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Abstrad:

In this paper we first present two convergence theorems which give atheoreticd justification o the Non-Locd

Means Filter. Based onthese theorems, we propose anew filter, cdled Non-Locd Mixed Filter, to remove a
mixture of Gausdan and randam impulse noises. Thisfilter combines the essential i deas of the Tril ateral Filter
and the Non-Locd Means Filter. It improves the Trilateral Filter and extends the Non-Locd Means Filter.

Our experiments show that the new filter generally outperforms two cther recent proposed methods. A careful

discusdon and simple formulas are given for the choice of parameters for the proposed filter.

1 INTRODUCTION

Themain objedive of this paper isto extendthe Non-
Locd MeansFilter (Buadeset al., 2005 for removing
Gausdan nasetothe case wheretheimageis contam-
inated by a mixture of Gausdan and random impulse
noises, based on two convergence theorems for the
NonLocd Means Filter that we will present.

Let us first introduce the Gaussan and impulse
noise models. As usua, we dencte a digital im-
age by a N x N matrix u = {u(i) : i € I}, where
| ={0,1,...,N—1}?and 0< u(i) < 255. The alditive
Gausdan ndse model is: v(i) = u(i) +n(i), where
u={u(i):iel}istheorigina image, v={v(i):i e
|} isthe noisy one, and n is the Gaussan nase: n(i)
are independent and identicdly distributed Gaussan
random variables with mean 0 and standard deviation
o0 > 0. We dways denate by u the original image, v
the noisy one. The random impulse noise model is:

o nd)
v(i) { u(i
where p is the impulse probability (the propartion
of the occurrence of impulse noise), andn (i) arein-
dependent randam variables uniformly distributed on
theinterval [min{u(i) :i e I'},max{u(i) :i € 1}].
There is a large literature for removing Gausdgan
noise. A very important progressin this clasdcd
reseach field was marked by the propdasition o the

with probability p,
with probability (1— p),

Non-Locd MeansFilter (NL-means) by Buades, Coll
and Morel. The key ideaof this filter is to estimate
the original image by weighted means along simi-
lar locd patches. Since then a series of important
works have been dore by many authors in various
contexts using this interesting ideg see eg. the op-
timal spatial adaptive patch-based filter in (Kervrann
and Boulanger, 2006, the K-SVD (Elad and Aharon,
2006 and BM3D (Dabov et d., 2007 agorithms.
There ae dso many methods to remove impulse
noise, see eg. the variational methods in (Nikolova,
2004 Chan et al., 2004 Donget al., 2007).

However, few filters are known to remove amix-
ture of Gausdan and impulse noises, athoughsuch
noises can take place quite often. On this abjed,
in (Garnett et a., 2009 an interesting statistic cdled
ROAD is introduced to deted impulse noisy pix-
és; this datistic is combined with the Bilateral Fil-
ter (Smith and Brady, 1997 Tomasi and Manduchi,
1998 leaingto the so-cdled Trilateral Filter (TriF).
The performance of TriF is related to the dficiency
of the ROAD statistic for detedingimpulse noise and
the performance of the Bilateral Filter for removing
Gausdan nase. A dightly different version o the
ROAD dtatisticis proposed in (Donget a., 2007).

In this paper, we first (cf. Sedion 2) present two
convergence theorems, which gives a goodtheoreti-
cd justification for NL-meanswith a probabili stic in-
terpretation o the similarity phenomenonwhich ex-
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ists very often in natural images. We then (cf. Sec
tion 3 propose anew filter cdled Non-Locd Mixed
Filter (NLMixF) to remove mixed ndses, using the
presented convergence theorems in an adaptive way.
This filter improves the Trilateral Filter and extends
NL-means. Our experimental results (cf. Sedion
4) also show that for removing mixed nase, our fil-
ter NLMixF outperforms the two algorithms recently
proposed in (Yang and Wu, 2009 and (Xiao et d.,
2011 which are based respedively on the ideas of
BM3D (Dabov et a., 2007 and K-SVD (Elad and
Aharon, 2006).

2 CONVERGENCE THEOREMS
FOR NON-LOCAL MEANS

The Non-Locd Means Filter (NL-means) (Buades
et al., 2005 is mainly based on the similarity of
locd patches. For i € | and d an odd integer, let
Ai(d)={jel:|j—il <(d-1)/2} be the win-
dow with center i and sized x d, where |j —i| =
max(|j1 —i1f,|j2—i2|) fori = (i1,iz) and j = (ju, j2).
Set A;0(d) = 2G(d)\{i}. We sometimes smply write
AG and ;0 for aG(d) and 4;°(d), respedively. De-
note v(AG) = {v(k) : k€ AG} asthe veaor composed
of thegray values of vin thewindow 4j arranged lex-
icographicdly.
The denoised image by NL-meansis given by

_ YjeasyWa, V()
V= Yieasy Wi J)

with
w(i, j) = e IVCO-vOOIR/ D) (j £y, (1)
where o, > Oisa ntrol parameter,
ke 0, K)V(K) — V(T (K))[?

[IV(26) —v(2) 15 = : ,

Y keai () a1, K)

2
a(i,k) > 0 being some fixed weights usually chosen
to be adeaeasing function o the Euclidean nam
|li — k|| or |i —k|, and T = 7j; isthe trandlation map-
ping o AG onto Aj: 7 (k) = k—1i+ j,k € 4j. Origi-
naly, 4G (D) in (1) ischosen asthewholeimagel, but
in pradice, it i's better to choose 4G (D) with an appro-
priate number D. We cdl A;(D) seaches windows,
and A = AG(d) locd patches.

We now present some mnwvergence theorems for
NL-means via probability theory. For simplicity, we
use the same notation v(«;) to denate both the ob-
served image patches and the correspondng randam
variables (in fad the observed image is just a red-
ization d the correspondng veriable). Therefore the
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distribution o the observed image v(4) isjust that of
the correspondngrandam variable.

Definition 2.1. Two patches v(A;) and v(4j) are
called similar if they have the same probalility dis-
tribution.

We sometimes dmply say that the two windows
AG and (; are similar in the same sense. Defini-
tion 21 is a probabili stic interpretation o the simi-
larity phenomenonthat occurs very often in natural
images. According to this definition, two observed
patches v(a;) and v(«\j) aresimilar if they areissied
from the same probabilit y distribution. In pradice we
consider that two patches v(4G) and v(«(j) are simi-
lar if their Euclidean distance is gnall enough say
[Iv(7G) —v(2G)|| < T for somethreshold T.

Thefollowingtheoremisakind of Marcinkiewicz
law of large numbers. It gives an estimation o the
amost sure aonwergencerate of the estimator to the
red imagein NL-Means.

Theorem 2.1. Leti €|l andlet |; betheset of | € I
such that the patches #; and (j are smilar (in the
sense of Definition 2.1). Set

, jei; WOG, )v(j)
WO(iy = Zie WL V)
=5
where
Wi, j) = o V(260 —v(?) 13/ (207) 3)

Then for any € € (0, 3], as|li| — o,

VO(i) —u(i) = o([li| "(2~%)) almost surely,  (4)
where |I;| denotesthe cardinality of I;.

Theorem 2.1 improves the similarity principle in
(Li et ., 2017 which is just (4) with e = 1/2. It
shows that V°(i) is a good estimator of the original
image u(i) if the number of similar patches |l;| is auf-
ficiently large. Here we use the weight wO(i, j) in-
stead of w(i, j), aswP(i, j) has the nice property that
it is independent of v(j) if j & AG. This property is
used in the proof, and makes the estimator V(i) to be
“almost” non-biased: in fad, if the family {v(j)}; is
independent of the family {V\p(i,j)}j (e.g. thisisthe
case when the similar windows are digoint), then it
is evident that EVP(i) = u;. We can consider that this
non-biased property halds approximately as for eah
j there ae few pixels k such that wO(i, k) are depen-
dent of v(j). A different explanation abou the biased
estimation o NL-means can be foundin (Xu et d.,
2008.

Notice that when v(#(j) is not similar to v(«G),
then the weight wO(i,j) is smal and regligible.
Therefore in pradice we can take dl windows. But
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seleding ony similar windows can dlightly improve
the restoration result, and can also speed upthe dgo-
rithm. The diff erence between V(i) and \O(i) is also
small, so that Theorem 2.1 shows that v(i) is adso a
goodestimator of u(i). But very often\2(i) gives bet-
ter restoration result.

The following result is a generali zed central li mit

theorem; it states that vﬁi‘(i) tends to u(i) just like
1/+/|li] inthe sense of probability distribution.

Theorem 2.2. Under the condtion o Theorem 2.1,
assumeaddtiondlythat {v(«\) : j € l;} with thelex-
cographical order is a stationary sequenceof randam
vedors. Then as |lj| — o,

VIOG) — (i) S £,

where % meansthe onvergencein distribution, £ is
a mixture of centered Gausdan laws in the sense that
it has a density of the form
1 =
ft:/ ———e 2xv(dx),
( ) R‘%O‘ \/E[Cx ( )
v being the law of v(«;°) andcy > 0.

By Theorems 2.1 and 22, the larger the value of
|li|, the better the goproximation o VO(i) to u(i). This
will be confirmed in ancther paper where we shall i n-
troducethe notion o degreeof similarity for images,
showing that the larger the degree of similarity, the
better the quality of restoration. Due to the limitation
of space the proofs of theorems will be given else-
where.

3 NON-LOCAL MIXED FILTER

In this sdion, we will define our new filter. Be-
fore this we first recdl the Trilateral Filter (Garnett
etal., 2005. Thisfilter isbased onthe statistic ROAD
(Rank of Ordered Absolute Diff erences) defined by

ROAD(i) =ra(i) +---+rm(i), (5)
rk(i) being the k-th smallest term in {|u(i) — u(j)] :
i € A6(d)\{i}}, ma constant taken asm= 4 in (Gar-
nett et al., 20095. The ROAD statistic servesto deted
noisy points. in fad, if i is an impulse noisy point,
then ROAD(i) islarge; otherwiseitis amall. The Tri-
lateral Filter (TriF) is by definition

_ Y ieagy W, V(i)
Yiea W)

TriF(v)(i) , (6)

where

w(i, j) = ws(i, j)we(i, ) GDw ()30

contains the spatial fador ws(i, j) = e i=i*/(209),
the radiometric fador wg(i, j) = e~ (V(H-(1)*/(20R)
(which measurethe simil arity between the pixelsi and
J), theimpulse fador w (i) andthejoint impulse fac
tor Ji (i, j) defined by

_ RoAD(i)2

W|(|) - e 20I2 , (7)
_ ((ROAD(i)+ROAD(}))/2)

i =e P @®

Os,0R, 0] and o being control parameters. (In fad,
Garnett et al. (2009 initially defined thejoint impulse
fadorasJ(i,j) =1—J (i, j). Wefoundthat it ismore
convenient to use Ji (i, j) instead of J(i,j).) Notice
that if either i or j isan impulse naisy point, then the
value of Ji (i, ) isclose to O; otherwiseiit is close to
1. Similarly, w (i) iscloseto Oif i isan impulse noisy
point, andto 1 atherwise.

Our new filter will be based on the following
weighted narm that we cdl mixed narm:

[IV(2G°) = v(A) ]y 9
Seac® Wan (i K)3 (k. 7 (K)) [v(K) — V(T (K))[?
Seac® Wan (- K3 (k. 7 (K)) ’

where wa (i, k) = e ' /2%8m) and 3 (k, 7 (K)) is
defined in (8). Recdl that if k or 7 (k) isan impulse
noisy point, then J(k,7 (k)) is close to O, so that
the concerned pant contributes littl e to the weighted
norm (9). Therefore the mixed nam (9) filters im-
pulse noisy paints. Clealy, it also measures the simi-
larity between the patches v(4;) and v(«(j) and takes
into acoun the spatial fador. Our new filter that we
cdl Non-Local Mixed Filter (NLMixF) is by defini-
tion

_ Y jeaq W, )V(j)

NLMixF(v)(i) S jexi) WG, 1)

)

where

w(i, j) = ws(i, j)wi (j)wm(i, j)
containsthe spatial fador ws(i, j) = e 1-17/(299) the
similarity fador wy (i, ) = e IM26)—v(2G)I{/(255)
and the impulse fador w; (j) defined in (7), with os
and oy being parameters. Notice that NLMixF re-
duces to NL-means when o) = 03 = 0= «. This
filter NLmixF is an improved version d the filter in-
troduced in (Li et a., 2017). Compared to the filter
of (Li et al., 201, it improvesthe quality of restora-
tion and contains entirely NL-means filter thanks to
the added spatial fador wsy in the mixed norm (9).
Notice that for ead impulse noisy point j in AG(D),
the weight w(i, j) is close to 0. Hence our new filter
can beregarded asan applicaion o Theorems2.1and
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2.2 to the remained image (which can be considered
to contain only Gausdan ndse) obtained after filter-
ing the impulse naisy points by the mixed narm (9).

4 SIMULATIONSAND CHOICES
OF PARAMETERS

In this £dion, we present some experimental results
to compare the new filter NLMixF with NL-means,
TriF, and two recently algorithms propaosed in (Yang
and Wu, 2009 and (Xiao et a., 2011). Asusua we
use PR (Pe& Signal-to-Noise Ratio) defined by

2551
Yier (V(i) —u(i))?
to measure the quality of a restored image, where u
is the original image, v the restored ore. In our ex-
perimentswe usethe 512x 512images Lena, Bridge,
Boats and the 256 x 256image Peppers. They are dl
availableonline.!

In our implementations, image boundries are
handled by asauiming symmetric boundary conditions.
In the original i mage Peppers, there ae black bound
aries of width of one pixel, we therefore compute the
PS\R value for the image of size254x 254 oliained
after removingthe four boundries.

There ae several parameters to be tuned in
NLMixF. Recdl that NLMixF reduces to NL-means
when 0y = 03 = 0s = . So for removing Gaus-
sian ndse, areasonable choiceis to take 0,03 and
Os large enough(thoughthis choiceis nat necessar-
ily optimal). To apply our filter easily in pradice, we
look for a simple end uriform formulain terms of p
and 0. We first look for a linea relation; when this
does not seam posshle we test some dlightly more
complicated functions. To oltain the formulas, we
consider Gaussan ndse with o = 10,20, 30, impulse
noise with p=0.2,0.3,0.4,0.5 and their mixture. We
have dore our best to chocse the formulas, but we can
not guaranteethat our formulas are dways optimal
due to the complexity of the subjed. Our choices of
parameters for NLMixF are shown in the foll owing,
where Gausdan naise, impulse noise and mixed nase
are abbreviated respedively as Gau, Imp and Mix:

PS\R (v) = 10log, o

0 =60+20—-50p, 03=45+0.50-50p,
om =4+ 0.40+30p—+/20p,

Lfor Lena, Peppers and Boats, cf.
http://decsai.ugr.es/~javier/denai se/test_images/index.htm;
for Bridge, cf. www.math.cuhk.edu.hk/~rchan/paper/dcx/.
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06+p o=0 (Imp)
0>0 (GauorMix)

%15 =0 p>0 (Imp)

OsM 15 0>0 p=0 (Gau)
0>0 p>0 (Mix)
9 0=0 p>0 (Imp or Mix)
d - 5 0=10 p=0
o 7 0=20 p=0 (Gau)
30
7 o0=0 p>0 (Imp)
9 o0=10 p=0
13 0=20 p=0 (Gau)
D = 15 0=30 p=0
7 0=10 p>0
11 0=20 p>0 (Mix)
15 0=30 p>0

In the cdculation d ROAD, we chocse 3 x 3 neigh-
borhoods and m = 4. For impulse noise or mixed
noisewith p=0.4,0.5, to further improvetherestora-
tionresults, we use 5 x 5 neighbahoodsand m= 12
to cdculate ROAD (5). Consistently, the choice of
01,03 depend onm, thus they shoud be multiplied
by a fador empiricdly chosen as 4.2. Evidently, our
choiceof parametersisnat restricted to o0 = 10,20, 30
and p=0.2,0.3,0.4,0.5. Thischoice can also be g-
plied to any value of o intheinterval [10,30] and pin
the interval [0.2, 0.5], or even larger intervals. Note
that when os = 15 ar agm = 15, we get ws(i, j) ~ 1
or wsm(i, j) ~ 1. This means that for impulse noise
we can omit the fador wgm(i, j), and for Gaussan
noise and mixed nase we can omit the fador ws(i, j).
A full discusson d the roles of the diff erent choices
of parameters goes beyond d the scope of this paper.
The problem of choice of parameters for NL-means
has been considered in the literature, seefor example
(Xueta., 2008 and (Duval et a., 20117).

For TriF, we choase parametersandapply thefilter
acording to the suggestion o (Garnett et a., 2005).
We use 0, = 40,0; = 50,05 = 0.5,0r = 20qcnN,
where oggn is an estimator for the standard deviation
of “quasi-Gausdan’ noise defined in (Garnett et al.,
2009. For impulse noise, when p > 0.25, it was
proposed in (Garnett et al., 2005 to apply the filter
with two to five iterations. We gply two iterations
for p=0.3,0.4, and four iterations for p = 0.5. For
mixed ndse, we gply TriF twice with different val-
ues of s as auggested in (Garnett et al., 2009: with
al impulse noise levels p, for o = 10, we use first
0, = 0.3, thenos = 1; for o = 20, first s = 0.3, then
Osp = 15; for 0 = 30, first og = 15, then og = 15.
Note that when as = 15, we can omit the spatial fac
tor.
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Table 1: Choice of parametersfor NL-means.

o 10 20 30
d (sizeof locd patchesa (d)) 7 9 13
D (sizeof seachwindovsAG(D)) | 9 9 11

Table 2: PANR values for removing randam impulse noise.

P 02 03 04 05
Lena | TnF 3444 3255 3127 2914
NLMixF 3535 3309 3152 2985
Bridge | TnF 2670 2520 2443 2331
NLMixF 27.65 2546 2445 2331
Peppers | TriF 3085 2864 2774 2614
NLMixF 3194 2940 2834 2647
Boals | TniF 3019 2857 2764 2613
NLMixF 3124 2905 2750 2610

For NL-means, we use o; = 4+ 0.40 in acor-
dancewith the choiceof oy in NLMixF (with p=0).
This choice is different from the proposed ore in
the original NL-means algorithm, and generally gives
better restoration results. The valuesfor d and D are
shownin Table 1.

We now present some experimental results. Ta-
bles 2 and 3 show the performances of NLMixF for
removing impulse noise and Gausdan ndse by com-
paring it with TriF and NL-means (for which we use
w(i,i) =max{w(i,j):j#i,j€Ai(D)} anda(i,k) =
(d7—11>/22|(i“%2 (2I+11)2 in (2)). Table 4 compares
NLMixF with TriF for removing mixed nase. We
add Gausdan nase and then impulse noise for smu-
lation of mixed ndse. SinceNL-meansis not suitable
for removing impulse naise, we do nd include it in
Tables 2 and 4 We can seethat NLMixF improves
TriFinamost al the cases, espedally when pis gnall
(p=0.2), or gislarge (o = 20,30). Some examples
are shown in Figs. 1. In Table 5, we compare the
PINR values with the two algorithms in (Yang and
Wu, 2009 and (Xiao et a., 2011, where we show
the reported PSNR values for these two agorithms.
In Fig. 2, we show the denoised images by NLMixF
and IPAMF+BM in (Yang and Wu, 2009, using the
same noisy image.

5 CONCLUSIONS

We havefirst presented two convergencetheoremsfor
the Non-Locd Means Filter (Buades et al., 2005.
Based on these mnwvergence theorems and the idea
of Trilateral Filter (TriF) (Garnett et a., 2005 we
havethen given afilter caled Non-Locd Mixed Filter
(NLMixF) to remove Gaussan ndse, impulse noise
and their mixture. To make eay the gplicaion o
our filter, we have dso given empiricd formulas for

Table 3:

PR values to remove Gaussan nase.

o

Lena
10 20 30

Bridge
10 20 30

TriF
NLMixF
NL-means

3321 2948 2651
3492 3173 2981
35.03 3178 2989

30.62 2742 2305
3265 2933 2756
3272 2984 2793

Table 4: PNSR values for removing mixed ndse by
NLMixF and TriF.

p 0.2 0.3 0.4 0.2 0.3 0.4
Lena o0=10 Bridge 0=10
TriF | 3160 3088 2966 | 2514 2459 2393
NLMix | 3278 3147 2994|2606 2471 2380
Lena 0=20 Bridge 0=20
TriF | 2875 2811 2726|2373 2332 2284
NLMixF | 30.54 2965 2844 || 2444 2361 2286
Lena 0=30 Bridge 0=30
TriF | 2648 2577 2502|2240 2206 2152
NLMixF | 2887 2807 2734|2338 2279 2224
Peppers o0 =10 Boats o=10
TriF | 29.05 2795 2663|2832 2760 26.79
NLMixF | 3049 2856 2747|2973 2820 26.76
Peppers o =20 Boats o0=20
TriF | 26.70 2587 2529 26.35 2574 2507
NLMixF | 2854 2737 2651| 27.66 2661 2560
Peppers o=30 Boats 0=30
TriF | 2471 2391 2327|2454 2401 2337
NLMixF | 27.04 2591 2514|| 26.34 2556 2469

Table 5: Compare PNSR values for mixed nase.

Lena o0=10 p=01 p=02 p=03
(Xiao et a., 201]) 3275 3166 3042
(YangandWu, 2009 | 3361 3212 3069
NLMixF 3410 3278 3147

the dhoice of parameters which can at least be used
for Gausdan nase with o € [10,30], impulse noise
with p € [0.2,0.5], and their mixture. Our experi-
ments show that NLMixF outperformsTriF, aswell as
the more recent methods proposed in (Yang and Wu,
2009,and (Xiao et a., 2011 based respedively on
the ideas of BM3D (Dabov et al., 2007 and K-SVD
(Elad and Aharon, 2006).
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NLMixF: PSNR=3535 NLMixF: PSNR=27.34

Figure 1: Images corrupted by impulse noise (left) and
mixed nase (right).

NLMixF: PSNR=3132

IPAMF+BM: PSNR=30.69

Figure 2: Restored images by NLmixF and IPAMF+BM
(Yang and Wu, 2009.
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