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Abstract 

This study conveys striking findings regarding the operando structural behavior of the 

Na/FePO4 system during a charge and discharge cycle. From Rietveld refinements of 

synchrotron operando X-Ray diffraction data, it appears that the active material presents 

large, non-stoichiometric domains while undergoing structural phase transformation. The 

corresponding extended limits of solubility are characterized by continuous variations in the 

metrics that mirror the entry of Na occupancy values into thermodynamically forbidden 

regions. A major consequence of this smoothed phase transformation is a significant decrease 

in the lattice volume mismatch, which could well compensate for the less efficient Na-based 

systems with respect to SEI and adverse effect of cation size in comparison to Li batteries. 

Comparison of the lattice volume mismatch on charge and discharge revealed an explanation 

for the asymmetry of the electrochemical curve.   
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1. Introduction 

Large-scale Na-ion batteries are envisioned as a possible alternative to Li -ion ones as 

far as availability and environmental issues are concerned. Following the pioneering work of 
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Delmas [1] this field has shown renewed interest in recent years and is currently inciting ever-

expanding research. This is especially the case with regard to improvement of electrolytes [2-

3], as well as to the discovery of highly reversible materials having large energy densities [4]. 

Inspired by the remarkable electrochemical properties of LiFePO4, the electrochemical and 

structural study of the olivine NaFePO4 has shown some singularities [5,6,7,8]. Indeed, based 

on ex-situ X-ray diffraction (XRD), it was shown that the room temperature phase diagram of 

NaxFePO4 consists of a single phase process between 2/3<x<1 [6,8] and a two-phase process 

between 0<x<2/3 [5-8]. In order to gain insight into the actual structural behavior of the 

material in an operating Na battery, this communication reports results related to operando 

XRD using synchrotron radiation. Based on XRD data of very high quality, it will be shown 

that dynamics have a striking and crucial impact on the structural response of the material. 

 

2.  Experimental 

Carbon-coated FePO4 was derived by electrochemical oxidation of a carbon-coated-

LiFePO4 (LFPC, obtained from UMICORE) based electrode upon potentiostatic equilibration 

at 4.0V vs. Li+/Li 0 in a LP30-electrolyte (Novolyte). The LFPC electrode was made of 85wt% 

LFPC, 5wt% PVDF and 10 wt% Carbon-Super-P. The electrode was then extensively washed 

with DMC and transferred to a Na half cell with NaClO4-1M in propylene carbonate as the 

electrolyte. All voltages given in the following text are reported vs. Na+/Na0. 

A fully intercalated NaFePO4 compound-based electrode was obtained from the FePO4 

one upon discharge to 2V at C/50 and subsequent potentiostatic equilibration at 2V for 24 

hours. The final Na composition derived from integration of the charge passed was 0.98. This 

electrode was finally mounted in the operando XRD cell[9] and cycled at 1Na/23h, using a 

VMP3 potentiostat. Five potentiostatic equilibration periods were applied as follows: on 

charge at 3.020V for 1h, 3.300V for 1.5h, and 3.295V for 10h, and then on discharge at 

2.820V and 2.000V for 1h. The two floating periods at 3.300V and 3.295V were separated by 

an open-circuit-voltage (OCV) period for 10h.  

Operando XRD characterization was conducted at the CRYSTAL beamline of the 

SOLEIL French synchrotron source (= 0.725633 Å) using a Mar image plate detector in 

transmission geometry. XRD diagrams were collected up to 2θ=33° every 10 minutes. Each 

diagram lasted for 2s. No XRD data was measured during the entire OCV and 2.95V floating 

periods.  



 

3 

 

Rietveld analyses were achieved by using the FullprofSuite software in a Pnma metric. 

Rietveld refinement of NaxFePO4 compounds (x>0.05), henceforth referred to as 

NaRICHFePO4, and NaxFePO4 compounds (x≤0.05), henceforth referred to as NaPOORFePO4 

were conducted beginning with the structural models for NaFePO4 [5] and FePO4 [10] 

respectively using soft constraint on P-O bonds. During the phase transformation process, 

approximations had to be made due to structural instabilities when refining all parameters in 

sequential mode. Therefore, only cell parameters and scale factors were allowed to vary 

during sequential refinements of phase transformations as soon as the weight fraction of the 

disappearing compound was below 0.95. In these cases, Na occupancies, atomic coordinates, 

and profile parameters of both compounds were taken from “reference” refinements. The scan 

numbers used to get those reference values were scans 151 and 470 for NaRICHFePO4 and 

NaPOORFePO4 respectively, on charge, and scans 576 and 470 for NaRICHFePO4 and 

NaPOORFePO4 respectively, on discharge. Thanks to XRD of very high quality, RBRAGG and RF 

reliability factors were always below 4%, thereby confirming that satisfactory refinements 

were obtained. Standard deviations for weight fractions (0-1), volumes (~300Å3) and Na 

occupancies (0-1) were below 0.005, 0.3 and 0.01 respectively. The description of the system 

is thus considered to be highly accurate. 

 

3. Results and discussion  

The charge process corresponds to x=0.83 during X-ray exposure (scans 1-237) plus 

an additional x=0.09 during potentiostatic equilibration at 3.295V (without X-ray exposure). 

The subsequent discharge (scans 470-662) leads to a slightly lower valuex=0.72, the 

difference being ascribed to kinetic issues (see further down in this section). Due to beam 

shutdown, the electrochemical experiment was placed in OCV for ~6h at x=0.74 on charge. 

Milestone numbers of XRD scans, which will be discussed in the following, are reported on 

Fig. 1a. Fig. 1a and the corresponding inset shows the two processes expected for the 

NaxFePO4 system: a single-phase region between roughly 0.6<x<1 [6,8], and a two-phase 

process between 0.1<x<0.6 on charge [5-8]. All these features are consistent with those 

observed when using a regular Swagelok-type cell [5], thus confirming the reliability of the 

operando XRD cell [9]. Quantification of the effect of dynamics (C/23 rate) on structural 

aspects was gained from Rietveld refinements in sequential mode. The weight fractions of 

both NaRICHFePO4 and NaPOORFePO4 as well as their respective Na occupancies are reported 
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in Fig. 1b. We note that close examination of angular ranges (5-8° and 12-13°) within which 

superstructure lines were expected [5-6], shows that the latter do not appear under 

galvanostatic conditions. For this reason, the Pnma unit cell [5] was used to fit XRD data. It is 

very instructive to note that when the potential reaches the phase transformation plateau 

(3.07V, scan 121 in Fig. 1a), the Na composition is close to 0.6 from both electrochemistry 

and Rietveld refinement, which compares well with the composition threshold of 2/3 that is 

expected in order for the phase transformation to initiate [8]. We noted that even though the 

phase transformation had already started, according to the potential probe (scan 121), the 

XRD data did not show the appearance of the NaPOORFePO4 compounds before scan 145. Due 

to the fact that the intensity of the NaRICHFePO4 lines does not vary between scans 121 and 

145, whereas (as shown further down) the NaRICHFePO4 compounds are still reacting, this 

slight delay cannot be ascribed to inhomogeneities such as those in ref [11]. Instead, we 

propose that the formation of a low proportion of small, coherent domains of NaPOORFePO4 

compounds should be considered.  

Both molar fraction of the two types of compounds, as well as (Na), can be used to 

determine the degree of deintercalation/intercalation of the Na ions in NaxFePO4 (referred to 

as xXRD), such as in the following: 

 xXRD=Mol%(NaRICHFePO4)* (Na)NaRICHFePO4 + Mol%(NaPOORFePO4)* (Na)NaPOORFePO4  

As described in the experimental section, (Na) had to be fixed to “reference” values when 

both NaRICHFePO4 and NaPOORFePO4 were present. Accordingly, inaccuracies appear in these 

sections. For this reason, both (Na) and xXRD were plotted with dashed lines in Fig. 1b. 

Nevertheless, as shown in Fig. 1b, values of xXRD correspond rather well with those of xelectro 

thereby confirming the reliability of the Rietveld refinements. 

Fig. 1c shows the variations of the cell volumes on charge and discharge for both 

NaPOORFePO4 and NaRICHFePO4 compounds. Maximum volume and Na composition of 

NaRICHFePO4 were (Na)=0.948(4) and V=318.331(9) Å3, as refined on scan 1 (RBragg=1.19% 

and RF=1.01%), while for NaPOORFePO4 minimum ones were (Na)=0.05(1) and V=275.39(1) 

Å3, as refined on scan 470 (RBragg=1.91% and RF=1.30%). Surprisingly, although XRD 

detects structural phase transformation between scans 145-237 on charge and 470-662 on 

discharge, results of Fig. 1c demonstrate that, simultaneously, lattice volumes vary 

significantly. We note that (i), given the transmission geometry of the X-ray diffraction 

processes, these effects cannot be ascribed to sample displacements, and that (ii) no 
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significant line broadening was measured. With regards to NaRICHFePO4, values of V(Å3) go 

well below those expected for Na2/3FePO4 [8]. Furthermore, Fig. 1b shows that on charge this 

unexpected volume variation is associated with a continuous decrease of the Na occupancy 

values down to (Na)=0.45(1) on scan 151, where the composition of the electrode contains 

~95/5 of NaRICHFePO4 /NaPOORFePO4 compounds. This decrease was confirmed by non-

sequential Rietveld refinement on scan 185 which leads to (Na)=0.34(1) (RBragg=1.61% and 

RF=1.08%). Accordingly, we are witnessing the occurrence of vastly extended limits of 

solubility. These are characterized by a continuous variation of the metric which is mirroring 

that of the Na occupancy (and hence that of the Fe(III)/Fe(II) ratio). Therefore, arguments 

such as whether or not a delay between XRD and electrochemical measurements are at play, 

or such as the occurrence of inhomogeneities between parts of the electrode under and out of 

the beam, are pointless, since the present findings concern the entry of parameters defining 

the system (t(Na), V(A3)…) in thermodynamically forbidden regions [8].  This striking result, 

hitherto unseen in material science, to our knowledge, highlights the fact that the 

thermodynamic phase diagram of this Na/FePO4
 system, as established by Yamada [8], needs 

thorough reassessment as far as the operating material is concerned. Indeed, the phase 

transformation limits are unexpectedly and markedly smoothed out in such a way that the 

electrochemical insertion/deinsertion of Na ions occurring at the phase front, between 

domains of NaPOORFePO4 and NaRICHFePO4 compounds, does exhibit a variation of Na 

composition. A direct and major consequence of this finding lies in the fact that the lattice 

volume mismatch between the two protagonists of the phase transformation is greatly 

reduced. As a matter of fact, the integrated volume mismatch over the mol% variation of 

NaRICHFePO4 compounds during the phase transformation on charge is 19.8Å3, that is to say 

30% lower than the value obtained (28.2Å3) considering a phase transformation occurring at 

constant volumes with VNa2/3FePO4=308.551 A3 from reference [8] and VNa0.05FePO4=275.39(1) 

A3 as refined on scan 237. Considering the fact that significant volume mismatch (>10%) 

influences the stability of the solid electrolyte interphase (SEI) on cycling, which is one of the 

detrimental factors governing the cycle life of battery materials [12], it seems that Na active 

material may have a decisive advantage over Li battery ones (and that this may well 

compensate for known adverse effects such as those associated with the size of Na+ and 

inefficient Na related SEI). This also goes to show that, contrary to the Li case, operando 

behaviors and thermodynamic expectations are strikingly different in the case of Na batteries. 

For this reason, the oodles of results that have been gathered for Li-ion batteries over the past 

two decades should not be taken as readily transferable to Na-ion batteries. Additional 
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instructive information stems from Fig. 1c. Indeed, Rietveld refinements clearly show that the 

lattice volume behaviors on charge and discharge are asymmetrical both for the NaRICHFePO4 

and the NaPOORFePO4 compounds. This is particularly evident during the phase 

transformation where the volume variation of NaPOORFePO4 compounds is much less 

pronounced on discharge (Fig. 1c), while that of NaRICHFePO4 ones increases more rapidly 

than on charge. This is well illustrated in the inset of Fig. 1c that compares two scans of 

similar composition (~50/50), but obtained on charge (scan 201) and on discharge (scan 520). 

Indeed, hkl lines of NaPOORFePO4 are observed at similar angles in both cases, whereas those 

of NaRICHFePO4 are clearly shifted to lower angles on scan 520. It appears, therefore, that the 

lattice volume mismatch should be greater on discharge. For the sake of comparison, a 

calculation using the same range of molar fractions as previously selected for the charge, 

shows that volume mismatch does in fact increase to reach 25.5Å3 on discharge (that is 22% 

higher compared to the 19.9Å3 found on charge as shown above). Accordingly, a higher 

thermodynamic potential hysteresis is expected on discharge. This hysteresis should lower the 

voltage of the potential plateau on discharge, thereby accounting for the much reduced 

voltage difference (a few mV) observed on discharge between the two electrochemical 

processes [5-7]. Therefore as proposed by Yamada [8], under current load, kinetic 

overpotential provides an excess of energy to the system that can consequently, given the 

small voltage gap, access both the phase transformation and the single phase processes 

simultaneously. In other words, Na is consumed for both types of solid-state reactions, which 

may also explain why the phase transformation on discharge lasts until the end of the 

experiment. 

 

 

4. Conclusion  

Contrary to what has been observed in material science to date, and more particularly 

in the Li battery field, a structural phase transformation occurring for an operating sodium 

battery material, namely NaxFePO4, does not proceed at constant composition. Indeed, vastly 

extended limits of solubility that correspond to thermodynamically forbidden regions have 

been evidenced simultaneously to variation of phase proportion. Considering the initial FePO4 

material, this striking behavior results in Na batteries having an enormous advantage over Li 

ones, since their unit cell volume mismatch during phase transformation is greatly reduced. 

Indeed, as far as cyclability and therefore battery price is concerned, kinetically controlled 
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structural behavior such as this can clearly compensate for the less efficient Na-related SEI as 

well as the larger size of Na ions. Lastly, the asymmetry of the electrochemical behavior 

between charge and discharge is tentatively explained based on the fact that the discharge 

process corresponds to a 22% higher volume mismatch than the charge process.  

In the near future, we anticipate the elucidation of further noteworthy examples 

regarding the influence of dynamics on the structural behavior of positive and negative 

electrode materials of the Na battery. The influence of cycling rate is currently being 

investigated. 
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Figure 1: Variation as a function of scan numbers during charge 
and discharge of (a) potential (inset shows the potential-
composition curve), (b) xelectro, xXRD (dotted lines correspond to 
approximations using constant (Na)=0.05(1) for NaPOORFePO4 
and (Na)=0.45(1) for NarichFePO4), (Na) for NaPOORFePO4, and 
weight fractions and, (c) lattice volumes (dashed lines correspond 
to regions where intensities were too low to allow reliable 
refinements, and dotted lines to volumes of NaFePO4 and 
Na2/3FePO4 from refs. [5] and [8] respectively); inset shows XRD 
diagrams corresponding to a similar composition close to 50/50 
of NaPOORFePO4 and NaRICHFePO4, but obtained on charge (scan 
201) and on discharge (scan 520) 
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