠΛ,ξ) if
ξ ∈ Σd(Λ).

Finally for any a ∈ R such that

Σ(Λ) ∩∆a = {ξ1, . . . , ξk}
where ξ1, . . . , ξk are distinct discrete eigenvalues, we define without ambiguity

ΠΛ,a := ΠΛ,ξ1 + . . .ΠΛ,ξk .

We shall need the following definition on the convolution of semigroup (corresponding
to composition at the level of the resolvent operators). If one considers some Banach
spaces X1, X2, X3, for two given functions

S1 ∈ L1(R+;B(X1,X2)) and S2 ∈ L1(R+;B(X2,X3)),

the convolution S2 ∗ S1 ∈ L1(R+;B(X1,X3)) is defined as

∀ t ≥ 0, (S2 ∗ S1)(t) :=
∫ t

0
S2(s)S1(t− s) ds.

When S1 = S2 and X1 = X2 = X3, S
(∗ℓ) is defined recursively by S(∗1) = S and for

any ℓ ≥ 2, S(∗ℓ) = S ∗ S(∗(ℓ−1)).
One can immediately see that if Si satisfies ‖Si(t)‖B(Xi,Xi+1) ≤ Ci t

αi eai t for any t ≥ 0
and some ai ∈ R, αi ∈ N, Ci ∈ (0,∞), then

∀ t ≥ 0, ‖S1 ∗ S2(t)‖B(X1,X2) ≤ C1 C2
α1!α2!

(α1 + α2 + 1)!
tα1+α2+1 emax(a1,a2) t.
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This implies that if S satisfies ‖S(t)‖B(X) ≤ Cea t for any t ≥ 0 and some a ∈ R,
C ∈ (0,∞), then

∀ t ≥ 0, ‖S(∗n)(t)‖B(X) ≤ Cn 1

(n− 1)!
tn−1 ea t.

Let us now introduce the notion of hypodissipative operators. If one consider a Banach
space (X, ‖ · ‖X ) and some operator Λ ∈ C (X), (Λ−a) is said to be hypodissipative on X
if there exists some norm ||| · |||X on X equivalent to the initial norm ‖ · ‖X such that

∀ f ∈ D(Λ), ∃φ ∈ F (f) s.t ℜe〈φ, (Λ − a)f〉 ≤ 0,

where 〈·, ·〉 is the duality bracket for the duality in X and X∗ and F (f) ⊂ X∗ is the dual
set of f defined by

F (f) = F|||·|||X(f) :=
{
φ ∈ X∗, 〈φ, f〉 = |||f |||2X = |||φ|||2X∗

}
.

One classically sees (cf [18]) that if X is a Banach space and Λ is the generator of a
semigroup SΛ, for given constants a ∈ R, M > 0 the following assertions are equivalent:

(a) Λ− a is hypodissipative;
(b) the semigroup satisfies the growth estimate ‖SΛ(t)‖B(X) ≤M ea t, t ≥ 0;
(c) there exists some norm ||| · ||| on X equivalent to the initial norm, and more precisely

satisfying

∀ f ∈ X, ‖f‖ ≤ |||f ||| ≤M ‖f‖,
such that ρ(Λ) ⊃]a,∞[ and

∀λ > a, ∀ f ∈ D(Λ), |||(Λ− λ) f ||| ≥ (λ− a) |||f |||.
We refer to [18, Subsection 2.3] for further details on this subject.

2.2. Preliminaries on the steady states. Let us first recall results about the stationary
equation

(2.1) Qeλ(f, f) + λγ ∆vf = 0.

The main references for this subsection are [24] for the constant case and [5] for the
non-constant case. We introduce the following notation: we shall say that a restitution
coefficient e(·) satisfying Assumptions 1.1 is belonging to the class Em for some integer
m ≥ 1 if e(·) ∈ Cm(0,∞) and

∀ k = 1, . . . ,m, sup
r≥0

re(k)(r) <∞,

where e(k)(·) denotes the k-th order derivative of e(·).

Remark 2.1. For the physically relevant case of visco-elastic hard-spheres, the restitution
coefficient e(·) is given by (1.11) but admits also the following implicit representation
(see [12]):

∀ r > 0, e(r) + ar
1
5 e

3
5 (r) = 1

for some a > 0. Then, it is possible to deduce from such representation that e(·) belongs
to the class Em for any integer m ≥ 1.
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In [5, Theorem 4.5], the authors state that if e(·) belongs to the class Em for some
integer m ≥ 4, there exists λ† ∈ (0, 1] such that for any λ ∈ [0, λ†), there exists a unique
solution in L1

2 of (2.1) of mass 1 and vanishing momentum. We denote Gλ this solution.
It is also proved in [5, Proposition 3.3] that there exist A > 0, M > 0 such that for any

λ ∈ (0, λ†], Gλ satisfies

(2.2)

∫

R3

Gλ(v) e
A |v|3/2 dv ≤M.

Let us point out that in the case of a constant coefficient, these results were already
established. In [11, Theorem 1] and [15, Theorem 5.2 & Lemma 7.2], existence of solutions
and regularity estimates are proved. In [24, Section 2.1], it is proved that these estimates
are uniform in terms of the coefficient of inelasticity and in [24, Theorem 1.2], uniqueness
of steady states is proved for a sufficiently small coefficient of inelasticity.

We denote m(v) = eb〈v〉
β
, b > 0 and β ∈ (0, 1). We now state several lemmas on steady

states Gλ which are straightforward consequences of results from [24] and [5]. We shall
use them several times in what follows. First, we recall a result of interpolation (see for
example [23, Lemma B.1]) which is going to be very useful.

Lemma 2.2. For any k, q ∈ N, there exists C > 0 such that for any h ∈ Hk′
v ∩ L1

v(m
12)

with k′ = 8k + 7(1 + 3/2)

‖h‖
W k,1

v (〈v〉qm)
≤ C‖h‖1/8

Hk′
v
‖h‖1/8

L1
v(m

12)
‖h‖3/4

L1
v(m)

.

Let us now prove estimate on Sobolev norm of Gλ.

Lemma 2.3. Let k, q ∈ N. We denote k′ = 8k + 7(1 + 3/2). If e(·) belongs to the space
Ek′+1, then there exists C > 0 such that

∀λ ∈ (0, λ†], ‖Gλ‖W k,1
v (〈v〉qm)

≤ C.

Proof. We deduce from (2.2) that there exists C > 0 such that for any λ ∈ (0, λ†],
‖Gλ‖L1

v(m) ≤ C and ‖Gλ‖L1
v(m

12) ≤ C. We now use [5, Theorem 3.6], it gives us the
following:

∀ q ∈ N, ∀ ℓ ∈ [0, k′], sup
λ∈(0,λ†]

‖Gλ‖Hℓ
v(〈v〉

q ) <∞.

Gathering the previous estimates and using Lemma 2.2, we obtain the result. Let us men-
tion that in the case of a constant coefficient, we can prove this result using [24, Proposi-
tion 2.1]. �

Let us now give an estimate on the difference between Gλ and G0, the elastic equilibrium
which is a Maxwelian distribution.

Lemma 2.4. Let k ∈ N, q ∈ N. We denote k′ = 8k + 7(1 + 3/2). If e(·) belongs to the
space Ek′+1, then there exists a function ε1(λ) such that for any λ ∈ (0, λ†]

‖Gλ −G0‖W k,1
v (〈v〉qm)

≤ ε1(λ) with ε1(λ) −−−→
λ→0

0.

Proof. Theorem 4.1 from [5] implies that

‖Gλ −G0‖Hk′
v

−−−→
λ→0

0.

Using this estimate with Lemma 2.2 and Lemma 2.3, it yields the result. We here mention
that in the case of a constant coefficient, we can conclude using [24, Lemma 4.3]. �
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2.3. The linearized operator and its splitting. Considering the linearization
f = Gλ + h, we obtain at first order the linearized equation around the equilibrium Gλ

(2.3) ∂th = Lλh := Qeλ(Gλ, h) +Qeλ(h,Gλ) + λγ ∆vh− v · ∇xh,

for h = h(t, x, v), x ∈ T
3, v ∈ R

3.

We define the operator Q̂eλ by

Q̂eλ(h) = Qeλ(Gλ, h) +Qeλ(h,Gλ) = 2 Q̃eλ(h,Gλ),

where Q̃eλ is defined in (1.10). Using the weak formulation, we have
∫

R3

Q̂eλ(h)ψ dv =

∫

R3

∫

R3

∫

S2

Gλ(v)h(v∗)|v−v∗|
[
ψ(v′) + ψ(v′∗) − ψ(v) − ψ(v∗)

]
dσ dv∗ dv

for any test function ψ.

2.3.1. Decomposition of the linearized operator. Let us introduce the decomposition of the
linearized operator Lλ. For any δ ∈ (0, 1), we consider Θδ = Θδ(v, v∗, σ) ∈ C∞ bounded
by one, which equals one on

{
|v| ≤ δ−1 and 2δ ≤ |v − v∗| ≤ δ−1 and | cos θ| ≤ 1− 2δ

}

and whose support is included in
{
|v| ≤ 2δ−1 and δ ≤ |v − v∗| ≤ 2δ−1 and | cos θ| ≤ 1− δ

}
.

We introduce the following splitting of the linearized elastic collisional operator Q̂1 defined

as Q̂1(h) = Q1(G0, h) +Q1(h,G0):

Q̂1 = Q̂+,∗
1,S + Q̂+,∗

1,R − L(G0)

with the truncated operator

Q̂+,∗
1,S (h) =

∫

R3

∫

S2

Θδ

[
G0(v

′
∗)h(v

′) + G0(v
′)h(v′∗)−G0(v)h(v∗)

]
|v − v∗| dv∗ dσ,

the corresponding remainder operator

Q̂+,∗
1,R(h) =

∫

R3

∫

S2

(1−Θδ)
[
G0(v

′
∗)h(v

′) + G0(v
′)h(v′∗)−G0(v)h(v∗)

]
|v − v∗| dv∗ dσ

and
L(G0) = 4π (G0 ∗ | · |) .

We can then write a decomposition for the full linearized operator Lλ:

Lλh = Q̂eλ(h)− Q̂1(h) + Q̂1(h) + λγ ∆vh− v · ∇xh

= Q̂eλ(h)− Q̂1(h) + Q̂∗,+
1,S (h) + Q̂+,∗

1,R(h) − L(G0)h+ λγ ∆vh− v · ∇xh.

Let us denote
Aδh := Q̂∗,+

1,S (h)

and
Bλ,δh := Q̂eλ(h)− Q̂1(h) + Q̂+,∗

1,R(h) + λγ ∆vh− v · ∇xh− L(G0)h.

Thanks to the truncation, we can use the so-called Carleman representation (see [32, Chap-
ter 1, Section 4.4]) and write the truncated operator Aδ as an integral operator

(2.4) Aδ(h)(v) =

∫

R3

kδ(v, v∗)h(v∗) dv∗

for some smooth kernel kδ ∈ C∞
c

(
R
3 × R

3
)
.
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We also introduce the collision frequency ν := L(G0) which satisfies ν(v) ≈ 〈v〉 i.e there
exist some constants ν0, ν1 > 0 such that:

(2.5) ∀ v ∈ R
3, 0 < ν0 ≤ ν0〈v〉 ≤ ν(v) ≤ ν1〈v〉.

2.3.2. Spaces at stake. Let us consider the three Banach spaces

E1 =W s+2,1
x W 4,1

v (〈v〉2m),

E0 =W s,1
x W 2,1

v (〈v〉m),

E−1 =W s−1,1
x L1

v(m)

for some s ∈ N such that s/2 > 3 (this restriction is used in the proof of Lemma 3.1 to
get a Sobolev embedding).

In the remaining part of the paper, we suppose that the following assumption on e(·)
holds:

Assumption 2.5. The coefficient of restitution e(·) belongs to Ek†+1 where

k† := 32 + 7(1 + 3/2).

It allows us to get uniform bounds on the Ej-norms of Gλ and uniform estimates on the
Ej-norms of the difference Gλ −G0 for j = −1, 0, 1 (thanks to Lemmas 2.3 and 2.4).

The operator Lλ is bounded from Ej to Ej−1 for j = 0, 1. The operators ∆v and v · ∇x

are clearly bounded from Ej to Ej−1. As far as Q̂eλ is concerned, we are going to use the
result of interpolation Lemma 2.2.

Lemma 2.6. Let us consider k, q ∈ N. We denote k′ = 8k + 7(1 + 3/2). If e(·) belongs

to the space Ek′+1, then Q̂eλ is bounded from W s,1
x W k,1

v (〈v〉q+1m) to W s,1
x W k,1

v (〈v〉qm).

Proof. As far as the case of a constant coefficient is concerned, Proposition 3.1 from [23]
gives us

‖Q̂eλ(h)‖L1
v(〈v〉

qm) ≤ C‖Gλ‖L1
v(〈v〉

q+1m)‖h‖L1
v(〈v〉

q+1m) ≤ C‖h‖L1
v(〈v〉

q+1m),

where the last inequality comes from Lemma 2.3. Concerning the case of a non-constant
coefficient, we use both Lemma 2.3 and [2, Theorem 1] and we get:

‖Q̂eλ(h)‖L1
v(〈v〉

qm) ≤ C‖Gλ‖L1
v(〈v〉

q+1m)‖h‖L1
v(〈v〉

q+1m) ≤ C‖h‖L1
v(〈v〉

q+1m).

The x-derivatives commute with the operator Q̂eλ , therefore we can do the proof with
s = 0 without loss of generality. We first look at the case L1

xL
1
v(〈v〉qm) before treating the

v-derivatives. Using Fubini theorem and the previous inequalities, we obtain

‖Q̂eλh‖L1
xL

1
v(〈v〉

qm) ≤ C‖h‖L1
xL

1
v(〈v〉

q+1m).

We now treat the case L1
xW

1,1
v (〈v〉qm). We use the property

(2.6) ∂vQ
±
eλ
(f, g) = Q±

eλ
(∂vf, g) +Q±

eλ
(f, ∂vg).

We then compute

∂vQ̂eλh = Qeλ(∂vGλ, h) +Qeλ(Gλ, ∂vh) +Qeλ(∂vh,Gλ) +Qeλ(h, ∂vGλ).

Using Lemma 2.3, [23, Proposition 3.1] in the constant case and [2, Theorem 1] in the
non-constant case, the L1

v(〈v〉qm)-norm of each term can be bounded by C‖h‖
W 1,1

v (〈v〉q+1m)
.

Again using Fubini theorem, we deduce that

‖∂vQ̂eλh‖L1
xL

1
v(〈v〉

qm) ≤ C‖h‖
L1
xW

1,1
v (〈v〉q+1m)

.
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The higher-order terms are dealt with in a similar manner, which concludes the proof. �

Under the assumptions made on e(·), using the previous lemma, we can conclude that

Q̂eλ is bounded from Ej to Ej−1 for j = 0, 1.

2.4. Hypodissipativity of Bλ,δ and boundedness of Aδ.

Lemma 2.7. Let us consider s ≥ 0, k ≥ 0 and q ≥ 0. We denote k′ = 8k + 7(1 + 3/2).
If e(·) belongs to the space Ek′+1, then there exist λ0 ∈ (0, λ†), δ > 0 and α0 > 0 such that

for any λ ∈ [0, λ0], Bλ,δ + α0 is hypodissipative in W s,1
x W k,1

v (〈v〉qm).

Proof. Observe first that the x-derivatives commute with the operator Bλ,δ, therefore we
can do the proof for s = 0 without loss of generality.

We consider a solution ht to the linear equation ∂tht = Bλ,δ(ht) with given initial
datum h0. We first look at the case L1

xL
1
v(〈v〉qm) before treating the v-derivatives. We

compute

d

dt
‖ht‖L1

xL
1
v((〈v〉

qm) =
d

dt

∫

R3

∫

T3

|ht| dx 〈v〉qm(v) dv

=

∫

R3

∫

T3

∂tht sign(ht) dx 〈v〉qm(v) dv

=

∫

R3

∫

T3

Bλ,δ(ht) sign(ht) dx 〈v〉qm(v) dv

=

∫

R3

∫

T3

(Q̂eλ(ht)− Q̂1(ht)) sign(ht) dx 〈v〉qm(v) dv

+

∫

R3

∫

T3

Q̂+,∗
1,R(ht) sign(ht) dx 〈v〉qm(v) dv

+ λγ
∫

R3

∫

T3

∆vht sign(ht) dx 〈v〉qm(v) dv

−
∫

R3

∫

T3

v · ∇xht sign(ht) dx 〈v〉qm(v) dv

−
∫

R3

∫

T3

ν ht sign(ht) dx 〈v〉qm(v) dv

=: I1(ht) + I2(ht) + I3(ht) + I4(ht) + I5(ht).

We first deal with I1 splitting the difference Q̂eλ − Q̂1 into several parts and using that
Q−

eλ
= Q−

1 :

Q̂eλh− Q̂1h =Q+
eλ
(h,Gλ)−Q+

1 (h,Gλ) +Q+
1 (h,Gλ −G0)

+Q+
eλ
(Gλ, h)−Q+

1 (Gλ, h) +Q+
1 (Gλ −G0, h)

−Q−
1 (h,Gλ −G0)−Q−

1 (Gλ −G0, h)

= 2
[
Q̃+

eλ
(h,Gλ)− Q̃+

1 (h,Gλ) + Q̃+
1 (h,Gλ −G0)− Q̃−

1 (h,Gλ −G0)
]
.

We now use a result given by [23, Proposition 3.1] which can be easily extended to

others weights of type 〈v〉qm. We can treat together the terms Q̃+
1 (h,Gλ − G0) and
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Q̃−
1 (h,Gλ − G0). Because of [23, Proposition 3.1], their L1

v(〈v〉qm)-norm are bounded
from above by C ‖Gλ −G0‖L1

v(〈v〉
q+1m)‖h‖L1

v(〈v〉
q+1m). Then, using Lemma 2.4, we obtain

‖Q̃±
1 (h,Gλ −G0)‖L1

v(〈v〉
qm) ≤ C ε1(λ)‖h‖L1

v(〈v〉
q+1m)(2.7)

with ε1(λ) −−−→
λ→0

0. Concerning the term Q̃+
eλ
(ht, Gλ) − Q̃+

1 (ht, Gλ), we use [5, Theo-

rem 3.11] (we can use [23, Proposition 3.2] for the constant case) and Lemma 2.3. It gives
us that there exists λ1 ∈ (0, λ†] such that for any λ ∈ (0, λ1):

‖Q̃+
eλ
(h,Gλ)− Q̃+

1 (h,Gλ)‖L1
v(〈v〉

qm) ≤ Cλ
γ

8+3γ ‖Gλ‖W 1,1
v (〈v〉q+1m) ‖h‖L1

v(〈v〉
q+1m)

≤ Cε2(λ) ‖h‖L1
v(〈v〉

q+1m)(2.8)

with ε2(λ) −−−→
λ→0

0. In [5] and [23], the results are only stated in the case q = 0 but it is

easy to extend these results using the fact that 〈v′〉q ≤ C 〈v〉q 〈v∗〉q.
Gathering (2.7) and (2.8), we thus obtain

(2.9) I1(h) ≤
∫

R3

∫

T3

∣∣∣Q̂eλ(h)− Q̂1(h)
∣∣∣ dx 〈v〉qm(v) dv ≤ ε(λ)‖h‖L1

xL
1
v(〈v〉

q+1m)

with ε(λ) −−−→
λ→0

0.

As far as I2 is concerned, we first recall that [27, Proposition 2.1] establishes that there
holds

∀h ∈ L1
v(〈v〉m), ‖Q̂+,∗

1,R(h)‖L1
v(m) ≤ Λ(δ)‖h‖L1

v (〈v〉m) with Λ(δ) −−−→
δ→0

0,

where however the definition of Θδ is slightly different and only the case q = 0 is treated.
But it is straightforward to extend the proof to the present situation. We hence have

I2(h) ≤
∫

R3

∫

T3

|Q̂+,∗
1,R(ht)| dx 〈v〉qm(v) dv ≤ Λ(δ)‖h‖L1

xL
1
v(〈v〉

q+1m),(2.10)

with Λ(δ) −−−→
δ→0

0.

Concerning the term with the Laplacian, we write performing two integrations by parts
∫

R3

∫

T3

∆vht sign(ht) 〈v〉qmdv dx =−
∫

T3

∫

R3

|∇vh|2 sign′(h) 〈v〉qmdv dx

−
∫

T3

∫

R3

∇vh sign(h) · ∇v(〈v〉qm(v)) dv dx

≤
∫

T3

∫

R3

∇v|h| · ∇v(〈v〉qm) dv dx

=

∫

T3

∫

R3

|h|∆v(〈v〉qm) dv dx

=

∫

R3

∫

T3

|h| 〈v〉qm ∆v(〈v〉qm)

〈v〉qm dxdv.

Since ∆v(〈v〉qm)/(〈v〉qm) is bounded in R
3, we can write

(2.11) I3(h) ≤ C λγ ‖h‖L1
xL

1
v(〈v〉

qm) ≤ C λγ ‖h‖L1
xL

1
v(〈v〉

q+1m).

We notice that

(2.12) I4(h) = 0

because the term v · ∇xh has a divergence structure in x.
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Finally, let us deal with I5. We use property (2.5), more precisely the fact that ν(v) is
bounded below by ν0〈v〉:

(2.13) I5(h) = −
∫

R3

∫

T3

|h| dx ν 〈v〉qm(v) dv ≤ −ν0 ‖h‖L1
xL

1
v(〈v〉

q+1m).

Gathering (2.9), (2.10), (2.11), (2.12) and (2.13), we obtain that for any λ ∈ (0, λ1)∫

R3

∫

T3

Bλ,δh sign(h) dx 〈v〉qm(v) dv ≤ (Λ(δ) + ε(λ) + Cλγ − ν0)‖h‖L1
xL

1
v(〈v〉

q+1m).

We choose λ0 ∈ (0, λ1] small enough so that for any λ ∈ [0, λ0], ε(λ) + Cλγ < ν0. Then,
we choose δ close enough to 0 in order to have

(2.14) α0 := −
(
Λ(δ) + max

λ∈[0,λ0]
[ε(λ) +Cλγ ]− ν0

)
> 0.

We hence have∫

R3

∫

T3

Bλ,δh sign(h) dx 〈v〉qm(v) dv ≤ −α0 ‖h‖L1
xL

1
v(〈v〉

q+1m).

In particular, we deduce that for any λ ∈ [0, λ0], Bλ,δ + α0 is dissipative in L1
xL

1
v(〈v〉qm).

Let us now treat the v-derivatives. We are going to deal with the case L1
xW

1,1
v (〈v〉qm),

the higher-order cases are similar. Thanks to (2.6), we compute the evolution of the
v-derivatives:

∂t∂vht =∂v

(
Q̂+,∗

1,R(ht)− νht

)
+ ∂v

(
(Q̂eλ − Q̂1)(ht)

)
+ λγ∆v∂vht − ∂xht − v · ∇x∂vht.

Let us treat the first term:

∂v

(
Q̂+,∗

1,R(h) − νh
)
= Q̂+,∗

1,R(∂vh)− ν ∂vh+Rh
with

Rh := Q1(h, ∂vG0) +Q1(∂vG0, h) − (∂vAδ)(h) +Aδ(∂vh).

Using the form (2.4) of the operator Aδ and performing one integration by part, we can
show that

‖(∂vAδ)(h)‖L1
xL

1
v(〈v〉

qm) + ‖Aδ(∂vh)‖L1
xL

1
v(〈v〉

qm) ≤ Cδ ‖h‖L1
xL

1
v(〈v〉

qm).

Combining this inequality with estimates [23, Proposition 3.1] on the elastic bilinear op-
erator Q1 of, we obtain

‖Rh‖L1
xL

1
v(〈v〉

qm) ≤ Cδ ‖h‖L1
xL

1
v(〈v〉

q+1m)

for some constant Cδ > 0.
Let us now deal with the second term coming from the difference Q̂eλ − Q̂1:

∂v

(
(Q̂eλ − Q̂1)h

)
=(Q̂eλ − Q̂1)(∂vh)

+ 2
[
Q̃+

eλ
(h, ∂vGλ)− Q̃+

1 (h, ∂vGλ)
]

+ 2
[
Q̃+

1 (h, ∂v(Gλ −G0))− Q̃−
1 (h, ∂v(Gλ −G0))

]
.

Arguing as before, we obtain

‖Q̃+
eλ
(h, ∂vGλ)− Q̃+

1 (h, ∂vGλ)‖L1
xL

1
v(〈v〉

qm) ≤ ε(λ)‖h‖L1
xL

1
v(〈v〉

q+1m)

and

‖Q̃+
1 (h, ∂v(Gλ −G0))− Q̃−

1 (h, ∂v(Gλ −G0))‖L1
xL

1
v(〈v〉

qm) ≤ ε(λ)‖h‖L1
xL

1
v(〈v〉

q+1m)
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with ε(λ) −−−→
α→0

0.

All together, we deduce that

∂t∂vht = Bλ,δ∂vht +R′(ht)

with

‖R′h‖L1
xL

1
v(〈v〉

qm) ≤ Cδ ‖h‖L1
xL

1
v(〈v〉

q+1m) + ε(λ) ‖h‖L1
xL

1
v(〈v〉

q+1m) + ‖∇xh‖L1
xL

1
v(〈v〉

qm).

We now use the proof of the previous case to finally deduce the following estimate:

d

dt
‖∇vht‖L1

xL
1
v(〈v〉

qm) ≤ − α0‖∇vht‖L1
xL

1
v(〈v〉

q+1m) + Cδ ‖h‖L1
xL

1
v(〈v〉

q+1m)

+ ε(λ) ‖h‖L1
xL

1
v(〈v〉

q+1m) + ‖∇xh‖L1
xL

1
v(〈v〉

qm),

where α0 is defined in (2.14).
Again using the proof of the previous case, we also have:

d

dt

(
‖ht‖L1

xL
1
v(〈v〉

qm) + ‖∇xht‖L1
xL

1
v(〈v〉

qm)

)

≤ − α0

(
‖ht‖L1

xL
1
v(〈v〉

q+1m) + ‖∇xht‖L1
xL

1
v(〈v〉

q+1m)

)
.

We now introduce the norm

‖h‖∗ := ‖h‖L1
xL

1
v(〈v〉

qm) + ‖∇xh‖L1
xL

1
v(〈v〉

qm) + η‖∇vh‖L1
xL

1
v(〈v〉

qm)

for some η > 0 to be fixed later. We deduce

d

dt
‖ht‖∗ ≤− α0

(
‖ht‖L1

xL
1
v(〈v〉

q+1m) + ‖∇xht‖L1
xL

1
v(〈v〉

q+1m) + η‖∇vht‖L1
xL

1
v(〈v〉

q+1m)

)

+ η
(
Cδ ‖h‖L1

xL
1
v(〈v〉

q+1m) + ε(λ) ‖h‖L1
xL

1
v(〈v〉

q+1m) + ‖∇xh‖L1
xL

1
v(〈v〉

q+1m)

)

≤(−α0 + o(η))
(
‖ht‖L1

xL
1
v(〈v〉

q+1m) + ‖∇xht‖L1
xL

1
v(〈v〉

q+1m) + η‖∇vht‖L1
xL

1
v(〈v〉

q+1m)

)

with o(η) −−−→
η→0

0. We choose η close enough to 0 so that α1 := α0 − o(η) > 0. We thus

obtain

d

dt
‖ht‖∗ ≤ −α1

(
‖ht‖L1

xL
1
v(〈v〉

q+1m) + ‖∇xht‖L1
xL

1
v(〈v〉

q+1m) + η‖∇vht‖L1
xL

1
v(〈v〉

q+1m)

)

≤ −α1‖ht‖∗,
with α1 > 0, which concludes the proof. �

Let us clarify what implies the previous lemma giving the following result:

Lemma 2.8. Under the assumptions made on e(·), there exist λ0 ∈ (0, λ†], δ > 0 and
α0 > 0 such that for any λ ∈ [0, λ0], Bλ,δ + α0 is hypodissipative in Ej, j = −1, 0, 1.

The boundedness of Aδ is treated in [18]. Let us recall Lemma 4.16 of [18].

Lemma 2.9. For any s ∈ N, the operator Aδ maps L1
v(〈v〉) into Hs

v functions with compact
support, with explicit bounds (depending on δ) on the L1

v(〈v〉) → Hs
v norm and on the size

of the support.
More precisely, there are two constants Cs,δ and Rδ such that for any h ∈ L1

v(〈v〉)
K := suppAδh ⊂ B(0, Rδ), ‖Aδh‖Hs

v(K) ≤ Cs,δ‖h‖L1
v(〈v〉)

.

In particular, we deduce that Aδ is in B(Ej) for j = −1, 0, 1.
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2.5. Regularization properties of Tn :=
(
Aδ SBλ,δ

)(∗n)
. Let us consider λ0 and α0

provided by Lemma 2.8.

Lemma 2.10. Let λ be in (0, λ0). The time indexed family Tn of operators satisfies the
following: for any α′

0 ∈ (0, α0), there are some constructive constants Cδ > 0 and Rδ such
that for any t ≥ 0

suppTn(t)h ⊂ K := B(0, Rδ),

and

‖T1(t)h‖W s+1,1
x,v (K)

≤ C
e−α′

0t

t
‖h‖

W s,1
x,v (〈v〉m)

, if s ≥ 1;(2.15)

‖T2(t)h‖W s+1/2,1
x,v (K)

≤ Ce−α′
0t‖h‖W s,1

x,v(〈v〉m), if s ≥ 0.(2.16)

Proof. We first consider h0 ∈ W s,1
x,v(〈v〉m). Using Lemma 2.9 and the fact that the

x-derivatives commute with both Aδ and Bλ,δ and thus with T1(t), we get

‖T1(t)h0‖W s,1
x W s+1,1

v (K) = ‖Aδ SBλ,δ
(t)h0‖W s,1

x W s+1,1
v (K) ≤ C ‖SBλ,δ

(t)h0‖W s,1
x W s+1,1

v (K).

We then use that Bλ,δ + α0 is dissipative in W s,1
x,v(〈v〉m) (Lemma 2.8) to obtain

(2.17) ‖T1(t)h0‖W s,1
x W s+1,1

v (K) ≤ Ce−α0t‖h0‖W s,1
x,v(〈v〉m).

Assume now h0 ∈ W s,1
x W s+1,1

v (〈v〉m) and consider gt = eBλ,δt(∂βxh0), for any |β| ≤ s,
which satisfies (using the fact that the x-derivatives commute with the semigroup)

∂tgt + v · ∇xgt = Qeλ(Gλ, gt) +Qeλ(gt, Gλ) + λγ∆vgt −Aδgt.

Let us define Dt := t∇x + ∇v. Dt commute with the free transport equation and the
Laplacian ∆v. Using these properties of commutativity and the property (2.6) of the
collision operator, we have

∂t(Dtgt) + v · ∇x(Dtgt) =Qeλ(∇vGλ, gt) +Qeλ(gt,∇vGλ) +Qeλ(Gλ,Dtgt)

+Qeλ(Dtgt, Gλ) + λγ∆vgt −Dt(Aδgt).

With the notations of (2.4), we rewrite the last term as

Dt(Aδgt)(v) =Dt

∫

R3

kδ(v, v∗) gt(v∗) dv∗

=

∫

R3

∇vkδ(v, v∗) gt(v∗) dv∗ −
∫

R3

kδ(v, v∗)∇v∗gt(v∗) dv∗

+

∫

R3

kδ(v, v∗) (Dtgt)(v∗) dv∗

=A1
δgt +A2

δgt +Aδ(Dtgt),

where A1
δ stands for the integral operator associated to the kernel ∇vkδ and A2

δ stands for
the integral operator associated to the kernel ∇v∗kδ . All together, we may write

∂t(Dtgt) = Bλ,δ(Dtgt) + Iδ(gt)
with

Iδf = Qeλ(∇vGλ, f) +Qeλ(f,∇vGλ)−A1
δf −A2

δf,

which satisfies

‖Iδf‖L1
v(〈v〉m) ≤ Cδ‖f‖L1

v(〈v〉
2m).
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Then arguing as in the proof of Lemma 2.8, we obtain, for any α′′
0 ∈ (0, α0) and for η

small enough

d

dt

(
eα

′′
0 t

∫

R3

∫

T3

(η|Dtgt|+ |gt|)〈v〉mdxdv

)
≤ 0,

which implies

(2.18) ∀ t ≥ 0, ‖Dtgt‖L1(〈v〉m) + ‖gt‖L1(〈v〉m) ≤ η−1e−α′′
0 t‖h0‖W s,1

x W 1,1
v (〈v〉m).

Then, we write

t∇xT1(t)(∂
β
xh0) =

∫

R3

kδ(v, v∗) [(Dtgt)−∇v∗gt] (x, v∗) dv∗

= Aδ(Dtgt) +A2
δgt,

Using (2.18), we hence get

t ‖∇xT1(t)(∂
β
xh0)‖L1(K) ≤ C

(
‖Dtgt‖L1(〈v〉m) + ‖gt‖L1(〈v〉m)

)

≤ C η−1e−α′′
0 t‖h0‖W s,1

x W 1,1
v (〈v〉m)

.

Together with estimate (2.17) and Lemma 2.9, for s ≥ 0, we conclude that

‖T1(t)(∂βxh0)‖W s+1,1
x W 1,1

v (K) ≤
Ce−α′′

0 t

t
‖h0‖W s,1

x W 1,1
v (〈v〉m),

which in turn implies (2.15).
Now interpolating the last inequality and (2.17), for s ≥ 0, we have

(2.19) ‖T1(t)h0‖W s+1/2,1
x,v (K)

≤ Ce−α′′
0 t

√
t

‖h0‖W s,1
x W 1,1

v (〈v〉m).

Putting together (2.15) and (2.19), for s ≥ 0, we obtain

‖T2(t)h0‖W s+1/2,1
x,v (K)

≤
∫ t

0
‖T1(t− s)T1(s)h0‖W s+1/2,1

x,v (K)
ds

≤ C

∫ t

0

e−α′′
0 (t−s)

(t− s)1/2
‖T1(s)h0‖W s,1

x W 1,1
v (〈v〉m) ds

≤ C

(∫ t

0

e−α′′
0 (t−s)

(t− s)1/2
e−α0s ds

)
‖h0‖W s,1

x,v(〈v〉m)

≤ C
√
te−α′′

0 t‖h0‖W s,1
x,v(〈v〉m),

which concludes the proof. �

Let us now recall [18, Lemma 2.17] which yields an estimate on the norms
‖Tn‖B(Ej ,Ej+1) for j = −1, 0.

Lemma 2.11. Let E, E be two Banach space with E ⊂ E dense with continuous embedding,
and consider L ∈ E and a ∈ R. We assume that there exist some intermediate spaces

E = EJ ⊂ EJ−1 ⊂ ... ⊂ E2 ⊂ E1 = E , J ≥ 2

such that, denoting Aj := A|Ej and Bj := B|Ej

(i) (Bj − a) is hypodissipative and Aj is bounded on Ej for 1 ≤ j ≤ J ;
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(ii) there are some constants ℓ0 ∈ N
∗, C ≥ 1, K ∈ R, γ ∈ [0, 1) such that

∀ t ≥ 0, ‖Tℓ0(t)‖B(Ej ,Ej+1) ≤ C
eKt

tγ
,

for 1 ≤ j ≤ J − 1, with the notation Tℓ := (ASB)(∗ℓ).
Then for any a′ > a, there exist some constructive constants n ∈ N, Ca′ ≥ 1 such that

∀ t ≥ 0, ‖Tn(t)‖B(E,E) ≤ Ca′e
a′t.

Combining Lemmas 2.8 and 2.10, we can apply Lemma 2.11 and deduce the following
result:

Lemma 2.12. Let λ be in (0, λ0). For any α′
0 ∈ (0, α0), there exist some constructive

constants n ∈ N and Cα′
0
≥ 1 such that

∀ t ≥ 0, ‖Tn(t)‖B(Ej ,Ej+1) ≤ Cα′
0
e−α′

0t, j = −1, 0.

2.6. Estimate on Lλ −L0. Using estimates from the proof of Lemma 2.8, we can prove
the following result:

Lemma 2.13. There exists a function η1(λ) such that η1(λ) −−−→
λ→0

0 and the difference

Lλ − L0 satisfies

‖Lλ − L0‖B(Ej ,Ej−1) ≤ η1(λ), j = 0, 1.

Proof. We have

Lλ − L0 = λγ∆v + Q̂eλ − Q̂1.

First, we have the following inequality:

(2.20) ‖λγ∆v(h)‖Ej−1
≤ λγ‖h‖Ej , j = 0, 1.

Concerning the term Q̂eλ − Q̂1, we have obtained in the proof of Lemma 2.8

‖(Q̂eλ − Q̂1)h‖L1
v(〈v〉m) ≤ C ε(λ)‖h‖L1

v(〈v〉
2m)

with ε(λ) −−−→
λ→0

0. Again arguing as in the proof of Lemma 2.8, we obtain

‖∂v(Q̂eλ − Q̂1)h‖L1
v(〈v〉m) ≤ C ε(λ)‖h‖

W 1,1
v (〈v〉2m)

.

We obtain the higher-order derivatives in the same way and we can conclude that

(2.21) ‖(Q̂eλ − Q̂1)h‖E0 ≤ C ε(λ)‖h‖E1 .
Gathering (2.20) and (2.21), we deduce that

‖(Lλ − L0)h‖E0 ≤ η1(λ)‖h‖E1 .
Using the same method, we obtain:

‖(Lλ − L0)h‖E−1
≤ η1(λ)‖h‖E0 .

�

In the remaining part of the paper, δ is fixed (given by Lemma 2.8), we hence denote
A = Aδ and Bλ = Bλ,δ.
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2.7. Semigroup spectral analysis of the linearized operator. In this section we
shall state some results on the geometry of the spectrum of the linearized diffusive inelastic
collision operator for a small diffusion parameter.

Theorem 2.14. There exists λ′ ∈ [0, 1) such that for any λ ∈ [0, λ′], Lλ satisfies the
following properties in E0:

(i) There exists µλ ∈ R such that Σ(Lλ) ∩ ∆−α = {µλ, 0} where α is given by
Theorem 2.15. Moreover, 0 is a four-dimensional eigenvalue and µλ is a one-
dimensional eigenvalue.

(ii) µλ satisfies the following estimate

(2.22) µλ = −Cλγ + o(λγ)

for some C > 0.
(iii) For any α′ ∈ (0,min(α,α0)) \ {−µλ} (where α0 is provided by Lemma 2.8), the

semigroup generated by Lλ has the following decay property

(2.23) ∀ t ≥ 0, ‖eLλt − eLλtΠLλ,0 − eLλtΠLλ,µλ
‖B(E0) ≤ Ce−α′t

for some C > 0.

The proof is divided into several steps.

2.7.1. Step 1 of the proof: the linearized elastic operator. We recall hypodissipativity re-
sults for the semigroup associated to the linearized elastic Boltzmann equation which are
proved in [18]. Among other things, the following is proved in this paper (Theorem 4.2):

Theorem 2.15. There are constructive constants C ≥ 1, α > 0, such that the operator
L0 satisfies in E0 and E1:

Σ(L0) ∩∆−α = {0} and N(L0) = Span{G0, v1G0, v2G0, v3G0, |v|2G0}.
Moreover, L0 is the generator of a strongly continuous semigroup h(t) = SL0

(t)hin in E0
and E1, solution to the initial value problem (2.3) with λ = 0, which satisfies:

∀ t ≥ 0, ‖h(t)−ΠL0,0hin‖Ei ≤ Ce−αt‖hin −ΠL0,0hin‖Ei , i = 0, 1.

2.7.2. Step 2 of the proof: localization of spectrum of Lλ.

Lemma 2.16. Let us define Kλ(z) for any z ∈ Ω := ∆−α \ {0} (where α is given by
Theorem 2.15) by

Kλ(z) = (−1)n (Lλ − L0)RL0
(z) (ARBλ

(z))n.

Then, there exists η2(λ) with η2(λ) −−−→
λ→0

0 such that

∀ z ∈ Ωλ := ∆−α \ B̄(0, η2(λ)), ‖Kλ(z)‖B(E0) ≤ η2(λ).

Moreover, there exists λ′ ∈ (0, λ0] (where λ0 is given by Lemma 2.8) such that for any
λ ∈ [0, λ′], we have

(i) I +Kλ(z) is invertible for any z ∈ Ωλ

(ii) Lλ − z is also invertible for any z ∈ Ωλ and

∀ z ∈ Ωλ, RLλ
(z) = Uλ(z) (I +Kλ(z))

−1

where

Uλ(z) = RBλ
(z) + ...+ (−1)n−1 RBλ

(z) (ARBλ
(z))n−1 + (−1)n RL0

(ARBλ
(z))n.
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We thus deduce that

Σ(Lλ) ∩∆−α ⊂ B(0, η2(λ)).

Proof. Step 1. We first notice that (ARBλ
(z))n ∈ B(E0, E1), RL0

(z) ∈ B(E1) and
Lλ−L0 ∈ B(E1, E0) for any z ∈ Ω because of Lemma 2.12, Theorem 2.15 and Lemma 2.13.
Moreover, there exist n ∈ N and C0 > 0 such that ‖RL0

(z)‖B(E1) ≤ C0/|z|n for any z in Ω.
Indeed, we know from [21, paragraph I.5.3] that in E1, the following Laurent series

RL0
(z) =

+∞∑

k=−n

zk Ck

where Ck are some bounded operators in B(E1), converges for z close to 0. We thus deduce

the previous estimate on ‖RL0
(z)‖B(E1). Let us finally define η2(λ) :=

(
C0Cλ′

0
η1(λ)

) 1

n+1

where λ′0 is fixed in (0, λ0) and Cλ′
0
is given by Lemma 2.12. We deduce that

∀ z ∈ Ωλ, ‖Kλ(z)‖B(E0) ≤ η1(λ)
C0

η2(λ)n
Cλ′

0
= η2(λ).

We then choose λ′ ∈ (0, λ0] such that for any λ ∈ (0, λ′], η2(λ) < 1. We hence obtain that
I +Kλ(z) is an invertible operator for any λ ∈ (0, λ′]. Let us now consider λ ∈ (0, λ′].

Step 2. Uλ(z) (I + Kλ(z))
−1 is a right-inverse of Lλ − z on Ωλ. For any z ∈ Ωλ, we

compute

(Lλ − z)Uλ(z) = (Bλ − z +A) {RBλ
(z) + ...+ (−1)n−1 RBλ

(z) (ARBλ
)n−1(z)}

+ (−1)n (Lλ − L0 + L0 − z)RL0
(z) (ARBλ

)n(z)

= Id+Kλ(z).

Because of the previous step, we deduce that for z ∈ Ωλ, Uλ(z) (I +Kλ(z))
−1 is a right-

inverse of Lλ − z.

Step 3. There exists z0 ∈ Ωλ such that Lλ − z0 is invertible on Ωλ. Indeed, we write

Lλ − z0 = (ARBλ
(z0) + I) (Bλ − z0)

where (ARBλ
(z0) + I) is invertible for ℜe z0 large enough because of Lemma 2.8. As

a consequence, Lλ − z0 is the product of two invertible operators, we hence obtain that
Lλ − z0 is invertible.

Step 4. Lλ − z is invertible close to z0. Since Lλ − z0 is invertible on Ωλ, we have
RLλ

(z0) = Uλ(z0) (I + Kλ(z0))
−1. Moreover, if ‖RLλ

(z0)‖ ≤ C for some C > 0, then
Lλ − z in invertible on the disc B(z0, 1/C) with

(2.24) ∀ z ∈ B(z0, 1/C), RLλ
(z) = RLλ

(z0)
+∞∑

n=0

(z − z0)
nRLλ

(z0)
n,

and arguing as before, RLλ
(z) = Uλ(z) (I + Kλ(z))

−1 on B(z0, 1/C) since
Uλ(z) (I +Kλ(z))

−1 is a right inverse of Lλ − z for any z ∈ Ωλ.

Step 5. Lλ − z is invertible on Ωλ. For a given z1 ∈ Ωλ, we consider a continuous path
Γ from z0 to z1 included in Ωλ, i.e. a continuous function Γ : [0, 1] → Ωλ such that
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Γ(0) = z0, Γ(1) = z1. We know that (ARBλ
(z))ℓ, 1 ≤ ℓ ≤ n − 1, RL0

(z)(ARBλ
(z))n and

(I +Kλ(z))
−1 are locally uniformly bounded in B(E0) on Ωλ, which implies

sup
z∈Γ([0,1])

‖Uλ(z)(I +Kλ(z))
−1‖B(E0) := K <∞.

Since (Lλ − z0) is invertible we deduce that (Lλ − z) is invertible with RLλ
(z) locally

bounded around z0 with a bound K which is uniform along Γ (and a similar series expan-
sion as in (2.24)). By a continuation argument we hence obtain that (Lλ− z) is invertible
in E0 all along the path Γ with

RLλ
(z) = Uλ(z)(I +Kλ(z))

−1 and ‖RLλ
(z)‖B(E0) ≤ K.

Hence we conclude that (Lλ − z1) is invertible with RLλ
(z1) = Uλ(z1)(I +Kλ(z1))

−1. �

2.7.3. Step 3 of the proof: dimension of eigenspaces.

Lemma 2.17. There exist a constant C > 0 and a function η3(λ) such that

(2.25) ‖ΠLλ,−α‖B(E0,E1) ≤ C,

and

(2.26) ‖ΠLλ,−α −ΠL0,−α‖B(E0) ≤ η3(λ), η3(λ) −−−→
λ→0

0.

It implies that for λ close enough to 0, we have

dimR(ΠLλ,−α) = dimR(ΠL0,−α) = 5.

The following lemma from [21, paragraph I.4.6] is going to be useful for the proof.

Lemma 2.18. Let X be a Banach space and P , Q be two projectors in B(X) such
that ‖P − Q‖B(X) < 1. Then the ranges of P and Q are isomorphic. In particular,
dim(R(P )) = dim(R(Q)).

Let us now prove Lemma 2.17.

Proof. Let Γ := {z ∈ C, |z| = η2(λ)} which is included in Ω for λ small enough. We set
N := 2n and we define

U0
λ := RBλ

+ ...+ (−1)N−1 RBλ
(ARBλ

)N−1 and U1
λ := (−1)N RL0

(ARBλ
)N ,

Notice that Lemma 2.8 implies that z 7→ RBλ
(z) is holomorphic in B̄(0, η2(λ)) for λ small

enough and consequently that
∫
Γ U0

λ(z) dz = 0. We can then compute:

ΠLλ,−α =
i

2π

∫

Γ
RLλ

(z) dz

=
i

2π

∫

Γ
Uλ(z) (I +Kλ(z))

−1 dz

=
i

2π

∫

Γ
U0
λ(z) {I −Kλ(z) (I +Kλ(z))

−1} dz

+
i

2π

∫

Γ
U1
λ(z) (I +Kλ(z))

−1 dz

=
1

2iπ

∫

Γ
U0
λ(z)Kλ(z) (I +Kλ(z))

−1 dz

+(−1)n
i

2π

∫

Γ
RL0

(z) (ARBλ
(z))N (I +Kλ(z))

−1 dz.
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Since (ARBλ
(z))N appears in the two parts of the expression of ΠLλ,−α, we deduce that

(2.25) holds.

Concerning the estimate on ΠL0,−α −ΠLλ,−α, we begin by writing

RL0
(z) = RB0

(z) + ...+ (−1)N−1 RB0
(z) (ARB0

(z))N−1 + (−1)N RL0
(z) (ARB0

(z))N

which implies that

ΠL0,−α =
i

2π

∫

Γ
RL0

(z) dz

= (−1)n
i

2π

∫

Γ
RL0

(z) (ARB0
(z))N dz.

Finally, we deduce that

ΠL0,−α −ΠLλ,−α

= (−1)n
i

2π

∫

Γ
RL0

(z) {(ARB0
(z))N − (ARBλ

(z))N (I +Kλ(z))
−1} dz

− 1

2iπ

∫

Γ
U0
λ(z)Kλ(z) (I +Kλ(z))

−1 dz.

Since Kλ(z) appears in the second term, we deduce that it is bounded by η2(λ). Con-
cerning the first term, we rewrite it as

(ARB0
(z))2n − (ARBλ

(z))2n + (ARBλ
(z))2n(I − (I +Kλ(z))

−1).

The second part of this expression is bounded by η2(λ)/(1− η2(λ)) because of the bound
on the norm of Kλ. The first part can be written as

2n∑

k=0

(ARB0
(z))k A (RB0

(z)−RBλ
(z)) (ARBλ

(z))2n−k−1.

In addition, the bound on the norm of Bλ − B0 given by Lemma 2.13 gives a bound on
the norm of RBλ

(z)−RB0
(z) because

RB1
(z)−RBλ

(z) = RBλ
(z) (Bλ − B0)RB0

(z).

Since for all k, 0 ≤ k ≤ 2n we have k ≥ n or 2n − k − 1 ≥ n, we can use Lemma 2.12
and conclude that (ARB0

(z))2n − (ARBλ
(z))2n is bounded by Cη1(λ), which concludes

the proof of (2.26).
The last part of Lemma 2.17 is nothing but Lemma 2.18 because for λ close enough

to 0, η3(λ) < 1. �

We can now finish the proof of Theorem 2.14-(i). The previous lemma implies that
there exist ξ1, ..., ξ5 ∈ C such that

Σ(Lλ) ∩∆−α = {ξ1, ...ξ5}.
Moreover, we know that 0 is a four-dimensional eigenvalue due to the conservation of mass
and momentum. Since the operator is real, we can deduce that there exists µλ ∈ R such
that

Σ(Lλ) ∩∆−α = {0, µλ}.
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2.7.4. Step 4 of the proof: fine study of spectrum close to 0. Concerning the case of a
constant coefficient of inelasticity, we refer to [24, Section 5.2, Step 2] for the proof of
Theorem 2.14-(ii) (the first order expansion of µλ (2.22)). Let us deal with the non-
constant case.

We first denote φ0 the energy eigenfunction of the the elastic linearized operator as-
sociated to 0 such that ‖φ0‖L1

v(〈v〉
2) = 1. We also denote Π0 the projection on Rφ0 and

π0ψ the coordinate of Π0 ψ on Rφ0 i.e Π0 ψ = (π0ψ)φ0. Finally, we denote φλ the unique
eigenfunction associated to µλ such that ‖φλ‖L1

v(〈v〉
2) = 1 and π0φλ ≥ 0.

By integrating in v the eigenvalue equation related to µλ

Lλ φλ = µλ φλ

against |v|2, we get

(2.27) 2

∫

R3

Q̃eλ(Gλ, φλ) |v|2 dv + λγ
∫

R3

∆v φλ |v|2 dv = µλ E(φλ).

We now compute the left-hand side of (2.27). By a classical computation which uses (1.9),
we have:

2

∫

R3

Q̃eλ(Gλ, φλ) |v|2 dv = −
∫

R3

∫

R3

∫

S2

|u|3Gλ∗
φλ

1− û · σ
4

(1− eλ
2) dσ dv∗ dv

and using polar coordinates
∫

S2

1− û · σ
4

(
1− eλ

2

(
|u|
√

1− û · σ
2

))
dσ = 4π

∫ 1

0

(
1− eλ

2 (|u|y)
)
y3 dy.

Let us define

ψe(r) := 4π r3/2
∫ 1

0
(1− e2(

√
rz)) z3 dz,

we can compute ψeλ(r) = λ−3 ψe(λ
2r). We deduce that

2

∫

R3

Q̃eλ(Gλ, φλ) |v|2 dv = − 1

λ3

∫

R3

∫

R3

Gλ∗
φλ ψe(λ

2|u|2) dv∗ dv.

We also have ∫

R3

∆v φλ |v|2 dv = 6

∫

R3

φλ dv = 6 ρ(φλ).

Dividing (2.27) by λγ , we hence obtain

(2.28) − 1

λ3+γ

∫

R3

∫

R3

Gλ∗
φλ ψe(λ

2|u|2) dv∗ dv + 6 ρ(φλ) =
1

λγ
µλ E(φλ).

We would like to make λ tend to 0 in (2.28). To do that, we introduce the following
notations:

Iλ(f, g) :=

∫

R3

∫

R3

f∗g ζλ(|u|2) dv∗ dv with ζλ(r
2) =

1

λ3+γ
ψe(λ

2r2),

and

I0(f, g) :=

∫

R3

∫

R3

f∗g ζ0(|u|2) dv∗ dv with ζ0(r
2) =

a

4 + γ
r3+γ .

Let us now prove that Iλ(Gλ, φλ) tends to I0(G0, φ0) as λ tends to 0. We state the following
lemma which is going to be useful. We do not prove it here because the proof is the same
as the one of [23, Lemma 5.17].
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Lemma 2.19. Let k, q ∈ N. We have the following result:

‖φλ − φ0‖W k,1
v (〈v〉qm)

−−−→
λ→0

0.

To prove that Iλ(Gλ, φλ) tends to I0(G0, φ0) as λ tends to 0, let us write the following
inequality:

|Iλ(Gλ, φλ)− I0(G0, φ0)| ≤ |Iλ(Gλ, φλ)− I0(Gλ, φλ)|+ |I0(Gλ, φλ)− I0(G0, φ0)|
=: J1

λ + J2
λ .

We first deal with J2
λ :

J2
λ =

∣∣∣∣
∫

R3

∫

R3

(Gλ∗
φλ −G0∗φ0) ζ0(|u|2) dv∗ dv

∣∣∣∣

≤ C

∫

R3

∫

R3

|Gλ∗
−G0∗ |φ0 〈v〉3+γ 〈v∗〉3+γ dv∗ dv

+ C

∫

R3

∫

R3

Gλ∗
|φλ − φ0| 〈v〉3+γ 〈v∗〉3+γ dv∗ dv

≤ C
(
‖Gλ −G0‖L1

v(〈v〉
3+γ ) ‖φ0‖L1

v(〈v〉
3+γ ) + ‖Gλ‖L1

v(〈v〉
3+γ ) ‖φλ − φ0‖L1

v(〈v〉
3+γ )

)

≤ C
(
‖Gλ −G0‖L1

v(〈v〉
3+γ ) + ‖φλ − φ0‖L1

v(〈v〉
3+γ )

)
−−−→
λ→0

0

because of Lemmas 2.4 and 2.19.
Let us now establish an estimate on J1

λ :

J1
λ ≤

∫

R3

∫

R3

Gλ∗
φλ |ζλ(|u|2)− ζ0(|u|2)| dv∗ dv =: Dλ.

We can rewrite the difference ζλ(r
2)− ζ0(r

2) in the following way:

ζλ(r
2)− ζ0(r

2) =
r3+γ

2

∫ 1

0

(
1− e2(λrz)

(λrz)γ
− 2a

)
z3+γ dz,

which allows us to get an estimate on this difference using Assumption 1.1-(3). There
exists a constant C > 0 such that

∀λ ∈ (0, 1], ∀r > 0, |ζλ(r2)− ζ0(r
2)| ≤ C

(
r3+2γ λγ + r3+γ+γ λγ + r3+γ λγ−γ

)
.

Denoting γ̃ := min(γ, γ − γ), we can deduce that

Dλ ≤
∫

R3

∫

R3

Gλ∗
φλ λ

γ̃ |u|3+γ+γ dv∗ dv

≤ C λγ̃ ‖Gλ‖L1
v(〈v〉

3+γ+γ )‖φλ‖L1
v(〈v〉

3+γ+γ )

≤ C λγ̃ .

It yields the result: J1
λ −−−→

λ→0
0.

We can now make λ tend to 0 in (2.28). Using the previous result
Iλ(Gλ, φλ) → I0(G0, φ0), the fact that the mass of φ0 is 0 and the convergences Gλ → G0

and φλ → φ0 (Lemmas 2.4 and 2.19), we deduce that
µλ
λγ

E(φ0) = −I0(G0, φ0) + o(1).

We finally conclude that there exists a constant C > 0 such that

µλ = −Cλγ + o(λγ).
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2.7.5. Step 5 of the proof: semigroup decay. In order to get our semigroup decay, we are
going to apply the following quantitative spectral mapping theorem which comes from [26].
We give here a simpler version and hence give the proof which is easier in this case.

Proposition 2.20. Consider a Banach space X and an operator Λ ∈ C (X) so that
Λ = A + B where A ∈ B(X) and B − a is hypodissipative on X for some a ∈ R. We
assume furthermore that there exists a family Xj , 1 ≤ j ≤ m, m ≥ 2 of intermediate
spaces such that

Xm ⊂ D(Λ2) ⊂ Xm−1 ⊂ ... ⊂ X2 ⊂ X1 = X,

and a family of operators Λj ,Aj,Bj ∈ C (Xj) such that

Λj = Aj + Bj , Λj = Λ|Xj
, Aj = A|Xj

, Bj = B|Xj
,

and that there holds

(i) (Bj − a) is hypodissipative on Xj ;
(ii) Aj ∈ B(Xj);

(iii) there exists n ∈ N such that Tn(t) := (ASB(t))(∗n) satisfies ‖Tn(t)‖B(X,Xm) ≤ Ceat.

Then the following localization of the principal part of the spectrum

(1) there are some distinct complex numbers ξ1, ..., ξk ∈ ∆a, k ∈ N (with the convention
{ξ1, ...ξk} = ∅ if k = 0) such that one has

Σ(Λ) ∩∆a = {ξ1, ..., ξk} ⊂ Σd(Λ).

implies the following quantitative growth estimate on the semigroup

(2) for any a′ ∈ (a,∞) \ {ℜe ξj , j = 1, ..., k}, there exists some constructive constant
Ca′ > 0 such that

∀t ≥ 0,

∥∥∥∥∥∥
SΛ(t)−

k∑

j=1

e
tΛΠΛ,ξjΠΛ,ξj

∥∥∥∥∥∥
B(X)

≤ Ca′e
a′t.

In particular, the following partial (but principal) spectral mapping theorem holds

∀ t ≥ 0, ∀ a′ > a, Σ(eΛt) ∩∆ea′t = eΣ(Λ)∩∆a′ t.

Proof. We have the following representation formula (see for instance the proof of [18, The-
orem 2.13]):

SΛ(t)f =

k∑

j=1

SΛ,ξj(t)f +

n+1∑

ℓ=0

(−1)ℓSB ∗ (ASB)(∗ℓ)(t)f + Z(t)f,

for any f ∈ D(Λ) and t ≥ 0, where

Z(t)f := lim
M→∞

(−1)n

2iπ

∫ a′+iM

a′−iM
eztRΛ(z) (ARB(z))

n+2f dz.

On the one hand, we know from (i) and (ii) that

∀ ℓ = 0, ..., n + 1, ‖SB ∗ (ASB)(∗ℓ)(t)‖B(X) ≤ Ca′e
a′t.

On the other hand, because of (iii), we have

sup
z∈a′+iR

‖(ARB)
n(z)‖B(X,D(Λ2)) ≤ K1

a′
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and because of (1), since Λ generates a semigroup,

sup
z∈a′+iR

‖RΛ(z)‖B(X) ≤ K2
a′ .

Then, we are going to use the resolvent identity

(2.29) ∀ z /∈ Σ(B), RB(z) = z−1[RB(z)B − I]

to get an estimate on ‖(ARB)
2(z)‖B(D(Λ2),X) if |z| ≥ 1. Using twice (2.29), we obtain

∀ z ∈ C, |z| ≥ 1, ‖(ARB)
2(z)f‖X ≤ K3

a′ |z|−2‖f‖D(B2)

and we notice that D(B2) = D(Λ2) because A is bounded. We finally obtain

∀ z ∈ C, |z| ≥ 1, ‖(ARB)
2(z)f‖X ≤ K3

a′
1

1 + |z|2 ‖f‖D(Λ2).

Moreover, we also have

∀ z ∈ C, |z| ≤ 1, ‖(ARB)
2(z)f‖X ≤ K4

a′
1

1 + |z|2 ‖f‖D(Λ2).

All together, we deduce that

‖Z(t)‖B(X) ≤ Ka′
ea

′t

2π

∫

R

dy

1 + y2
,

which yields the result. �

We can now prove the estimate on the semigroup decay (2.23). We apply Proposi-
tion 2.20 with a := max(−α,−α0) < 0. We have E1 ⊂ D(L2

λ) ⊂ E0 ⊂ E−1. Assumptions
(i), (ii) and (iii) are nothing but Lemmas 2.8, 2.9 and 2.12. And (1) is given by the
previous steps of the proof. We hence conclude that we have the decay result (2.23) for
any α′ ∈ (0,min(α,α0)) \ {−µλ}.
Remark 2.21. Thanks to the first order expansion of µλ (2.22), we deduce that µλ < 0
for λ close enough to 0. As a consequence, for any αλ ∈ (0,−µλ), we have

(2.30) ‖eLλt − eLλtΠLλ,0‖B(E0) ≤ Ce−αλt.

2.8. A dissipative Banach norm for the full linearized operator. Let us define a
new norm on E0 by

(2.31) |||h|||E0 := η‖h‖E0 +
∫ +∞

0
‖SLλ

(τ)h‖E0 dτ, η > 0,

which is well-defined if ΠLλ,0h = 0 thanks to the estimate (2.30).

Proposition 2.22. There exist η > 0 and α1 > 0 such that for any hin ∈ E0, ΠLλ,0hin = 0,
the solution h(t) := SLλ

(t)hin to the initial value problem (2.3) satisfies:

∀ t ≥ 0,
d

dt
|||ht|||E0 ≤ −α1|||ht|||E1

0
,

where E1
0 :=W s,1

x W 2,1
v (〈v〉2m) and ||| · |||E1

0
is defined as in (2.31).
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Proof. From the decay property of Lλ provided by (2.30), if ΠLλ,0h = 0, we have

‖SLλ
(τ)h‖E0 ≤ Ce−αλτ‖h‖E0 .

We thus deduce that the norms ‖ · ‖E0 and ||| · |||E0 are equivalent for any η > 0.
Let us now compute the time derivative of the norm E0 along ht where ht solves the

linear evolution problem (2.3). Observe that ΠLλ,0ht = 0 due to the mass and momentum
conservation properties of the linearized equation. Since the x-derivatives commute with
the equation, we can set s = 0. We first treat the case L1

xL
1
v(〈v〉m). We compute

d

dt
|||ht|||E0 = η

∫

R3

(∫

T3

Lλ(ht) sign(ht) dx

)
〈v〉mdv +

∫ ∞

0

∂

∂t
‖ht+τ‖E0 dτ =: I1 + I2.

Concerning the first term, arguing as in the proof of Lemma 2.8, we have from the dissi-
pativity of Bλ and the bounds on A

I1 ≤ η (C‖ht‖E0 −K‖ht‖E1
0
)

for some constants C,K > 0.
The second term is computed exactly:

I2 =

∫ ∞

0

∂

∂t
‖ht+τ‖E0 dτ =

∫ ∞

0

∂

∂τ
‖ht+τ ‖E0 dτ = −‖ht‖E0 .

The combination of the two last equations yields the desired result by choosing η small
enough. The case of higher-order v-derivativeq is treated similarly as in Lemma 2.8. �

3. The nonlinear Boltzmann equation

3.1. The bilinear estimates. Let us recall a bilinear estimate on the nonlinear term in
equation (1.1).

Lemma 3.1. In the space Eq := W σ,1
v W s,1

x (〈v〉qm) with s, σ ∈ N, s > 6 and q ∈ N, the
collision operator Q satisfies

‖Qeλ(g, f)‖Eq ≤ C(‖g‖Eq+1‖f‖Eq + ‖g‖Eq‖f‖Eq+1)

for some constant C > 0, where Eq+1 is defined as Eq.

The proof is similar to the one done in [18, Lemma 5.16]. We shall only mention the
main steps.

Proof. Let us first consider the velocity aspect only of the norm with σ = 0. Concerning
the case of a constant coefficient of inelasticity, we use that the elastic collision operator
Q1 satisfies (cf [27])

‖Q1(g, f)‖L1
v(m) ≤ C(‖f‖L1

v(m)‖g‖L1
v(〈v〉m) + ‖f‖L1

v(〈v〉m)‖g‖L1
v(m)).

First, it can be straightforwardly adapted to the case L1(〈v〉qm). Then, if v′λ and v′0
denotes the post-collisional velocities in the inelastic case and in the elastic case with
obvious notations, using the fact that we both have

|v′λ|2 ≤ |v|2 + |v∗|2

and

|v′0|2 ≤ |v|2 + |v∗|2,
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the same proof can be done in the inelastic case. We hence obtain that
(3.1)

‖Qeλ(g, f)‖L1
v(〈v〉

qm) ≤ C
(
‖f‖L1

v(〈v〉
qm)‖g‖L1

v(〈v〉
q+1m) + ‖f‖L1

v(〈v〉
q+1m)‖g‖L1

v(〈v〉
qm)

)
.

Then, from property (2.6) and inequality (3.1), we deduce that

‖Qeλ(g, f)‖Wσ,1
v (〈v〉qm) ≤ C

(
‖f‖Wσ,1

v (〈v〉qm)‖g‖Wσ,1
v (〈v〉q+1m)+

‖f‖Wσ,1
v (〈v〉q+1m)‖g‖Wσ,1

v (〈v〉qm)

)

as well as similar results from the other estimates.
As a final step, we consider the x aspect of the norm. We use the Sobolev embedding

W
s/2,1
x (T3) ⊂ L∞

x (T3) with continuous embedding since s > 6 and we conclude as in [18].
�

3.2. The main results. Let us now give some results on the stability and relaxation
to equilibrium for solutions to the full non-linear problem. We consider first the close-
to-equilibrium regime (Theorem 3.2), and then the weakly inhomogeneous regime (Theo-
rem 3.3).

Theorem 3.2 (Perturbative solutions close to equilibrium). Let us consider
λ ∈ [0, λ′] (where λ′ is given by Theorem 2.14). There is some constructive constant
ε > 0 such that for any initial datum fin ∈ E0 satisfying

‖fin −Gλ‖E0 ≤ ε,

and fin has the same global mass and momentum as the equilibrium Gλ defined in subsec-
tion 3.1, there exists a unique global solution f ∈ L∞

t (E0) to (1.1).
This solution furthermore satisfies that for any α̃ ∈ (0,−µλ):

∀ t ≥ 0, ‖ft −Gλ‖E0 ≤ Ce−α̃t‖fin −Gλ‖E0
for some constructive constant C > 0.

For the following theorem, we only consider the case of a constant restitution coefficient,
namely eλ(·) is constant equal to 1− λ, Theorem 3.3 is thus a result on equation (1.2).

Theorem 3.3 (Weakly inhomogeneous solutions in the case of a constant restitution
coefficient). Let us consider λ in [0, λ′]. Consider a spatially homogeneous distribution

gin = gin(v) ∈W 2,1
v

(
〈v〉5eb〈v〉β

)
with the same global mass and momentum as Gλ.

There is some constructive constant ε(gin) > 0 such that for any initial datum fin ∈ E0
satisfying

‖fin − gin‖E0 ≤ ε(gin),

and fin has the same mass and momentum as Gλ and gin, there exists a unique global
solution f ∈ L∞

t (E0) to (1.1).
Moreover, this solution satisfies

∀ t ≥ 0, ‖ft − gt‖E0 ≤ C ε(gin)

and for any α̃ ∈ (0,−µλ),
∀ t ≥ 0, ‖ft −Gλ‖E0 ≤ Ce−α̃t

for some constructive constant C > 0.
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3.3. Proof of the main results.

3.3.1. Proof of Theorem 3.2. The strategy is similar to the one from [18] and we will only
mention the main ideas of the proof. We begin by giving the key a priori estimate.

Lemma 3.4. With the notations of Theorem 3.2, in the space E0, a solution ft to the
Boltzmann equation formally writes ft = Gλ + ht, ΠLλ,0ht = 0, and ht satisfies the
estimate

d

dt
|||ht|||E0 ≤ (C|||ht|||E0 −K)|||ht|||E1

0

for some constants C, K > 0 and with E1
0 :=W s,1

x W 2,1
v (〈v〉2m).

Proof. We consider the case L1
xL

1
v(〈v〉m), we will skip the proof of other cases which is

similar. We have

d

dt
|||ht|||L1

xL
1
v(〈v〉m) = I1 + I2

with

I1 := η

∫

R3

(∫

T3

Lλht sign(ht) dx

)
〈v〉mdv

+

∫ ∞

0

∫

R3

(∫

T3

eτLλ(Lλht) sign(e
τLλht) dx

)
〈v〉mdv dτ

and

I2 := η

∫

R3

(∫

T3

Qeλ(ht, ht) sign(ht) dx

)
〈v〉mdv

+

∫ ∞

0

∫

R3

(∫

T3

eτLλQeλ(ht, ht) sign(e
τLλht) dx

)
〈v〉mdv dτ

We already know from Proposition 2.22 that by choosing η small enough, we have

I1 ≤ −K|||ht|||L1
xL

1
v(〈v〉

2m), K > 0.

For the second term, we have

I2 ≤ η

∫

R3

‖Qeλ(ht, ht)‖L1
x(〈v〉m) dv +

∫ ∞

0

∫

R3

‖eτLλQeλ(ht, ht)‖L1
x(〈v〉m) dv dτ

≤ η ‖Qeλ(ht, ht)‖L1
xL

1
v(〈v〉m) +

∫ ∞

0
‖eτLλQeλ(ht, ht)‖L1

xL
1
v(〈v〉m) dτ.

We thus deduce

d

dt
|||ht|||L1

xL
1
v(〈v〉m) ≤ −K|||ht|||L1

xL
1
v(〈v〉

2m) + |||Qeλ(ht, ht)|||L1
xL

1
v(〈v〉m).
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Now using the bilinear estimate coming from Lemma 3.1, the semigroup decay (2.30) and
the fact that ΠLλ,0Qeλ(ht, ht) = 0, we obtain

|||Qeλ(ht, ht)|||L1
xL

1
v(〈v〉m) ≤ η ‖Qeλ(ht, ht)‖L1

xL
1
v(〈v〉m)

+

∫ ∞

0
‖SLλ

(τ)Qeλ(ht, ht)‖L1
xL

1
v(〈v〉m) dτ

≤ η ‖ht‖L1
xL

1
v(〈v〉m)‖ht‖L1

xL
1
v(〈v〉

2m)

+ C

(∫ ∞

0
e−αλτ dτ

)
‖ht‖L1

xL
1
v(〈v〉m)‖ht‖L1

xL
1
v(〈v〉

2m)

≤C ‖ht‖L1
xL

1
v(〈v〉m)‖ht‖L1

xL
1
v(〈v〉

2m)

≤C |||ht|||L1
xL

1
v(〈v〉m)|||ht|||L1

xL
1
v(〈v〉

2m),

which concludes the proof. �

We shall now construct solutions by considering the following iterative scheme

∂th
n+1 = Lλh

n+1 +Qeλ(h
n, hn), n ≥ 1,

with the initialization

∂th
0 = Lλh

0, h0in = hin

and we assume |||hin|||E0 ≤ ε/2. The functions hn, n ≥ 0 are well-defined in E0 thanks to
Theorem 2.14.

The proof is split into three steps.
Step 1. Stability of the scheme. Let us prove by induction the following control

(3.2) ∀n ≥ 0, sup
t≥0

(
|||hnt |||E0 +K

∫ t

0
|||hnτ |||E1

0
dτ

)
≤ ε

as soon as ε ≤ K/(2C).
The initialization is deduced from Proposition 2.22 and the fact that ‖hin‖E0 ≤ ε/2:

sup
t≥0

(
|||h0t |||E0 +K

∫ t

0
|||h0τ |||E1

0
dτ

)
≤ ε.

Let us now assume that (3.2) is satisfied for any 0 ≤ n ≤ N ∈ N
∗ and let us prove it for

n = N + 1. A similar computation as in Lemma 3.4 yields

d

dt
|||hN+1|||E0 +K‖hN+1‖E1

0
dτ ≤ C|||Qeλ(h

N , hN )|||E0
for some constants C,K > 0, which implies

‖hN+1
t ‖E0 +K

∫ t

0
‖hN+1

τ ‖E1
0
dτ ≤ |||hin|||E0 +

∫ t

0
|||Qeλ(h

N
τ , h

N
τ )|||E0 dτ

≤ |||hin|||E0 + C

(
sup
τ≥0

|||hNτ |||E0
)∫ t

0
|||hNτ |||E1

0
dτ

≤ ε

2
+
C

K
ε2

≤ ε,

as soon as ε < K/(2C).
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Step 2. Convergence of the scheme. Let us now denote dn := hn+1−hn and sn := hn+1+hn

for n ≥ 0. They satisfy

∀n ≥ 0, ∂td
n+1 = Lλd

n+1 +Qeλ(d
n, sn) +Qeλ(s

n, dn)

and

∂td
0 = Lλd

0 +Qeλ(h
0, h0).

Let us denote

An(t) := sup
0≤r≤t

(
|||dnr |||E0 +K

∫ r

0
‖dnτ ‖E1

0
dτ

)
.

We can prove by induction that

∀ t ≥ 0, ∀n ≥ 0, An(t) ≤ (Cε)n+2

for some constant C > 0.
Hence for ε small enough, the series

∑
n≥0A

n(t) is summable for any t ≥ 0 and the

sequence hn has the Cauchy property in L∞
t (E0), which proves the convergence of the

iterative scheme. The limit h as n goes to infinity satisfies the equation in the strong sense
in E0.
Step 3. Rate of decay. We now consider the solution h constructed so far. From the first
step, we first deduce by letting n go to infinity in the stability estimate that

sup
t≥0

(
|||ht|||E0 +K

∫ t

0
|||hτ |||E1

0
dτ

)
≤ ε.

Second, we can apply the a priori estimate from Lemma 3.4 to this solution h which implies
that

|||ht|||E0 ≤ e−
K
2
t‖hin‖E0

under the appropriate smallness condition on ε. Using the fact that |||ht|||E0 converges to
zero as t→ +∞, we obtain

∫ ∞

t
‖ht‖E1

0
dτ ≤ 2

Kη
‖ht‖E0 ≤ Ce−

K
2
t‖hin‖E0 .

We shall now perform a bootstrap argument in order to ensure that the solution ht enjoys
the same decay rate O(e−α′t) as the linearized semigroup (Theorem 2.14). Assuming that
the solution is known to decay as

‖ht‖E0 ≤ Ce−α0t

for some constant C > 0, we can prove that it indeed decays

‖ht‖E0 ≤ C ′e−α1t

with α1 = min (α0 +K/4, α). It can be proved using Theorem 2.14 and Lemma 3.1.

Hence, in a finite number of steps, it proves the desired decay rate O(e−α′t).
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3.3.2. Proof of Theorem 3.3. We split the proof into three steps. We will only deal with
the case L1

xL
1
v(〈v〉m).

Step 1. The spatially homogeneous evolution. We consider the spatially homogeneous
initial datum gin. From [24, Corollary 6.3], we know that it gives rise to a spatially
homogeneous solution gt ∈ L1

v(〈v〉m) which satisfies

‖gt −Gλ‖L1
v(〈v〉m) → 0

with explicit exponential rate and gt ∈ L∞
t (L1

v(〈v〉m)) ∩ L1
t (L

1
v(〈v〉2m)).

Step 2. Local in time stability estimate. The goal is to construct a solution ft close to
some spatially homogeneous solution gt which is uniformly bounded in L1

xL
1
v(〈v〉m). We

consider the difference dt := ft − gt and we write its evolution equation:

∂td+ v · ∇xd = Qeλ(d, d) +Q+
eλ
(g, d) +Q+

eλ
(d, g) −Q−

eλ
(g, d) −Q−

eλ
(d, g) + λγ∆vd

= P(d) + λγ∆vd,

where P(d) := Qeλ(d, d) +Q+
eλ
(g, d) +Q+

eλ
(d, g)−Q−

eλ
(g, d)−Q−

eλ
(d, g). We then estimate

the time evolution of the L1
xL

1
v(〈v〉m) norm:

d

dt
‖dt‖L1

xL
1
v(〈v〉m) =

∫

R3

∫

T3

(P(dt) + λγ∆vdt) sign dt dx 〈v〉mdv

≤C ‖Qeλ(dt, dt)‖L1
xL

1
v(〈v〉m) + C ‖Q+

eλ
(gt, dt)‖L1

xL
1
v(〈v〉m) + C ‖Q+

eλ
(dt, gt)‖L1

xL
1
v(〈v〉m)

+ C ‖Q−
eλ
(dt, gt)‖L1

xL
1
v(〈v〉m) −

∫

R3

∫

T3

Q−
eλ
(gt, dt) sign dt dx 〈v〉mdv

+ λγ
∫

R3

∫

T3

∆v|dt| dx 〈v〉mdv.

First, using the bilinear estimates of Lemma 3.1, we have

‖Qeλ(d, d)‖L1
xL

1
v(〈v〉m) ≤ C‖d‖L1

xL
1
v(〈v〉m)‖d‖L1

xL
1
v(〈v〉

2m)

and

‖Q+
eλ
(d, g)‖L1

xL
1
v(〈v〉m) + ‖Q+

eλ
(g, d)‖L1

xL
1
v(〈v〉m) ≤ η ‖g‖L1

xL
1
v(〈v〉

2m)‖d‖L1
xL

1
v(〈v〉

2m)

+ Cη ‖g‖L1
xL

1
v(〈v〉m)‖d‖L1

xL
1
v(〈v〉m)

for any η > 0 as small as wanted, and some corresponding η-dependent constant Cη.
Second, by trivial explicit computations we have

‖Q−
eλ
(d, g)‖L1

xL
1
v(〈v〉m) ≤ C ‖d‖L1

xL
1
v(〈v〉m)‖g‖L1

xL
1
v(〈v〉

2m).

Third, we have for some K > 0,

−
∫

R3

∫

T3

Q−
eλ
(g, d) sign dt dx 〈v〉mdv ≤ −K‖d‖L1

xL
1
v(〈v〉

2m).

Fourth and last,

λγ
∫

R3

∫

T3

∆v|d| dx 〈v〉mdv ≤ C ‖d‖L1
xL

1
v(〈v〉m) ≤ C ‖d‖L1

xL
1
v(〈v〉

2m).

Gathering all these estimates, we finally obtain

d

dt
‖dt‖L1

xL
1
v(〈v〉m) ≤ (C ‖dt‖L1

xL
1
v(〈v〉m) + λγ −K)‖dt‖L1

xL
1
v(〈v〉

2m)

+C ‖gt‖L1
xL

1
v(〈v〉

2m)‖dt‖L1
xL

1
v(〈v〉m) .
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We then introduce an iterative scheme

∂td
n+1 = Qeλ(d

n, dn) +Qeλ(g, d
n) +Qeλ(d

n, g), n ≥ 0,

and

∂td
0 = Qeλ(g, d

0) +Qeλ(d
0, g)

with dnin = din = fin − gin for all n ≥ 0, just as the previous subsection. At each step,
a global solution dn is constructed in L1

xL
1
v(〈v〉m) using the estimates above. We assume

that ‖din‖L1
xL

1
v(〈v〉m) ≤ ε/2. By passing to the limit in the a priori estimates, we deduce

that, as long as

(3.3) C ‖dt‖L1
xL

1
v(〈v〉m) ≤ K − λγ

we have

‖dt‖L1
xL

1
v(〈v〉m) ≤

ε

2
exp

(
C

∫ t

0
‖gτ‖L1

xL
1
v(〈v〉

2m) dτ

)
.

We then choose ε small enough so that Cε ≤ K − λγ , and then since
gt ∈ L1

t

(
L1
xL

1
v(〈v〉2m)

)
, we can choose T1 = T1(ε) > 0 so that the smallness condition (3.3)

is satisfied and

∀ t ∈ [0, T1], ‖dt‖L1
xL

1
v(〈v〉m) ≤ ε.

Observe that T1(ε) −−−→
ε→0

+∞. This completes the proof of stability.

Step 3. The trapping mechanism. Consider δ the smallness constant of the stability
neighborhood in Theorem 3.2 in L1

xL
1
v(〈v〉m). Then from [24], we deduce that there is

some time T2 = T2(M) > 0 such that

∀ t ≥ T2, ‖gt −Gλ,g‖L1
xL

1
v(〈v〉m) ≤

δ

3

where Gλ,g is the equilibrium associated to gin. We then choose ε small enough such that

‖fin − gin‖L1
xL

1
v(〈v〉m) ≤ ε⇒ ‖Gλ,f −Gλ,g‖L1

xL
1
v(〈v〉m) ≤

δ

3

where Gλ,f is the equilibrium associated to fin, T1(ε) ≥ T2(M) and

‖fT2
− gT2

‖L1
xL

1
v(〈v〉m) ≤

δ

3
,

from the stability result.
We deduce that

‖fT2
−Gλ,f‖L1

xL
1
v(〈v〉m) ≤‖fT2

− gT2
‖L1

xL
1
v(〈v〉m) + ‖gT2

−Gλ,g‖L1
xL

1
v(〈v〉m)

+ ‖Gλ,f −Gλ,g‖L1
xL

1
v(〈v〉m)

≤ δ

and we can therefore use the perturbative Theorem 3.2 for t ≥ T2 which concludes the
proof.

Remark 3.5. In the case of a non-constant coefficient of inelasticity, we can prove
such a result in a weakly inhomogeneous setting considering an homogeneous distribution
gin = gin(v) which is close enough to the equilibrium. Indeed, using Theorem 3.2, we
obtain the existence of a solution of the equation (1.1) which converges to the equilibrium.
However, we can not conclude if we do not suppose that gin is close enough to Gλ.
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[9] Bobylëv, A. V. The method of the Fourier transform in the theory of the Boltzmann equation for

Maxwell molecules. Dokl. Akad. Nauk SSSR 225, 6 (1975), 1041–1044.
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