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A review on model-based diagnosis methodologies 
for PEMFCs

R. Petrone a,b,*, Z. Zheng b, D. Hissel b, M.C. Péra b, C. Pianese a, M. Sorrentino a, M. Becherif b,
N. Yousfi-Steiner b,c

The proton exchange membrane fuel cell systems (PEMFC)s are interesting devices for energy conversion. Recent researches are 
aimed at developing new monitoring and diag-nosis techniques; a good management of these systems would allow optimizing the 
per-formance and reducing their degradation. The objective of a suitable diagnostic tool is to identify and isolate the different faults 
that may occur in the system being monitored in real time. Therefore, the main features of computational methods are accuracy, 
reliability and high computational speed. In order to perform the diagnosis, it is necessary to evaluate different approaches. In this 
work different model-based approaches are investigated as well as their validation and applications. An overview of different 
methodologies available in the literature is proposed, which is oriented to help in developing suitable diagnostic tool for PEMFC 
monitoring and fault detection and isolation (FDI).

1. Introduction

In recent years, the energy demand has become one of the

most critical issues of the society due to the problems related

with the greenhouse gas emissions and the depletion of fossil

resources. Hydrogen is therefore playing a more and more

important role in energy conversion, and fuel cells are

considered as a promising solution.

The PEMFC operation is based on the electro-catalytic

reactions, the hydrogen oxidation at the anode and the

oxygen reduction at the cathode.Nevertheless these processes

are influenced by the systemoperating conditions and depend

on several physical phenomena occurring inside the cells.

Among others, improper water management [1], catalyst

degradation and fuel starvation [2] may introduce a voltage

drop and even reduce the lifetime of a PEMFC. Different papers

analyse the PEMFC durability [3e5]. In order to detect such

degradation phenomena and optimize the system perfor-

mance the monitoring and diagnosis of PEMFC become a cen-

tral objective.
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This paper proposes an overview of different methodolo-

gies for PEMFC’s diagnosis presented in the literature. The

overall concept of fault diagnosis consists in three essential

tasks: fault detection, fault isolation and fault analysis [6e8].

The task of fault detection is to track down fault occurrence

during the operating phases. Once a fault is detected, the fault

isolation procedure starts. Finally fault analysis is performed

to determine the type, the magnitude and the causes of the

fault (fault isolation). Generally, according to whether an

analytical model is needed, two basic types of approaches can

be considered: model-based and non-model based. The

former methodology is based on the development of a model

able to simulate the behaviour of the monitored system. In

case of a model-based approach, the fault diagnosis is per-

formed mostly via residual evaluation, followed by a residual

inference for possible fault occurrence detection [9], therefore

such method is also known as residual-based diagnosis. The

non-model based approach allows detecting and identifying

the fault through human knowledge or qualitative reasoning

techniques based on a set of input and output data.

The paper focuses mainly on investigating various model-

based approaches available in literature for PEMFC fault

detection and isolation (FDI), and is organized as follows. In

Section 1 the main principle and classification of the model-

based method are introduced. White-box and grey-box

models are introduced in Section 2. It proposes an overview

of different grey-box models aimed to develop an on-line FDI

for PEMFC systems. Models have been organized in parame-

ters identification based, observed-based, and parity space

methods. In Section 3 black-box models based on artificial

intelligence methods are investigated. Finally, a conclusion is

made to evaluate each of the presented methods.

2. Model-based approach

In model-based approach a mathematical model can be

developed to design or to control or even to performboth tasks

for the systemunder study. Particularly, systemdesign entails

adopting complex physical multidimensional models. On the

other hand, synthesis models directly derived from experi-

ments can represent a more viable solution for control and

real-time applications. Usually the physical multidimensional

models are also called “white-box”, in which a series of alge-

braic and/or differential equations are present. The solution of

these equations allows the characterization of the system

behaviour, while ensuring a high genericity of the method;

however a high computational effort could be required.

Models directly derived from experiments are also known as

“black-box”. Despite the low computational efforts required

by black-boxmodelsmake them particularly attractive for on-

linemonitoring, control and diagnosis applications, especially

for complex system such as PEMFC [10], their strong depen-

dence on available experiments reduce their genericity.

Therefore, “grey-box” approaches combining the advantages

of both physical and empirical models might often represent

an interesting alternative solution when high genericity is

required. In the particular field of fuel cells, 0-D or lumped

approaches were proven to be highly effective to enhance

real-time control [11,12] and even to perform both model-

based system sizing and control strategies’ definition [13].

Model-based approach is very common in FDI methodolo-

gies due to the availability of enough sensors employed for the

control are usually enough to perform the diagnosis and no

additional devices are required for the FDI algorithm

Abbreviations

AE acoustic emission

ANFIS adaptive neuro-fuzzy inference systems

ANN artificial neural networks

AR analytical redundancy

ARX linear auto-regression model with exogenous

input

BPNN back-propagation neural networks

Cdl charge double layer capacitor

CI current interrupt

CPE constant phase element

CV cyclic voltammetry

CVA canonical variate analysis

DC direct current

EIS electrochemical impedance spectroscopy

ENN Elman recurrent neural networks

FDI fault detection and isolation

FTA fault-tree analysis

GANN genetic algorithm neural networks

GK GastofaneKessel

HT high temperature

LPV linear parameter varying

LS least squares

LT low temperature

m-CHP micro-combined heat and power

MLPNN multi-layer feed-forward networks

MOESP multivariable output error state-space

identification

N4SID numerical algorithms for subspace state-space

system identification

NLAR non-linear analytical redundancy

NN neural networks

PEMFC proton exchange membrane fuel cell

PSO particle swarm optimization

RBS radial bases function

Rct charge transfer resistance

Rm membrane resistance

RMSE root mean square error

RNN recurrent neural networks

SOFC solid oxide fuel cell

SOH state of health

SR satisfaction rate

SVM support vector machines

VAF variance accounted for

VC-theory VapnikeChervonenkis theory

Z impedance

ZW Warburg impedance.
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implementation [14]. A model is a representation of the phys-

ical system and for this reason a perfectly accurate model

cannot exist. Therefore a check of the modelling uncertainty

influence on a model-based algorithm is always required to

verify its robustness. Each model is characterized by different

parameters which are often unknown. In order to guarantee

the model accuracy these parameters must be properly iden-

tified. The choice of the identification method depends on the

process type. Isermann [15,16] proposes several methods for

linear and non-linear systems, such as least-squared (recur-

sive, non-recursive, squared root filtering, etc.), and dedicated

approaches. The implementation of the methods and their

mathematical aspects are evaluated as well. According to

Isermann [15,16], when an accurate enough model is imple-

mented, the fault detection starts with the generation and the

evaluation of the residuals. During the process, themodel runs

in parallel with the physical system. The residuals are then

generated in real timeas thedifference between themodel and

the physical system outputs. Consequently they are analysed

by the residual treatment and an inferential process performs

the isolation [6]. The model-based fault diagnosis scheme is

depicted in Fig. 1. Once the residuals are generated, a com-

parisonwith a set of thresholds is performed.When a residual

value is over the threshold, a symptom is detected [17]. A spe-

cific correlation associates the symptom to the system

component, localizing the fault. The threshold evaluation is a

crucial step for the symptom detection. Indeed models are

never perfectly accurate and residuals are always affected by

uncertainties introduced by measurements and calculations.

In order to take into account the performance sensitivity of the

diagnostic tool with respect to disturbances [14], a trade-off

between accuracy and robustness is required [17]. For this

purpose, Escobet [7] introduced an adaptive threshold based

method. Indeed they stated that the isolation approach based

on binary detection causes information loss. In order to

improve the fault isolation, the residual sensitivity to a fault

has to be evaluated. It is verified [7] that the residual sensitivity

analysis provides both quantitative and qualitative informa-

tion about the fault influence on the residuals and their sense

of variation, thus improving the fault detection. Escobet et al.

[7] show that several faults could present the samebinary fault

matrix, but characterized by different sensitivities. A residual

sensitive matrix has been proposed to detect unexpected

compressor and temperature controller failures, air leak,

flooding and water blocking phenomena. The results evi-

denced that all the considered faults are detectable, while the

application of a binary signature matrix did not guarantee the

same results.

Every model has to be identified and validated before being

employed. PEMFC’s behaviours are usually evaluated directly

through thepolarizationcurves.Neverthelessother techniques

can be applied such as the cyclic voltammetry (CV), the current

interrupt (CI) or the electrochemical impedance spectroscopy

(EIS). The validation procedure is the last step in system

modelling and involves the comparison between the results of

thesimulationand themeasurements. It is crucial that thetests

refer to new data, which have never been employed for the

model identification. A suitable level of confidence has to be set

to consider the uncertainty due to measurements and calcula-

tions errors. Fig. 1 also highlights another significant task to be

performed when applying model-based FDI techniques,

namely the residual processing and consequent decision on

whether a fault occurred in the system or not. Among several

methodologies that have been proposed to suitably perform

such a task, the fault-tree analysis (FTA) [18] emerges as one of

themoreeffective tools todetect faultsasa functionof residual-

based generated symptoms. An example of application of FTA

approach to fuel cells is given in Ref. [19], where the complete

development of an FDI-oriented FTA for solid oxide fuel cell

(SOFC) systems is described. An overview of the application of

FTAinfuel celldiagnosis isalsoproposedbyYousfi-Steineretal.

[20]. Some examples of FTA relative to the degradation mech-

anisms in PEMFC are also available [1,2].

3. From white-box to grey-box models

Analytical models, also called white-box models, exploit in

space differential equations to simulate the system behav-

iour. These models are usually very accurate and based on

theoretical relationships. In PEMFC modelling, Nernste-

Planck, ButlereVolmer and Fick’s laws are usually exploited to

reproduce the charge transports (electrical and ionic) and

mass transfers phenomena. Complexity of these models de-

pends on their objective. In fact, characterizing the system

behaviour requires very detailed models with complex equa-

tions to solve. Therefore in some cases, these models could

appear very difficult to implement on-line. White-box models

are aimed at system design and FDI algorithms’ design and

testing. However, simplified models can be considered for

control and diagnosis purposes, evaluating only the param-

eter values relative to FDI. The grey-box models are based on

physical laws supported by a priori knowledge (i.e. data),

replacing some complex mathematical equations with

empirical formula or map tables. Therefore this approach al-

lows solving the computational burden problem of white-box

models. For this approach it is possible to classify the models

available in literature in three main categories: (i) parameter

identification based; (ii) observed-based; (iii) parity space

methods. The different approaches are described below.

3.1. Parameter identification models

PEMFC monitoring can be performed through the identifica-

tion of models’ parameters during FC system operations.

When the parameters are related to the behaviour of either

components or physical phenomena a correlation with the

nominal value (in no faulty conditions) can be analysed. In

Fig. 1 e Model-based fault diagnosis scheme [Ding SX

(2008)] [6].
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this approach the faults are modelled as system parameters.

When the variation of these parameters achieves a certain

limit, the correlated fault can be detected and isolated. The

parameters are directly estimated on-line. A parameter iden-

tification scheme is shown in Fig. 2.

A good example of parameter identification method is

proposed in Zeller et al. [21]. The authors developed a quasi-

static circuit-based model for on-board monitoring and con-

trol. The theoretical voltage is obtained by combining a

voltage source (i.e. Nernst potential) and the system losses.

Activation and diffusion losses are modelled as two different

voltage sources opposite to the Nernst one; while a resistance

characterizes the Ohmic losses. During the tests, the data are

acquired by the current sweep, and the non-linear least

square method is adopted for parameters identification. In

order to verify the validity of the identified parameters, a

statistical approach has also been developed. Furthermore the

paper focuses on the parameter variation analysis in the case

of PEMFC degradation, this increase the robustness of the

diagnosis tool.

An original model aimed at reproducing the system

behaviour during flooding is proposed by Hernandez et al. [22].

Themain research objectives are the global modelling and the

fault diagnosis. The authors developed an electrical equiva-

lent circuit (see Fig. 3) for charge, matter and energy conser-

vation laws’ simulation. Gas fluid dynamics is taken into

account through the analogies between the pneumatic ele-

ments and the electrical components. The model allows

studying the gases’ compositions and their partial pressure.

Vapour saturation, membrane and gas diffusion layers are

also simulated. Nevertheless the electrical model is not

enough to simulate the system behaviour in extreme condi-

tions. The parameters are identified through a recurrent least

squared method, linearizing the system around the operating

point in real time. The model has been validated showing a

good representation of the system dynamics. Moreover, the

flexibility of the approach allows implementing this model in

any commercial software dealing with electrical network

analysis. Hernandez [22] developed a diagnosis algorithm

considering three main types of failures: (i) flooding; (ii) dry-

ing; (iii) membrane deterioration.

Another diagnosis technique based on the electrochemical

impedance spectroscopy (EIS), which is a powerful technique

to monitor the low and high temperature proton exchange

membrane fuel cells (LT e HT PEMFC) systems. Different

studies in the literature demonstrate the potentialities of this

Fig. 2 e Parameter identification scheme [Ding SX (2008)] [6].

Fig. 3 e PEMFC equivalent circuit developed by Hernandez et al. [22].
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non-destructive testing method as a tool for investigating

electrochemical processes and developing a robust parameter

identification based diagnosis [23e28]. The EIS is a widespread

experimental technique able to characterize the behaviour of

an electrochemical system, and therefore allows analysing

several phenomena inside the cell and evaluating the system

losses. The idea behind the EIS is to analyse the response of

the electrochemical device after a sinusoidal perturbation

imposed on the system terminals. The perturbation input is a

signal of small amplitude, superimposed on the nominal

value of the operating current (galvanostatic mode) or voltage

(potentiostatic mode). Per each operating condition the

perturbation frequency changes within a based range of

values, usually for PEMFC the interval is [0.1 Hze1 kHz]. The

galvanostatic mode is usually preferred for fuel cells. The

impedance (Z ) is calculated as the ratio between the response

and the perturbation, then it is possible to analyse the

impedance spectrum moving use of Nyquist and Bode. The

obtained impedance spectrum is a function of the operating

conditions and any variation leads to a change of the spec-

trum shape: in the Nyquist plot different arcs can appear as

function of the phenomena occurring inside the cell. The

impedance spectra can be represented by a typical equivalent

circuit model, named Randle’s model (see Fig. 4). This circuit

consists of two resistors, a capacitor and a non-linear

element, known as Warburg’s impedance. The system’s

Ohmic losses aremodelled by the first resistance (Rm). In order

to describe the effects of the electrodes’ polarization, the

Faraday’s impedance is also considered, which takes into ac-

count both the activation and the diffusion losses. It is made

of a resistance (Rct) for the charge transfer modelling and a

non-linear Warburg’s impedance (Zw) adopted to reproduce

the effects of the mass transfer. The Faraday’s impedance is

connected in parallel with a capacitor characterizing the

charge accumulation phenomena in the double layer (Cdl).

Fouquet et al. [23] study the flooding/drying phenomena

during PEMFC operation. Several tests were made observing

the system behaviour versus time. Their article focuses on the

development of a suitable on-linemonitoring technique based

on impedance spectroscopy. Experimental results were ana-

lysed and an equivalent circuit model was developed to

reproduce the impedance spectra. The authors propose a

modified Randle’s circuit (see Fig. 5). The double layer capac-

itor is replaced by a constant phase element (CPE) able to

characterize the porous electrodes’ effect. The authors pro-

pose a robust fault detection and isolation diagnosis for

PEMFC hydration monitoring. They state that isolating the

hydration faults is possible by observing the position of the

circuital resistance values in a 3-dimensional space.

Also Asghari et al. [24] study the PEMFC performance via

the EIS technique. Different experiments were conducted to

study the performance variations by increasing and

decreasing the bipolar plate clamping torque and the tem-

perature; flooding effects were also analysed. An equivalent

circuit model has been developed (see Fig. 6) in order to

simulate the impedance arcs in Nyquist plot. The authors

estimate each process by observing the variation of the

parameter values. The parameter trends versus the current

density were also shown. The aim of the paper is to study the

effects of PEMFC losses on the impedance spectrum in order to

develop a diagnosis tool able to detect and isolate the faults by

observing the model parameters variation.

In their paper Legros et al. [25] simulate the system

behaviour in order to detect flooding. The authors propose two

different methodologies, the first one based on EIS, while the

second one adopting the acoustic emission (AE) technique.

The AE analysis is based on elastic waves theory, and is

adopted for non-destructive control. The analysis of the sys-

tem conditions is carried out in real time, sensing the imposed

acoustic waves’ propagation. The physicalechemical phe-

nomena occurring inside the cell influence the wave’s

amplitude, energy, frequency and form. Therefore, through

the monitoring of these parameters, the PEMFC character-

ization is performed by using spectral and multi-parametric

analyses. AE outputs are processed by automated statistical

techniques, which classify different cluster in a multidimen-

sional space. This technique allows investigating mechanical

damages and flooding or drying phenomena. After several

tests, both the EIS and the AE results confirm the possibility to

monitor the flooding process in the cell. This article states the

relevancy of these methodologies in order to develop an

innovative non-invasive online diagnosis tool.

Another paper on PEMFC monitoring based on EIS tech-

nique is proposed by Narjiss et al. [26]. The authors develop an

innovative method for PEMFC performance optimization and

on-line fault detection. The small sinusoidal signal is super-

imposed on the system directly through the DC/DC converter

and the control system allows the on-line spectroscopy

without any disturbance in the electrical load. The idea is that

Fig. 5 e Randle’s model with CPE element adopted by

Fouquet et al. [23].

Fig. 6 e Equivalent circuit proposed by Asghari et al. [24].Fig. 4 e Randle’s equivalent circuit.
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all the phenomena involving an impedance variation can be

monitored detecting and isolating the possible faults. The

current and the hygrometry variation effects were analysed. A

similar approach is also proposed by Bethoux et al. [27].

Some authors [28e30] suggest a circuit model for high

temperature (HT) PEMFC monitoring. These systems oper-

ating at temperature of about 160 �C are less sensible to CO

poisoning. An interesting paper on HT-PEMFC performance

characterization in presence of CO2 and CO through EIS

technique is proposed by Andreasen et al. [28]. Moçotéguy

et al. [29] analyses the HT-PEM behaviour through the EIS

technique within a frequency range of [20 kHze0.1 Hz]. The

target of this paper is to propose the results of long term tests

for m-CHP applications, this study is also interesting for the

development of a diagnosis tool based on EIS monitoring.

First tests are focused on system ageing considering pure

hydrogen and reformate gas at the anode and oxygen and air

at the cathode side. The system performance are evaluated at

different current densities, it is shown that the best results

were obtained for pure gases. Then the impedance spectra

are analysed to evaluate the influence of the ageing. An

equivalent circuit able to reproduce the physical behaviour of

the system has been proposed in Fig. 7. This circuit is

composed of an Ohmic resistance in series with two resis-

tanceecapacitor parallel circuit. The first one reproduces the

high frequency loop, and the second one models the low

frequency loop where a constant phase element is intro-

duced. As a first result, it is observed that the value of the

Ohmic resistance does not change with ageing, nevertheless

at high frequencies, the first loop seems to disappear as the

ageing proceeds. On the contrary, the low frequency loop and

the values of the associated resistances varies with ageing.

To this purpose Jespersen et al. [30] focuses the research on

parameters’ identification including current density, stack

temperature and fuels’ stoichiometry. The authors specify

how themodel can ensure a correct fitting at each frequency;

at the same time a physical meaning is given and a good

adaptability to variations of the operating condition is ob-

tained. This paper aims to analyse the parameters’ behav-

iours at different operating conditions in order to develop a

robust diagnosis for HT-PEMFC. Nevertheless several tests

and a qualified human interpretation of the identified pa-

rameters are still required.

3.2. Observer-based models

Observer-basedmodel is one of themost common approaches

implemented for model-based diagnosis. In this approach the

model is integrated with the system and runs in parallel with

it. The feed-forward evolution of residuals allows the

development of the FDI. An observer-based diagnosis scheme

is reported in Fig. 8. A great limitation about its on-line

application for PEMFC systems is the calculation time

required for the non-linear model solution.

An example of observed-based model for PEMFC diag-

nosis is proposed by de Lira et al. [32,33], they adopted a FDI

scheme based on adaptive threshold. The method has been

tested on the industrial Ballard NEXAª system by simulating

different faults [32]. The developed dynamic model takes

also into account the behaviours of the auxiliaries. The

physical process modelling is based on mass conservation

law, electrochemical, thermodynamic and zero-dimension

fluid dynamic principles coupled with empirical equations.

A linear parameter varying (LPV) observer with the Luen-

berger structure is applied for the residual calculation. This

methodology allows the system equation linearization and

solving the analytical problem in a discrete-time state space.

For this purpose, a linear time-varying system is adopted.

The diagnosis is developed by comparing the real system on-

line behaviour with the dynamic model response. Fault

isolation is performed by checking the Euclidean distance

between the observed and the theoretical relative residuals.

The use of adaptive threshold guarantees the method

robustness in PEMFC diagnosis. A set of possible faults was

developed to test the algorithm robustness. Sensor outputs

are analysed by testing the faults in: (i) system supply

pressure, (ii) oxygen consumption, (iii) stack voltage and

(iv) speed of the compressor motor. Sensor outputs have

been successfully valuated detecting all the offsets. The

technique has been evaluated successfully for all the

considered faults.

3.3. Parity space methods

Based on state space model for the residual region charac-

terization, parity space methods adopt the parity relations

instead of an observer for residual generation. As for the

observer-based, the parity-space approach allows linearizing

the system in a discrete subspace in order to simplify the

computation. The advantage of this methodology is its sub-

space framework, which is presented in form of linear alge-

braic equations [6]. This approach for on-line diagnosis of

PEMFCs is proposed by Buchholz et al. [10], (Fig. 9). The paper

highlights the complexity of the on-line implementation for

Fig. 8 e Observer-based residual generator scheme

[Witczak, M. (2003)] [31].Fig. 7 e Equivalent circuit proposed byMoçotéguy et al. [29].
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model-based approaches, due to the requirement of high

amount of measurements and computational efforts for non-

linear equation solution. In order to deal with these matters,

the authors propose to linearize the physical model in the

parity space linear domain. Different subspace identification

methods were considered, namely: the numerical algorithms

for subspace state-space system identification “N4SID”, the

multivariable output error state-space identification “MOESP”

and the canonical variate analysis (CVA). The CVA method,

first introduced by Larimore [34], showed the best compromise

between the model accuracy and the numerical stability. The

authors consider two different approaches for the FDI devel-

opment, one based on Kalman Filter and the other on the in-

verse model. The purpose is to demonstrate the applicability

of these two methods. In the first approach, the authors

reconstruct the Kalman filter state sequence directly based on

the system input/output data. In the second approach, they

use the CVA to develop the model. For the purpose of the

method implementation all the stack measurable inputs and

the mean cell voltage are used. Kalman filter and inverse

model approaches show how the linear CVA state-space

models can be implemented to estimate the non-measurable

inputs. The inverse model approach shows the best results

when used for diagnosis, allowing the detection of all the

evaluated faults.

The parity space method is also considered by Yang et al.

[35]. Based on the phenomenological dynamic model devel-

oped by Pukrushpan [36], the authors linearize the model and

generate the relative subspace. The analytical redundancy

(AR) approach is adopted for FDI applications by setting the

system parity matrix and generating the residuals. This

method allows deriving a mathematical representation of the

FCs through an algebraic system of equations. Residuals are

generated by comparing the measured quantities with their

mathematical representation [6]. Two of the twenty-two re-

siduals calculated through the parity space approach are

selected and analysed in the paper, leading to the relative fault

matrix. The authors consider only two residuals based on the

stack current, voltage and on the compressor over-voltage

values. Results confirm that the selected residuals are valid

for flooding, drying and compressor fault detection. The paper

also focuses on demonstrating the method’s validity and its

possible improvement by introducing adaptive thresholds for

the fault detection. In a recent paper [37] the same authors

extend the procedure to a non-linear case. They develop a

five-order state representation to simplify themodel, which in

this case has not to be linearized. In this case, the FDI is per-

formed by adopting the non-linear analytical redundancy

(NLAR) approach.

To summarize the descriptions just reported on grey-box

models it can be clearly stated that the parameter identifica-

tion approach shows a good accuracy and genericity. Indeed,

by adopting an equivalent circuit model, it is possible to

characterize the different electrochemical phenomena

involved in a fuel cell, while simplifying the algorithm imple-

mentation and reducing the computational time. Moreover,

the equivalent circuit approach can be achieved through the

electrical network analysis. In literature, many authors high-

light the use of the EIS technique for parameter identification

[23e27,29,30]. The capability of characterizing and analysing

the PEMFC impedance spectra through an equivalent circuit

allows realizing the on-line monitoring and developing a

suitable FDI. Some papers [7,32,33,35,37] underline the possi-

bility to improve the FDI robustness adopting adaptive

thresholds. In fact, the isolation approach based on binary

faultmatrix seems tocausesome information losses inFDI. For

this purpose the use of relative fault matrix have been pro-

posed. Table 1 reports a summaryof theapproachesdiscussed.

4. Black-box models

The black-box models are based on statistical data-driven

approach. The relationships between the system inputs and

outputs are not based on physical equations as for analytical

models, but are deduced through suitable experimental da-

tabases. The experimental data are split in two different sets,

one dedicated to the training procedure for the identification

of the input/output correlations and one used for the model

validation. Implementation for black-box models is well

suited for complex non-linear systems such as PEMFCs, where

the identification of physical parameters of grey-box models

may require high numerical efforts [17]. On the other hand, a

large amount of experiments is required for model identifi-

cation. Themodels available in the literature for PEMFC black-

box modelling are introduced in the next sections.

4.1. Neural network

Inspired by biological neural networks, artificial neural

network (ANN) has been proved to be a powerful tool for non-

linear system modelling [38]. Given a set of input and output

data, the ANN has the ability to learn and build a non-linear

mapping of the system, which provides encouraging solu-

tion for modelling of complex systems, especially those

without well-known variable relationships. The basic unit of

an ANN is called artificial neuron. According to the organiza-

tion of the neurons, there are three fundamental topologies:

single-layer feed-forward networks, multi-layer (MLP) feed-

forward networks and recurrent networks [39]. In feed-

forward networks, neurons are organized in certain parallel

layers; all input signals flow in one direction, from inputs to

outputs. As for recurrent ANN, the outputs of some neurons

are fed back either to the same neurons or to the neurons in

the preceding layers [40]; thus, a dynamic effect is introduced

into the computational system by a local memory process.

Fig. 9 e Inverse model scheme considered by Buchholz

et al. [10].
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Moreover, by retaining the non-linear mapping features of the

static networks, the RNN are suitable for black-box non-linear

dynamic modelling [41,42]. Among various ANNs, the most

applied one for PEMFCmodelling is the MLP type. An example

of a Multi-layer NN (MLPNN) with two hidden layers is

depicted in Fig. 10.

Numerous ANN models for various PEMFC systems have

been developed in recent years, including both static and dy-

namic ones. Good agreements between models and actual

systems are reported in literature. A multilayer perceptron

(MLP) typeANN is established in [38] formodelling a 500WPEM

fuel cell stack. The stack voltage, as the singlemodel output, is

predicted by applying four inputs including the stack current,

the stack temperature, the hydrogen and the oxygen flows.

However, this model is a static one, which means that it can

onlymakeprediction in static operating conditions.Adynamic

model composed of four parallel networkmodules is proposed

in Ref. [43], with each module dealing with a different fre-

quency range of the input signals. A high accuracy is obtained

with the maximum difference between experimental results

andmodel outputs less than2.9%. In Sisworahardjo et al. [44], a

dynamicMLPNN is applied tomodel a 100WPEMFC stack. Two

variables stack current and stack temperature are arranged in

input layer, while stack voltage, output power and hydrogen

flow are as output nodes. Close agreement with the results of

the experimental data are observed. In Chang’ paper [45], a

new approach combining NN built on the basis of genetic al-

gorithm (GANN) and an optimizing method, the Taguchi

method for characterizing various control factors inNNmodel,

is proposed to estimate the output voltage of PEMFC. The

proposed method is proved to have better performance than

GANN without Taguchi method and the back-propagation

neural network (BPNN) model.

Based on the models, fault diagnosis can be further per-

formed based on the residuals generated between the model

outputs and the experimental results. Yousfi-Steiner et al. [40]

applied two individual Elman recurrent neural networks (ENN)

s to detect the occurrence of flooding and drying in a PEMFC

system. As one type of a recurrent neural network, ENN is first

introduced by Elman in 1990. It consists of three layers: input,

hiddenandoutput layers. Firstly, themost influential variables

in water management are chosen from a fault tree analysis as

NN inputs according to human expert knowledge, that are the

current, the air inlet flow rate, the stack temperature and the

dew point temperature. As the stack voltage indicates the

degradation and the pressure drop is a relevant parameter to

describe the flooding in an electrode, these two variables are

determined as NN outputs. In the next step, threshold values

are set to define their normal ranges of variation. A diagnosis

decision is finallymade based on the threshold to discriminate

flooding, drying and normal operations. Since the physical

parameters used in this model can be easily estimated even in

an embedded fuel cell system, the proposed method can be

adapted to an on-board system. NN models mentioned in this

section are further summarized in Table 2.

Compared with the analytical methods, ANN has the

advantage of an excellent non-linear approximation ability

and fewer assumptions for model construction [45]. Further-

more, it has a low sensitivity to noise and can be built based on

incomplete database [46]. However, usually a large amount of

dataset under a wide range of operating conditions is needed.

When using MLPNN, the determination of the number of

hidden layers and the number of neurons of each layer is also

a critical issue.

Table 2 e NN applied for PEMFCs modelling.

Authors Input variables Output variables NN type Dynamic/static

Jemeı̈, S.

et al. (2003) [38]

(1) Stack current; (2) stack temperature;

(3) hydrogen flow; (4) oxygen flow

(1) Stack voltage MLPNN trained with

back-propagation

Static model

Jemeı̈, S.

et al. (2008) [43]

(1) Stack current; (2) stack temperature;

(3) hydrogen flow; (4) oxygen flow;

(5) air humidity

(1) Stack voltage MLPNN trained with

back-propagation

Both dynamic and

static models

Sisworahardjo

et al. (2010) [44]

(1) Stack current; (2) stack temperature (1) Stack voltage;

(2) stack power;

(3) the hydrogen flow

MLPNN trained with

back-propagation

Dynamic model

Steiner, Y. N.

et al. (2011) [40]

(1) Stack current, flow rate, stack

and dew temperature

(1) Pressure drop,

(2) stack voltage

Elman recurrent NN Dynamic model

Chang, K (2011) [45] (1) Operation temperature,

(2) oxygen flow rate,

(3) hydrogen flow rate, (4) load current,

(5) oxygen and hydrogen pressure

(1) Output voltage MLPNN constructed on

basis of genetic algorithm

and optimized by the

Taguchi method

Static model

Fig. 10 e Example of a multi-layer feed-forward neural

network [38]. I: inputs, H and H0: hidden neurons, O: output

neurons,Wj;I
h: weights between hidden neuron j and input

I, Wk;j
h0

: weights between hidden neuron j and hidden

neuron k, Wm;k
o: weights between hidden neuron k and

output neuron m.

9



4.2. Fuzzy logic

The main motivation of applying fuzzy logic to perform fault

diagnosis is to deal with the systemuncertainties, ambiguities

and non-linearities [47]. A fuzzymodelmaps inputs to outputs

by combining three components: if-then rules, membership

functions and logical operators i.e. AND and OR [48]. Unlike

the neural network, it establishes relationships between in-

puts and outputs by mimicking the human reasoning.

Numeric data are converted into linguistic variables by

membership functions which define how well a variable be-

longs to the output i.e. degree between 0 and 1 [48].

In Kishor andMohanty [49], fuzzymodels are developed for

the adaptive prediction of the cathode pressure/oxygen partial

pressure, the stack voltage and the hydrogen partial pressure

in a 50 kW PEMFC system. Most relevant and non-redundant

input variables for each module are firstly selected through

utilizing mutual information based technique. Then, a Gas-

tofaneKessel (GK) clustering algorithm, which has an adap-

tive distance norm and is suitable for detecting clusters of

different geometric shapes in the dataset, is applied for

extracting fuzzy rules from data. An efficient prediction is

finally provided at different load conditions, evaluated by two

performance indices, the variance accounted for (VAF) and the

root mean square error (RMSE). However, dataset for training

and testing is obtained from an analytical model of a 50 kW

PEMFC system constructed in MATLAB/SIMULINK, not from a

real operational system.

Fennie et al. [50] aims to predict the state of health (SOH) of

PEMFC stacks by developing a fuzzy logic model. Data from

two 5W PEMFC stacks are used for training, and data from the

other two are for testing. Both EIS measurements and I/V data

are applied for building the fuzzy logic model. By applying a

subtractive clustering to find initial membership functions

and rules, a three-input and one-output model is developed.

An encouraging correct rate of 87% is finally obtained on the

test data for detecting three types of health states-drying,

flooding and healthy. To further improve the accuracy and

the robustness, more complete dataset should be collected

and a fine tuning of the model using supervised learning al-

gorithm is needed.

In Ref. [17], a fuzzy model with two inputs, the stack

voltage and the stack current, and one output-satisfaction

rate (SR) is built for detecting two types of faults in a 500 W

PEMFC system. The first fault type is the accumulation of

nitrogen or water in the anode compartment, and the second

fault type is the drying of the membrane. An experimental

polarization curve under nominal operating conditions is

obtained as the expected nominal operating points. The

output of the fuzzy model provides directly an SR, which

indicates the degree of the fuel cell system VeI points devi-

ating from the reference static points (1 means the system is

in static operating mode). In order to discriminate the two

types of faults, a fault decision process based on the

threshold value of SR and also that of first time derivative of

SR is developed. The proposed method has been validated by

experiments. At last, the author has also provided a possible

extension of this method for diagnosing a greater number of

faults, by defining and tuning one different fuzzy surface per

fault.

Compared with ANN which needs precise learning in a

broad range of the faults, the design of rules and membership

functions in a fuzzy logic model is based on operating expe-

rience or expert knowledge [51]. Thus it has the advantage of

simplicity and easy implementation. At the same time, since it

is based on prior knowledge only, it has the problem of the on-

line adjustment. That means when new types of faults are

needed to be considered, rules and membership functions

have to be rebuilt.

4.3. Adaptive neuro-fuzzy inference systems (ANFIS)

Compared with the previous artificial intelligence methods,

ANFIS is still not so popular in PEMFC diagnosis domain.

However, numerous models based on it can be found and

have demonstrated obvious advantages in the literature

[51e53], which could be useful for further developments of

model-based diagnosis methodologies.

ANFIS model, as an effective combination of neural

network and fuzzy logic, has gained more and more accep-

tance in the field of non-linear system modelling. As already

mentioned, neural network has the limitation that a wide

range of dataset under different operational conditions is

needed, while fuzzy logic depends completely on human

expert knowledge. In an ANFIS model, the membership

functions and rules of the fuzzy system are defined and

optimized by ANN, thus not requiring any prior knowledge of

the system [52]. The typical structure of an ANFIS model in-

cludes five layers: the fuzzification layer, the rule layer, the

normalization layer, the defuzzification layer and the sum-

mation neuron layer [51].

Tao et al. [51]mainly focus on thermalmanagement, which

is critical for the improvement of PEMFC’s performance and

lifetime. ANFIS is applied to build a temperature model of

PEMFC adopting a neural network identification method.

Input variables of the model include flow rates of fuel and air,

and the output variable is the stack temperature. Simulation

results show its feasibility to establish a non-linear model for

complicated system such as PEMFC. In order to realize the

system thermal management, a neural-fuzzy controller is

further developed by regulating the gas flow rates. Simulation

results indicate that by adopting the controller, PEMFC can

reach the desired temperature rapidly with small fluctuation.

Another ANFIS is presented in Ref. [52], it predicts a PEMFC

voltage under different operating conditions. The structure of

the proposed model consists of five inputs, two membership

functions for each input, 32 rules and one output. The current

density, the fuel cell temperature, the anode and cathode

humidification temperatures and the operational pressures

are set as input variables. The prediction capability of the

model is verified under all considered operational conditions

by comparing with experimental data. At last, a perspective of

combining the ANFIS model with a physical model is made in

order to extend the capability of the model when adding new

influential input variables.

In Ramos-Paja et al. [53], three fuzzy-ANFIS models are

constructed to model both the steady-state and dynamic

behaviour of PEMFC and its support system. The first model

allows the prediction of the polarization curves depending on

the fuel flow ratio and the current while the second one
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relates to the time constant of the first-order delay model

during a current transient. The third one is a double-layer

charge effect model. A satisfying performance of the pro-

posed model is observed both in simulation and in experi-

mental results under all the considered current transient

conditions.

Since ANFIS models combine the benefits of both ANN and

fuzzy system, it has been proven to be a powerful tool for

PEMFC health state monitoring. However, its present appli-

cations are most off-line ones and most of the models are

focused on a single cell. Its further development on real-time

diagnosis of larger power PEMFC stack is much desired.

4.4. Support vector machines (SVM)

Another interesting method that has emerged in recent years

for black-box modelling is Support Vector Machines (SVM). It

was originally developed by Vapnik on solid VapnikeCher-

vonenkis theory (VC-theory) foundations, but has been

extended to handle regression problemsmore recently [54,55].

It is a novel and powerful tool based on statistical learning

theories [56]. The basic idea of SVM is to map non-linear data

into a higher dimensional linear space which is called feature

space. Then, in the feature space linear regression is per-

formed [57]. It is different from the most traditional ANN

which is based on the empirical riskminimization principle as

the SVM is based on the statistical learning and structure risk

minimization principle, thus the quality and the complexity of

the SVM will not be influenced by the dimensionality of the

input space [58,59].

Recent applications of SVM in PEMFC domainmainly focus

on fuel cell/stack modelling instead of pattern classification.

Its characteristics such as a high degree of accuracy in pre-

diction and a powerful non-linear-system modelling capacity

can be found in the literature [55,56,60]. Although it is still not

widespread in fault diagnosis yet, there seems to be an

increasing necessity in its further application in PEMFC diag-

nosis field.

In Zhong et al. paper [55], a black box SVM model of a

Ballard MK5-Eª PEMFC is proposed to predict the cell voltage.

The current density and temperature are included in the

model as input parameters. An illustration of the model is

depicted in Fig. 11. During the development of the model, a

key step is selecting optimal SVM parameters. A cross vali-

dation method is used to determine their values. In the end, a

high degree of precision is acquired in the voltage prediction

with a mean squared error of 0.02% and a squared correlation

coefficient of 99.7%. It is worth noting that the proposedmodel

can be further expanded by incorporating other operating

parameters due to its high generalization capability. However,

the proposed method is an off-line one, and real-time imple-

mentation will be considered in future work.

Another non-linear off-line model based on least squares

SVM (LS-SVM) method is reported in Li et al. [60]. Compared

with SVM, LS-SVM can significantly reduce the computation

time while maintaining maximum precision. A SVM-ARX

(linear auto-regression model with exogenous input) Ham-

merstein type model is developed in this paper to describe

dynamic characteristics of a 3 kW PEMFC stack. LS-SVM is

applied to represent a static non-linear block in the

Hammerstein model, with three inputs (oxygen gas stoichi-

ometry, current, cooling liquid flow rate) and two outputs

(hydrogen partial pressure and stack temperature). It applies a

radial basis function (RBF) kernel. Output of the Hammerstein

model is compared with a dynamic physical model of the

stack. Good predicting performance can be observed.

Application of LS-SVM for modelling can also be found in

Zhong et al. [56]. The LS-SVM is used as a part of a hybrid

model to forecast the voltage behaviour based on stack cur-

rent and temperature, while another pressure-incremental

model concerns the cathode and the anode pressure. A par-

ticle swarm optimization (PSO) algorithm is adopted to obtain

automatically the best set of hyper-parameters for the LS-SVM

model. The LS-SVM model shows better agreement with the

experimental results by optimizing PSO algorithm. However,

the proposed model has limitations in its performance under

significant pressure changes; also, it isn’t valid in low hu-

midity or under extremely high current density.

Compared with models based on other artificial in-

telligences, the SVM model has a good generalization capa-

bility and this capability is independent on the input-data

dimensionality [55]. Therefore, it could be quite interesting to

extend the SVM model for fault diagnosis of multivariate

complex system like PEMFC system, once the threshold of the

nominal operating conditions is set. A summary of SVM

models employed in the literature is shown in Table 3.

Comparedwith fuzzy logic, it possesses a high precisionwhile

no necessity of prior knowledge is presented. Compared with

ANN, it has excellent generalization ability and it is more

robust [55,56]. All of these merits make it very promising in

further research of PEMFC system.

5. Evaluation of model-based approaches for
on-line FDI

When developing a model, the first step is to have a deep

understanding of the system. The system behaviour has to be

analysed in order to reproduce all the involved physical

Fig. 11 e Illustration of a SVM PEMFC model, with inputs-

current density I and temperature T, and output-voltage U.

Support vectors and weights are decided during training.

[Zhong, Z.-D. et al. (2006)] [55].
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phenomena with mathematical laws. Sometimes, the system

complexity could limit the model application. In fact,

although the physical phenomena are well known, it could be

difficult to formulate simple relationships for physical process

modelling [61]. The choice on the type ofmodel (white, grey, or

black-box) is therefore influenced by the modelling purpose

(Table 4).

White-boxmodels are usually employed inmany chemical

and thermodynamics problems. Partial differential equations

are introduced for mass and energy transport phenomena

involving radiation, convection, and diffusion processes [61].

After the model structure formulation, the data matching al-

lows the identification of the model parameters which are not

known a priori. The PEMFC system operation is influenced by

electro-chemical, thermal, and fluid-dynamics phenomena.

Theoretical relationships such as NernstePlanck, Butler-

eVolmer and Fick’s laws are usually adopted to reproduce

electronic and ionic transport, andmass transfer phenomena.

PEMFC physical models are usually very accurate and show a

high genericity as long as the knowledge of the geometry and

the materials is available to evaluate the parameters. How-

ever, very detailed models require complex equations to be

solved and are not suited for on-line estimation. Therefore,

developed white-box in PEMFC are usually considered for

system understanding, off-line monitoring, and training

simulators.

In general, for PEMFC on-line FDI applications grey and

black-boxmodels are suited. Introducing the grey-boxmodels,

both the advantages of physical knowledge, and data-driven

are exploited. In this way, complex differential equations can

be replaced with empirical formula, or artificial intelligence

structures. These models may simulate static and dynamic,

linear and non-linear behaviours, allowing a correct accuracy

and genericity. The use of semi-physical models reduces the

structure complexity, verifying the on-line implementation

requirements. The overview of different grey-box models

aimed to develop an on-line FDI for PEMFC systems have been

organized in parameters identification based, observed-based,

and parity spacemethods. In parameter identificationmodels,

PEMFCmonitoring is achieved to reproduce the systemvoltage

and/or impedance. To this purpose, different papers propose a

circuit-based approach modelling the electro-chemical phe-

nomena through circuit element. Although in static models, a

series of resistances are usually considered to reproduce all

the system losses, dynamic circuit components are considered

for the dynamic modelling. All the papers analyse the influ-

ence in PEMFC performance and degradation of state and

control variables such as stack current and temperature or fuel

stoichiometry. Relevant results are available for flooding

detection [22,23,25,26]. In order to implement in-situ diag-

nosis, the parameter sensitivity analysis is required. More-

over, the available algorithmshave been tested togetherwith a

parametric analysis for different operating conditions.

Although these studies allowed the method robustness

improvement, many efforts are still required to achieve on-

board implementation. The parameter identification based

on EIS monitoring [23e27,29,30] seems to be the most suitable

for on-line FDI applications. As amatter of fact, the impedance

Table 4 e Model-based approach comparison for PEMFC 
applications.

White-box Grey-box Black-box

Structure

complexity

High Moderate Low

Accuracy High Good Good

Genericity High Good/moderate Moderate/Low

Processing time High Moderate/Low Low

Physical knowledge High Moderate Low

Data-driven Low Moderate High

Application area System

understanding

Off-line

diagnosis

Training

simulators

On-line FDI On-line FDI

Control

Static models Ok Ok Ok

Dynamic models Ok Ok Ok

Non-linear response Good Good High

On-line applications Not indicated Ok Ok

Table

 

3

 

e

 

SVM

 

applied

 

for

 

PEMFCs

 

modelling.

Authors Input variables Output variables Applications

Zhong Z-D et al. (2006) [55] (1) Current density

(2) Cell temperature

(1) Cell voltage Predict cell voltage

of a PEMFC

Li C-H. et al. (2008) [60] (1) Oxygen gas stoichiometry

(2) Stack current

(3) Cooling liquid flow rate

(1) Hydrogen partial pressure

(2) Stack temperature

Describe dynamic characteristics

of 3 kW PEMFC stack

Zhong, Z-D. et al. (2007) [56] (1) Stack current

(2) Stack temperature

(3) Cathode pressure

(4) Anode pressure

(1) Cell voltage Develop a system-level hybrid

model of a PEMFC

Lu J. and Zahedi A. (2011) [57] (1) Stack current

(2) Compressor voltage at pressure

clusters of different geometric shapes

in the dataset in the preceding layers.

The neural network

(1) Oxygen excess ratio Air flow control of a PEMFC system

Li, X. et al. (2006) [59] (1) Hydrogen flow rate

(2) Cooling water flow rate

(3) Air flow rate

(1) Operating temperature Stack temperature control of

a 1 kW PEMFC stack
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monitoring by EIS allows detecting several electro-chemical

variations involved in PEMFC. The basic idea is then to asso-

ciate each physical phenomenon to an equivalent circuit

component and analyse its parameter variations. A suitable

technique for EIS on-line implementation has been proposed

by Narjiss et al. [26]. This paper could be considered the base

ground for future development of on-board FDI based on EIS.

Other approaches are also considered. Both observer-based

[32,33] and parity space methods [10,35,37] allows the system

model equation reduction. Physical models are linearized and

an observer or a parity space linear domain is introduced for

residual calculation. Although the system equations are

simplified, these methods could generate several residuals.

However due to the high dimensions of PEMFC models these

methods are validated only for a set of residuals. Yang et al.

highlight their efforts in a recent work [37] for FDI improve-

ments, extending their model applications also in non-linear

domain. Some papers [7,32,33,35,37] underline that the

isolation approach based on binary detection could causes

some information losses in FDI. Therefore in order to improve

the method robustness an adaptive threshold method has

been proposed. All authors stated that residual sensitivity

provides both quantitative and qualitative information about

the fault influence on the residual and in their sense of vari-

ation. This methodology offers a great contribution to FDI

improvement, representing a suitable reference for future

developments.

Finally, a relevant contribution for PEMFC FDI development

is also given by black-boxmodels. Although black-box models

are more suitable for complex non-linear system on-line

monitoring, they are less generic. In fact, when system oper-

ates in new configurations or it is influenced by external fac-

tors, not considered in training procedures, the robustness of

these approaches is reduced [61] as they don’t allow extrapo-

lation, only interpolation. Neural networks, fuzzy logic,

adaptive neuro-fuzzy inference systems, and support vector

machines methods applications have been reported in this

paper. Artificial neural networks aremostly used in non-linear

dynamic modelling [38,40,43e45]. Starting from an input/

output dataset, ANN learning process allows the system non-

linear mapping. Residuals are directly generated comparing

model outputs and experimental results with a high accuracy

(less than 2.9%) [43]. ANN guarantees an excellent non-linear

approximation with a low sensitivity to noise. The main

drawback is that the training process needs of a large amount

of dataset under a wide operating condition range which

collection might be costly and time consuming. Some authors

[17,49,50] introduce successfully the fuzzy logic techniques for

on-line PEMFC monitoring, especially for flooding detection.

This choice is due to fuzzy logic capability to deal with the

system uncertainties, miming human reasoning. This meth-

odology is very easy to implement, but the issue of the on-line

adjustment in case of new faults’ occurrence has to be

considered. In order to solve this constraint adaptive neuro-

fuzzy inference systems are adopted. ANFIS allows the

coupling of the ANN and fuzzy-logic benefits. The fuzzy rules

are defined through the ANN approach, and not through a

priori knowledge. However these models are suitable for sys-

tem behaviour prediction and off-line diagnosis. Also support

vector machines have a good generalization capability. In fact

this method is based on statistical learning and don’t need a

prior knowledge. However, only off-line SVM applications

have been applied [55].

The different model-based approaches reported in this

paper underline that many efforts are still required in PEMFC

on-line FDI. In literature non-model based approaches are also

available. These methodologies can be knowledge-based or

signal-based. In the non-model based approaches, FDI is

performed through fault classification and no residuals are

generated. Available experimental data are therefore pro-

cessed and normalized. Then the different features, which are

relevant for fault detecting are extracted. These features are

analysed in a proper low-dimensional space. Several tech-

niques such as NN, fuzzy logic, ANFIS, and SVM are employed

as fault classifier. This is the main difference between black-

box models and clustering techniques. While in the first

approach, artificial intelligence and statistical techniques are

adopted to model the system and generate residuals, in the

second one they are used to classify the fault in a feature

space.

6. Conclusion

A classification of different model-based approaches for

PEMFC systems diagnosis has been proposed including white-

box, grey-box and black-box models. A suitable model-based

diagnostic tool requires an appropriate combination of sys-

tem physical characterization and fast implementation of the

algorithm. The white-box models can be very accurate. The

computation of algebraic and/or differential equations allows

a correct characterization of the system behaviour involving a

high genericity of the method. Nevertheless in some cases,

they could be very difficult to implement on-line. These

models are suitable for different purposes such as the system

design and fault generation for FDI algorithm test. The grey-

box models are introduced, showing a good accuracy and

less effort in computation for on-line diagnosis applications.

In particular, the parameter identification approaches based

on impedance spectra evaluations emerges as a suitable so-

lution for diagnosis. The equivalent circuits developed in this

methodology allow characterizing the PEMFC electrochemical

phenomena while at the same time can be easily imple-

mented on board. However the high non-linearity of the

problem could introduce many correlations between the

model parameters. Therefore, the use of adaptive threshold

for FDI has been introduced. Finally, black-box models for

PEMFC diagnosis application have been presented. Compared

with the above two models, they do not require physical

equations, thus allowing to develop faster algorithms able to

ensure also a good prediction of the system dynamics be-

haviours. Moreover, black-box models give a high approxi-

mation of non-linear phenomena. However, these approaches

show a lack of genericity due to the fact that the model

characterization is directly based on system empirical data.

ANFIS and SVM methods could provide a suitable solution to

this issue, however their contribution in PEMFC diagnosis are

still for off-line applications.

This paper is the first part of a preliminary work aimed to

give an overview on diagnosis techniques considered in
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literature. An overview on non-model based approaches is

proposed in the second part. The objective of the presentwork

is to create the base ground for the development of a suitable

diagnostic tool for PEMFC on-line applications.
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