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Abstract: In thispaper wefirst present two convergencetheoremswhich give atheoretical justification of theNon-Local
Means Filter. Based onthese theorems, we propose anew filter, called Non-Local Mixed Filter, to remove a
mixtureof Gaussian andrandom impulsenoises. Thisfilter combines the essential ideasof theTrilateral Filter
and the Non-Local Means Filter. It improves the Trilateral Filter and extends the Non-Local Means Filter.
Our experiments show that thenew filter generally outperforms two other recent proposed methods. A careful
discussion and simple formulas are given for the choiceof parameters for the proposed filter.

1 INTRODUCTION

Themain objectiveof thispaper is to extendtheNon-
Local MeansFilter (Buadeset al., 2005) for removing
Gaussian noiseto the casewheretheimageiscontam-
inated by a mixture of Gaussian and random impulse
noises, based on two convergence theorems for the
Non-Local MeansFilter that wewill present.

Let us first introduce the Gaussian and impulse
noise models. As usual, we denote a digital im-
age by a N × N matrix u = {u(i) : i ∈ I}, where
I = {0,1, ...,N−1}2 and 0≤ u(i)≤ 255. The additive
Gaussian noise model is: v(i) = u(i) + η(i), where
u= {u(i) : i ∈ I} is the original image, v= {v(i) : i ∈
I} is the noisy one, and η is the Gaussian noise: η(i)
are independent and identically distributed Gaussian
random variableswith mean 0andstandard deviation
σ > 0. We always denote by u the original image, v
thenoisy one. Therandom impulsenoisemodel is:

v(i) =

{

η(i) with probabilit y p,
u(i) with probabilit y (1− p),

where p is the impulse probabilit y (the proportion
of the occurrenceof impulse noise), and η(i) are in-
dependent random variablesuniformly distributed on
the interval [min{u(i) : i ∈ I},max{u(i) : i ∈ I}].

There is a large literature for removing Gaussian
noise. A very important progress in this classical
research field was marked by the proposition of the

Non-Local MeansFilter (NL-means) by Buades, Coll
and Morel. The key ideaof this filter is to estimate
the original image by weighted means along simi-
lar local patches. Since then a series of important
works have been done by many authors in various
contexts using this interesting idea, see e.g. the op-
timal spatial adaptive patch-based filter in (Kervrann
andBoulanger, 2006), the K-SVD (Elad andAharon,
2006) and BM3D (Dabov et al., 2007) algorithms.
There are also many methods to remove impulse
noise, see e.g. the variational methods in (Nikolova,
2004; Chan et al., 2004; Donget al., 2007).

However, few filters are known to remove amix-
ture of Gaussian and impulse noises, althoughsuch
noises can take placequite often. On this subject,
in (Garnett et al., 2005) an interesting statistic called
ROAD is introduced to detect impulse noisy pix-
els; this statistic is combined with the Bilateral Fil -
ter (Smith and Brady, 1997; Tomasi and Manduchi,
1998) leading to the so-called Trilateral Filter (TriF).
The performance of TriF is related to the efficiency
of theROAD statistic for detecting impulsenoise and
the performanceof the Bilateral Filter for removing
Gaussian noise. A slightly different version of the
ROAD statistic isproposed in (Donget al., 2007).

In this paper, we first (cf. Section 2) present two
convergence theorems, which gives a goodtheoreti-
cal justification for NL-meanswith a probabili stic in-
terpretation of the similarity phenomenonwhich ex-
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ists very often in natural images. We then (cf. Sec-
tion 3) propose anew filter called Non-Local Mixed
Filter (NLMixF) to remove mixed noises, using the
presented convergencetheorems in an adaptive way.
This filter improves the Trilateral Filter and extends
NL-means. Our experimental results (cf. Section
4) also show that for removing mixed noise, our fil-
ter NLMixF outperforms the two algorithms recently
proposed in (Yang and Wu, 2009) and (Xiao et al.,
2011) which are based respectively on the ideas of
BM3D (Dabov et al., 2007) and K-SVD (Elad and
Aharon, 2006).

2 CONVERGENCE THEOREMS
FOR NON-LOCAL MEANS

The Non-Local Means Filter (NL-means) (Buades
et al., 2005) is mainly based on the similarity of
local patches. For i ∈ I and d an odd integer, let
N i(d) = { j ∈ I : | j − i| ≤ (d − 1)/2} be the win-
dow with center i and size d × d, where | j − i| =
max(| j1− i1|, | j2− i2|) for i = (i1, i2) and j = ( j1, j2).
Set N 0

i (d) = N i(d)\{i}. We sometimes simply write
N i and N 0

i for N i(d) and N 0
i (d), respectively. De-

note v(N i) = {v(k) : k ∈ N i} as the vector composed
of thegray valuesof v in thewindow N i arranged lex-
icographically.

Thedenoised imageby NL-means isgiven by

v̄(i) =
∑ j∈N i(D)w(i, j)v( j)

∑ j∈N i(D)w(i, j)

with

w(i, j) = e−||v(N i)−v(N j )||2a/(2σ2
r ) ( j 6= i), (1)

whereσr > 0 isa control parameter,

||v(N i)−v(N j)||2a=
∑k∈N i (d)a(i,k)|v(k)− v(T (k))|2

∑k∈N i(d)a(i,k)
,

(2)
a(i,k) > 0 being some fixed weights usually chosen
to be a decreasing function of the Euclidean norm
‖i − k‖ or |i − k|, and T = T i j is the translation map-
ping of N i onto N j : T (k) = k− i + j,k ∈ N i . Origi-
nally,N i(D) in (1) ischosenasthewholeimageI , but
in practice, it isbetter to chooseN i(D) with an appro-
priate number D. We call N i(D) searches windows,
andN i = N i(d) local patches.

We now present some convergence theorems for
NL-means via probabilit y theory. For simplicity, we
use the same notation v(N i) to denote both the ob-
served image patches and the corresponding random
variables (in fact the observed image is just a real-
ization of the corresponding variable). Therefore the

distribution of theobserved imagev(N i) is just that of
the correspondingrandom variable.

Definition 2.1. Two patches v(N i) and v(N j ) are
called similar if they have the same probabilit y dis-
tribution.

We sometimes simply say that the two windows
N i and N j are similar in the same sense. Defini-
tion 2.1 is a probabili stic interpretation of the simi-
larity phenomenon that occurs very often in natural
images. According to this definition, two observed
patchesv(N i) andv(N j) aresimilar if they are issued
fromthesameprobabilit y distribution. In practice, we
consider that two patches v(N i) and v(N j ) are simi-
lar if their Euclidean distance is small enough, say
‖v(N i)− v(N j)‖< T for somethreshold T.

Thefollowingtheorem isakind of Marcinkiewicz
law of large numbers. It gives an estimation of the
almost sure convergencerate of the estimator to the
real image in NL-Means.

Theorem 2.1. Let i ∈ I and let Ii be the set of j ∈ I
such that the patches N i andN j are similar (in the
sense of Definition2.1). Set

v0(i) =
∑ j∈Ii w

0(i, j)v( j)

∑ j∈Ii w
0(i, j)

,

where

w0(i, j) = e−‖v(N 0
i )−v(N 0

j )‖2
a/(2σ2

r ). (3)

Then for any ε ∈ (0, 1
2], as |Ii | → ∞,

v0(i)−u(i) = o(|Ii |−( 1
2−ε)) almost surely, (4)

where |Ii | denotesthe cardinality of Ii .

Theorem 2.1 improves the similarity principle in
(Li et al., 2011) which is just (4) with ε = 1/2. It
shows that v0(i) is a goodestimator of the original
imageu(i) if thenumber of similar patches |Ii | is suf-
ficiently large. Here we use the weight w0(i, j) in-
stead of w(i, j), as w0(i, j) has the niceproperty that
it is independent of v( j) if j 6∈ N i . This property is
used in theproof, andmakes the estimator v0(i) to be
“almost” non-biased: in fact, if the family {v( j)} j is
independent of the family {w0(i, j)} j (e.g. this is the
case when the similar windows are disjoint), then it
is evident that Ev0(i) = ui . We can consider that this
non-biased property holds approximately as for each
j there are few pixels k such that w0(i,k) are depen-
dent of v( j). A different explanationabout the biased
estimation of NL-means can be foundin (Xu et al.,
2008).

Notice that when v(N j) is not similar to v(N i),
then the weight w0(i, j) is small and negligible.
Therefore in practice we can take all windows. But
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selecting only similar windows can slightly improve
the restoration result, and can also speed upthe algo-
rithm. The differencebetween v̄(i) and v0(i) is also
small , so that Theorem 2.1 shows that v̄(i) is also a
goodestimator of u(i). But very often v0(i) givesbet-
ter restorationresult.

The following result is a generalized central li mit
theorem; it states that v0

|Ii |(i) tends to u(i) just like

1/
√

|Ii | in thesense of probabilit y distribution.

Theorem 2.2. Under the condition of Theorem 2.1,
assumeadditionally that {v(N j) : j ∈ Ii} with thelexi-
cographical order isa stationary sequenceof random
vectors. Then as |Ii | → ∞,

√

|Ii |(v0(i)−u(i))
d→ L ,

where
d→ means the convergencein distribution, L is

a mixture of centered Gaussian laws in the sense that
it hasa density of the form

f (t) =
∫
R
|N 0

i |
1√
2πcx

e
− t2

2c2
x ν(dx),

ν being the law of v(N 0
i ) andcx > 0.

By Theorems 2.1 and 2.2, the larger the value of
|Ii |, the better the approximation of v0(i) to u(i). This
will be confirmed in another paper whereweshall i n-
troducethe notion of degreeof similarity for images,
showing that the larger the degreeof similarity, the
better the quality of restoration. Due to the limitation
of space, the proofs of theorems will be given else-
where.

3 NON-LOCAL MIXED FILTE R

In this section, we will define our new filter. Be-
fore this we first recall the Trilateral Filter (Garnett
et al., 2005). Thisfilter isbased onthestatistic ROAD
(Rank of Ordered AbsoluteDifferences) defined by

ROAD(i) = r1(i)+ · · ·+ rm(i), (5)

rk(i) being the k-th smallest term in {|u(i)− u( j)| :
j ∈ N i(d)\{i}}, m a constant taken asm= 4 in (Gar-
nett et al., 2005). TheROAD statistic serves to detect
noisy points: in fact, if i is an impulse noisy point,
then ROAD(i) is large; otherwise it is small . TheTri-
lateral Filter (TriF) isby definition

TriF(v)(i) =
∑ j∈N i(D)w(i, j)v( j)

∑ j∈N i(D)w(i, j)
, (6)

where

w(i, j) = wS(i, j)wR(i, j)JI (i, j)wI ( j)1−JI (i, j)

contains the spatial factor wS(i, j) = e−|i− j |2/(2σ2
S),

the radiometric factor wR(i, j) = e−(v(i)−v( j))2/(2σ2
R)

(whichmeasurethesimilarity between thepixelsi and
j), the impulse factor wI (i) and the joint impulse fac-
tor JI (i, j) defined by

wI (i) = e
−ROAD(i)2

2σ2
I , (7)

JI (i, j) = e
− ((ROAD(i)+ROAD( j))/2)2

2σ2
J , (8)

σS,σR,σI and σJ being control parameters. (In fact,
Garnett et al. (2005) initially defined thejoint impulse
factor asJ(i, j) = 1−JI(i, j). Wefoundthat it ismore
convenient to use JI (i, j) instead of J(i, j).) Notice
that if either i or j is an impulse noisy point, then the
value of JI (i, j) is close to 0; otherwise it is close to
1. Similarly, wI (i) iscloseto 0 if i isan impulsenoisy
point, and to 1 otherwise.

Our new filter will be based on the following
weighted norm that we call mixed norm:

||v(N 0
i )− v(N 0

j )||2M (9)

=
∑k∈N 0

i
wS,M(i,k)JI (k,T (k)) |v(k)− v(T (k))|2

∑k∈N 0
i

wS,M(i,k)JI (k,T (k))
,

where wS,M(i,k) = e−|i−k|2/(2σ2
S,M), and JI (k,T (k)) is

defined in (8). Recall that if k or T (k) is an impulse
noisy point, then JI (k,T (k)) is close to 0, so that
the concerned point contributes littl e to the weighted
norm (9). Therefore the mixed norm (9) filters im-
pulsenoisy points. Clearly, it also measures thesimi-
larity between the patchesv(N i) andv(N j) and takes
into account the spatial factor. Our new filter that we
call Non-Local Mixed Filter (NLMixF) is by defini-
tion

NLMixF(v)(i) =
∑ j∈N i(D)w(i, j)v( j)

∑ j∈N i(D) w(i, j)
,

where
w(i, j) = wS(i, j)wI ( j)wM(i, j)

containsthespatial factor wS(i, j) = e−|i− j |2/(2σ2
S), the

similarity factor wM(i, j) = e−||v(N i)−v(N j )||2M/(2σ2
M),

and the impulse factor wI ( j) defined in (7), with σS
and σM being parameters. Notice that NLMixF re-
duces to NL-means when σI = σJ = σS = ∞. This
filter NLmixF is an improved version of the filter in-
troduced in (Li et al., 2011). Compared to the filter
of (Li et al., 2011), it improvesthe quality of restora-
tion and contains entirely NL-means filter thanks to
the added spatial factor wS,M in the mixed norm (9).
Notice that for each impulse noisy point j in N i(D),
the weight w(i, j) is close to 0. Henceour new filter
can beregardedasan application of Theorems2.1and
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2.2 to the remained image (which can be considered
to contain only Gaussian noise) obtained after filter-
ing the impulsenoisy pointsby themixed norm (9).

4 SIMULATIONSAND CHOICES
OF PARAMETERS

In this section, we present some experimental results
to compare the new filter NLMixF with NL-means,
TriF, and two recently algorithms proposed in (Yang
and Wu, 2009) and (Xiao et al., 2011). As usual we
use PSNR (Peak Signal-to-NoiseRatio) defined by

PSNR (v̄) = 10log10
2552|I |

∑i∈I (v̄(i)−u(i))2

to measure the quality of a restored image, where u
is the original image, v̄ the restored one. In our ex-
perimentsweusethe512×512imagesLena, Bridge,
Boats and the 256×256image Peppers. They are all
availableon line.1

In our implementations, image boundaries are
handled byassumingsymmetricboundary conditions.
In the original image Peppers, there are black bound-
aries of width of one pixel, we therefore compute the
PSNR value for the imageof size254×254 obtained
after removingthe four boundaries.

There are several parameters to be tuned in
NLMixF. Recall that NLMixF reduces to NL-means
when σI = σJ = σS = ∞. So for removing Gaus-
sian noise, a reasonable choice is to take σI ,σJ and
σS large enough(thoughthis choice is not necessar-
ily optimal). To apply our filter easily in practice, we
look for a simple and uniform formula in terms of p
and σ. We first look for a linear relation; when this
does not seem possible we test some slightly more
complicated functions. To obtain the formulas, we
consider Gaussian noise with σ = 10,20,30, impulse
noisewith p= 0.2,0.3,0.4,0.5 andtheir mixture. We
havedoneour best to choosetheformulas, but we can
not guarantee that our formulas are always optimal
due to the complexity of the subject. Our choices of
parameters for NLMixF are shown in the following,
whereGaussian noise, impulsenoise andmixed noise
are abbreviated respectively asGau, Imp andMix:

σI = 60+2σ−50p, σJ = 45+0.5σ−50p,

σM = 4+0.4σ+30p−
√

2σp,

1for Lena, Peppers and Boats, cf.
http://decsai.ugr.es/∼javier/denoise/test images/index.htm;
for Bridge, cf. www.math.cuhk.edu.hk/∼rchan/paper/dcx/.

σS =

{

0.6+ p σ = 0 (Imp)
15 σ > 0 (Gau or Mix)

σS,M =







15 σ = 0 p> 0 (Imp)
1.5 σ > 0 p= 0 (Gau)
2 σ > 0 p> 0 (Mix)

d =















9 σ = 0 p> 0 (Imp or Mix)
5 σ = 10 p= 0
7 σ = 20 p= 0

30







(Gau)

D =







































7 σ = 0 p> 0 (Imp)
9 σ = 10 p= 0
13 σ = 20 p= 0
15 σ = 30 p= 0







(Gau)

7 σ = 10 p> 0
11 σ = 20 p> 0
15 σ = 30 p> 0







(Mix)

In the calculation of ROAD, we choose 3×3 neigh-
borhoods and m = 4. For impulse noise or mixed
noisewith p= 0.4,0.5, to further improvetherestora-
tion results, we use 5×5 neighborhoodsand m= 12
to calculate ROAD (5). Consistently, the choice of
σI ,σJ depend on m, thus they should be multiplied
by a factor empirically chosen as 4.2. Evidently, our
choiceof parametersisnot restricted to σ= 10,20,30
and p= 0.2,0.3,0.4,0.5. Thischoice can also be ap-
plied to any valueof σ in the interval [10,30] and p in
the interval [0.2, 0.5], or even larger intervals. Note
that when σS = 15 or σS,M = 15, we get wS(i, j) ≈ 1
or wS,M(i, j) ≈ 1. This means that for impulse noise
we can omit the factor wS,M(i, j), and for Gaussian
noise andmixed noisewe can omit the factor wS(i, j).
A full discussion of the roles of the different choices
of parametersgoesbeyond of the scope of thispaper.
The problem of choice of parameters for NL-means
has been considered in the literature, seefor example
(Xu et al., 2008) and (Duval et al., 2011).

For TriF, we chooseparametersandapply thefilter
according to the suggestion of (Garnett et al., 2005).
We use σI = 40,σJ = 50,σS = 0.5,σR = 2σQGN,
whereσQGN isan estimator for thestandard deviation
of “quasi-Gaussian” noise defined in (Garnett et al.,
2005). For impulse noise, when p > 0.25, it was
proposed in (Garnett et al., 2005) to apply the filter
with two to five iterations. We apply two iterations
for p = 0.3,0.4, and four iterations for p = 0.5. For
mixed noise, we apply TriF twicewith different val-
ues of σS as suggested in (Garnett et al., 2005): with
all i mpulse noise levels p, for σ = 10, we use first
σa = 0.3, then σS= 1; for σ = 20, first σS= 0.3, then
σSb= 15; for σ = 30, first σS = 15, then σS = 15.
Note that when σS= 15, we can omit the spatial fac-
tor.
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Table 1: Choiceof parameters for NL-means.

σ 10 20 30
d (sizeof local patchesN i(d)) 7 9 13

D (sizeof search windowsN i(D)) 9 9 11

Table 2: PSNR values for removing random impulse noise.

p 0.2 0.3 0.4 0.5
Lena TriF 34.44 32.55 31.27 29.14

NLMixF 35.35 33.09 31.52 29.85
Bridge TriF 26.70 25.20 24.43 23.31

NLMixF 27.65 25.46 24.45 23.31
Peppers TriF 30.85 28.64 27.74 26.14

NLMixF 31.94 29.40 28.34 26.47
Boats TriF 30.19 28.57 27.64 26.13

NLMixF 31.24 29.05 27.50 26.10

For NL-means, we use σr = 4+ 0.4σ in accor-
dancewith the choiceof σM in NLMixF (with p= 0).
This choice is different from the proposed one in
theoriginal NL-meansalgorithm, and generally gives
better restoration results. The values for d and D are
shown in Table1.

We now present some experimental results. Ta-
bles 2 and 3 show the performances of NLMixF for
removing impulse noise and Gaussian noise by com-
paring it with TriF and NL-means (for which we use
w(i, i) = max{w(i, j) : j 6= i, j ∈ N i(D)} anda(i,k) =

1
(d−1)/2 ∑(d−1)/2

l=|i−k|
1

(2l+1)2
in (2)). Table 4 compares

NLMixF with TriF for removing mixed noise. We
add Gaussian noise and then impulse noise for simu-
lation of mixed noise. SinceNL-meansisnot suitable
for removing impulse noise, we do not include it in
Tables 2 and 4. We can see that NLMixF improves
TriF in almost all the cases, especially when p is small
(p= 0.2), or σ is large (σ = 20,30). Some examples
are shown in Figs. 1. In Table 5, we compare the
PSNR values with the two algorithms in (Yang and
Wu, 2009) and (Xiao et al., 2011), where we show
the reported PSNR values for these two algorithms.
In Fig. 2, we show the denoised images by NLMixF
and IPAMF+BM in (Yang and Wu, 2009), using the
same noisy image.

5 CONCLUSIONS

Wehavefirst presented two convergencetheoremsfor
the Non-Local Means Filter (Buades et al., 2005).
Based on these convergence theorems and the idea
of Trilateral Filter (TriF) (Garnett et al., 2005) we
havethen given afilter called Non-Local Mixed Filter
(NLMixF) to remove Gaussian noise, impulse noise
and their mixture. To make easy the application of
our filter, we have also given empirical formulas for

Table 3: PSNR values to remove Gaussian noise.

Lena Bridge

σ 10 20 30 10 20 30
TriF 33.21 29.48 26.51 30.62 27.42 25.05

NLMixF 34.92 31.73 29.81 32.65 29.33 27.56
NL-means 35.03 31.78 29.89 32.72 29.84 27.93

Table 4: PNSR values for removing mixed noise by
NLMixF and TriF.

p 0.2 0.3 0.4 0.2 0.3 0.4
Lena σ = 10 Bridge σ = 10

TriF 31.60 30.88 29.66 25.14 24.59 23.93
NLMix 32.78 31.47 29.94 26.06 24.71 23.80

Lena σ = 20 Bridge σ = 20

TriF 28.75 28.11 27.26 23.73 23.32 22.84
NLMixF 30.54 29.65 28.44 24.44 23.61 22.86

Lena σ = 30 Bridge σ = 30

TriF 26.48 25.77 25.02 22.40 22.06 21.52
NLMixF 28.87 28.07 27.34 23.38 22.79 22.24

Peppers σ = 10 Boats σ = 10

TriF 29.05 27.95 26.63 28.32 27.60 26.79
NLMixF 30.49 28.56 27.47 29.73 28.20 26.76

Peppers σ = 20 Boats σ = 20

TriF 26.70 25.87 25.29 26.35 25.74 25.07
NLMixF 28.54 27.37 26.51 27.66 26.61 25.60

Peppers σ = 30 Boats σ = 30

TriF 24.71 23.91 23.27 24.54 24.01 23.37
NLMixF 27.04 25.91 25.14 26.34 25.56 24.69

Table5: Compare PNSR values for mixed noise.

Lena σ = 10 p= 0.1 p= 0.2 p= 0.3
(Xiao et al., 2011) 32.75 31.66 30.42

(YangandWu, 2009) 33.61 32.12 30.69
NLMixF 34.10 32.78 31.47

the choice of parameters which can at least be used
for Gaussian noise with σ ∈ [10,30], impulse noise
with p ∈ [0.2,0.5], and their mixture. Our experi-
ments show that NLMixF outperformsTriF, aswell as
the more recent methods proposed in (Yang and Wu,
2009),and (Xiao et al., 2011) based respectively on
the ideas of BM3D (Dabov et al., 2007) and K-SVD
(Elad andAharon, 2006).
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