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Dynamics of a supercritical composite shaft mounted on viscoelastic supports
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Abstract

The damping ina carbon ber reinforced plastic (CFRP) laminate is greater than that which occurs in most metallic materi
In the supercritical regime, the damping can trigger unstable whirl oscillations, which can have catastreptsc &he
vibrations occurring in a supercritical composite drive shaft are investigated here in order to predict instabilities of this kil
A simply supported carbdepoxy composite tube mounted on viscoelastic supports is studied, using an approximation
the Rayleigh-Timoshenko equation. The damping process is assumed to be hysteretic. The composite behavior is des
in terms of modulus and loss factor, taking homogenized values. The critical speeds are obtained in several analytical f
in order to determine the ects of factors such as the rotatory inertia, the gyroscopic forces, the transverse shear and
supports stiness. Assuming that the hysteretic damping can be expressed in terms of the equivalent viscous model
threshold speed is obtained in the form of an analytical criterion. The in uence of the various factors involved is quanti ¢
at the rst critical speed of a subcritical composite shaft previously described in the literature. The in uence of the coupli
mechanisms on the unsymmetrical composite laminate and the end ttings is also investigated using a nite element mo
None of these parameters were found to have a decisive in uence in this case. Those having the gexztesteee the
transverse shear and the supportsratss. The eects of the composite stacking sequence, the shaft length and the suppor
sti ness on the threshold speed were then investigated. In particular, drive shafts consisting ddiy af 30° plies can

be said to be generally unstable in the supercritical regime due to their very high loss factors.

Keywords: composite shaft, drive shaft, rotating damping, hysteretic damping, critical speed, threshold speed

1. Introduction

The use of driveshafts in the supercritical regime has proved to be of great interest in many applications, espec
those involving long drivelines (helicopters, tilt rotors, etc.). However, in the eld of rotor dynamics, internal damping
which is also called rotating damping, is known to cause whirl instabilities in this speed regime. In particular, with lor
driveshafts consisting of materials which are more dissipative than metallic materials (such as most CFRP laif)inates
these instabilities tend to occur more frequently. The aim of the present study was to develop a theoretical model
predicting these instabilities and to establish the most decisive physical parameters involved.
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Email addressolivier.montagnier@inet.air.defense.gouv.fr (O. Montagnier)
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Nomenclature "0 strain eld vector of the laminate middle plane
A,B,D in-plane, coupling and bending stiess matrix " shaft eccentricity
of the laminate loss factor matrix
c viscous damping loss factor
d modal damping or decay rate out-of plane cross-section rotation (complex or
E longitudinal Young's modulus of the shaft real)
Ei1, Ez, longitudinal and transverse Young's modulus, complex amplitude of the complex rotation
12, G12 Poisson's ratio and in-plane shear modulus of shear coe cient
the ply shaft complex frequency
E ;G complex modulus Poisson's ratio
f oscillation frequency shaft mass density
G transverse shear modulus of the shaft stress eld
h height of the layer ! natural frequency of the exural modes
b Iy 12 polar and transverse area moment of inertia of spin speed
the shaft
i imaginary unit' 1 Subscript
k curvature eld vector B , B+, lower and higher backward whirl speeds
k sti ness b bearing
I shaft length (between the two supports) c critical
M bending moment vector in the laminate e external
m mass eq equivalent
N membrane force vector in the laminate F ,F+ lower and higher forward whirl speeds
n number of sine modes or number of harmonic i internal
p number of composite layers m medium
Q in-plane sti ness matrix of a ply p 2fB ;B+;F ;F+g
r shaft radius S shaft
S shaft cross-section area th threshold speed
t thickness 0 gyroscopic eects assumed to be negligible
u displacement (complex or real) (n 0
U complex amplitude of the complex
displacementi Superscript
O Elastic strain energy per surface unit T transpose
X, Y, Z coordinates N order of magnitude of a quantity
" strain eld vector

The instabilities mentioned above can be counterbalanced by applyir@enly strong external damping afod using
the e ect of suspension anisotrop, [3]. There exist several passive ways for increasing this non-rotating damping. Mos
turbines are constructed with hydrodynamic bearings or squeeze- Im dampers, but the main disadvantages of these de
are their cost, their complexity and the additional instabilities they induce. Rolling-element bearings do not destabil
rotors but provide insucient damping. During the last twenty years, dissipative materials such as elastomers have emer
as suitable materials for bearing suspensi@r$][ Here it is proposed to study this low cost con guration consisting of
an axisymmetric composite shaft simply supported on classical rolling-element bearings mounted on viscoelastic mate
(Fig. 1).

Various approaches based on beam and shell theories have been presented for determining the critical speeds of

|E7 l; Iz; Iw s S’ P €|

Nes ke

Figure 1: Simply supported axisymmetric tubular composite shaft with rolling-element bearings mounted on viscoelastic supports.
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Table 1: Material properties for a 0.6 volume fraction

Material Abbr. (kg m 3) Ei: (GPa) E,, (GPa) G, (GPa) 12 tpy (Mm)
Gubran et al. 12] CEg? 1500 130 10 7.0 0.25

Narmco 5505 14] BEP 1965 211 24.1 6.9 0.36 0.1321
T3005208 [L5, 16] CE.. 1680 181 10.3 7.17 0.28 0.125

2 CE : carborepoxy ;° BE : bororepoxy.

isymmetric tubular composite shaft mounted on elastic or in nitely rigid supp@r$3]. The simplest of these approaches

is called the Equivalent Modulus Beam Theory (EMBTY]. This method involves calculating the eigenvalues of the
isotropic Bernoulli beam, using the longitudinal modulus of the composite material computed with the classical lamin.
theory (LT). Several authors have established the accuracy of this method in the case of symmetric laminates, but the E
approach has proved to have some limitations in the case of unbalanced and unsymmetrical laminates, as summarized |
The EMBT does not take into account the ply location relative to the axis when dealing with multilayered unsymmetric
laminates. However, Gubran and Gupt&][have established that the dirence in the natural frequencies amount to only
5% in the most extreme cases, i.e., [0°,90°] versus [90°,0°] (shaft propdrtiest m, ts = 4 mm andr,, = 50 mm and
CEg, see Tablel and the list of nomenclature for the symbol de nitions). Thiselience is greater in the case of shafts
with small diameters. The EMBT does not take shear-normal coupling into account in the case of unbalanced laminzg
or bending-stretching and bending-twisting coupling in that of unsymmetrical lamiri€de$d. However, the numerical
analysis presented in this paper shows that the latter twote are negligible in the case of composite tubes, due to the tubu-
lar structure (se8.1.95. Furthermore, the beam theories cannot take into account of #wt done by the centrifugal forces
associated with the deformation. Martinez-Casas el @] Have established with a shell theory that thiget can increase

the rst natural frequency by about 0.5% on a steel cylinder (shaft propeities:5m,r = 50mm, = 7800kg m?,

E = 210GPa and = 0:3). An EMBT was developed here, in which transverse shear, rotatory inertia and gyrosocegtic e
were taken into account. The signi cance of these factors is discussed in the last part of the papd}.(see

The internal damping resulting from dissipation in the shaft material and dry friction between assembled compone
is conventionally included in the governing equations using the viscous damping model. However, most materials suc
CFRP composites undergo a damping which resembles hysteretic damping much more than viscous aft&ihg.[

The main characteristic of hysteretic damping is that the corresponding stress-strain loop is independent of the excit:
frequency. Itis generally de ned in terms of the complex mod#us= E(1+ ), where is the loss factor. However, since

it is not easy to introduce the complex model into rotor dynamic equations, it is necessary to use the classical equivals
with the viscous damping mode2(-22]. In the present analysis, all the internal damping is assumed to be hysteretic
This approach has been called the equivalent complex modulus beam theory (ECMBT), by analogy with EMBT. The mc
developed here was previously studied for use with isotropic materials and with Bernoulli assumpt&ns in [

The rst part of this paper deals with the composite shaft dynamics. The critical speeds are calculated in various for
depending on the assumptions. The threshold speed is then obtained with an analytical criterion. The procedure us
determine the equivalent modulus and the equivalent damping of the shaft is described. In the second part, the ca
the composite shaft studied by Zinberg and Symord}§ ik investigated. The results obtained are compared with data
previously published in the literature. The aim of this numerical analysis is to assess the contribution of the main fact
such as the rotatory inertia, the gyroscopic forces, the transverse shear and the suppesds &iithe critical speeds. The
e ects of the coupling mechanisms in the unsymmetrical composite laminate and those of the end ttings are then stu
by performing nite element (FE) simulations on ABAQU&J). In the last part, the critical speeds and the threshold speed
of composite shafts with internal hysteretic damping are computed with several stacking sequences. Lastigtdtud the
shaft length and the supports giess on the stability are investigated.

2. Rotordynamic analysis

2.1. Governing equations

The dynamic properties of the simply supported composite drive shaft mounted on viscoelastic supports shown in Fi
were studied. The bearings, which are assumed to be in nitely rigid in comparison with the supports, are simply mode
in terms of their masey,. The supports are assumed to be axisymmetric and are accounted for in terms of thes<k{
and their loss factore . For the sake of convenience, equivalent external and internal viscous dampingdemads; will
be used in the equations.

The displacements will be expressed in the complex form. The cross-sectional displacement, i.e., the displacement
shaft section center (denoted C in Fiyrelative to the xed frame, is composed of a rigid-body displacenugrt upy+ iup;
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(cylindrical whirl), a rigid-body rotation, = py+i bz (conical whirl) and a de ection of the shatfit, = usy + iusz. It can be
written as follows: I

WGY = WO+ X 5 b0+ U @

Note thatu®= uPwhere (§ = @=@ The cross-sectional rotation relative to the xed frame is composed of the rigid-
body rotation , and the bending rotatiory = sy+ i sz It can be written as follows:

(x1) = p(H)+ s(x1) 2

With the above assumptions, using Timoshenko equations for the exural vibration of b2dpasfl adding the gyro-
scopic components, the equations of motion for an axisymmetrical shaft (Wwerg in particular) are:

si+ SG 2 u=0 (3)
" i1k El2X+ SG s W=0 (4)

where ( )= @@ = ms=Slis the mass density and is the spin speed. Note that the terms involving the shaft inertia
depend oru and , while those involving the rigidity depend ar and s. We can now dierentiate Eq.4),

O i k% El 9% s ¢ uf=o0 (5)
and we write Eq.3) in the following form:

s= U U (6)

Replacing °and 2in Eq. 6) by the above equation, we obtain the Rayleigh-Timoshenko equation for a rotating shaft

ly E | | i El
0 2 1+ — ul% i Xyl Ly X+ =2 0002 ¢ .
S G ° S®  SG SG S s (7)

In the case of long shaft$=f  10), a dimensional analysis shows that the terms correspondiiig aod U in the
above equation are small. Let us take the notation ~ to denote the order of magnitude of a quantity. The orders of magn
of the area moment of inertid)(and the surfaceS) aretr® andtr, respectively. Let us divide the Rayleigh-Timoshenko
equation (Eq. 7)) by uf? to obtain a non-dimensionalized equation. The order of each term in the above equation can
approximated as follows:

= 2
Ly, ,E G ET ©)
uf2s G @@x G |

1 1y @us r2 (10)

uf2 S @@x |
_Li@uS jz_f_z (11)

uf2 SGC@ G
1 _x@us T (12)

uf2 SG@ G

El 2
1 Eh@us Er1 (13)

If the shaft is su ciently long, the oscillation frequency will obviously depend mainly on the rst and last terms in the
Rayleigh-Timoshenko equation. It can be concluded that these two terms are of a similar order of magnitude:

s__

1 Ely@us 1 @u —  Erz

uf2 S @ uf2 @ 14
4

(14)



Letus replace‘_in Egs. (L1) and (L2) so as to obtain the order of magnitude of the terméiiand U’

1 ly@u E 14
uf2 SG@ G I
1i It@us E 14
Uf2 SG @ G I

(15)

(16)

In the case of a composite shaft, the order of magnitude=oG is about 10 (exactly 16.3 in the case of th@berg
and Symondsshaft [14]). Assuming Ir=10, the order of magnitude of the second, third, fourth and fth terms in the
Rayleigh-Timoshenko equation (Eq)Y are 101, 10 2, 10 2 and 103, respectively. It can be concluded that the terms in
‘i"and U are very small in comparison with the others, and that the tensfi {thé gyroscopic eect) is small. We can then
approximate the Rayleigh-Timoshenko equations in the useful form:

I E . o El
21+ — 0%+ 2yl =2

0000
S G S S Ug 0 a7

The internal damping (relative to; and notu) and the unbalanced forces can be added to obtain the local governin
eqguation of motion:

Lo E . | El G ) . .
i §y 1+— U0+ | §Xu500+ —Syugoogr —S'I(uS i ug)="(x) %! (18)

If E= G is removed, the above equation becomes the Euler-Bernoulli equation investigaied in [
The boundary conditions for the shaft and the equations governing the bearings and viscoelastic supports can be wr

udqo;t) = Wdql;t) = 0; us(0;t) = ug(l;t) =0 (19)
and
[ | ,
Sudx + 2mylip + 2ceUp + 2kelly = S"(x) %€ 'dx (20)
0 0
| S x l!udx+2 e +2 ” +2|<eE . S x l—!"(x) 2d dx (21)
o 5 mo4 b Ce4 b 2 b = o >

2.2. Critical speeds
Solutions for free motion (Eqs18-21) with " = 0) can be assumed in the following form:

Us(X;t) = Ugnsin ¥ én; (22)
Up(t) = Upn€ ™; p(t) = pn€ ™ (23)
wheren 2 N and , are the harmonic number and the complex eigenvalues, respectively. Applying the Galerkin princip
to Eq. @8) with " = 0 and the trial function42) (for the detailed procedure, se@l), we obtain complex characteristic
equations of order 4 in,, where the typicahth equation is:
h [ h [
n ﬁ n*t il’(l nden+ din) ﬁ ! §n+ n! t2)n+ dinden [ ( nden"'din) ﬁ
i
+ (! 2.+ dinGen) + i(din! 2.+ den! 2) n+ (1%, idn )3 = 0 (24)
with
Ss___  S__ S
, - h 2 Ely_ ksn,|b_ ke = Ce _ Ceke. , _ G _ Gkon,
sn— T E=— - bn— —s’ en — s - ’ n — —— — ’
' S Ms * @ ™+ smemn b ms 14
Iy n 2 ly n 2 E ms 4
n=__ 1 n=1+_— 1+_1 n:—s; n= n n; (25)
S | S | G my + ﬁ n2 2

where! gqis thenth natural frequency of the shaft without any rotatory inertia, gyroscopécieor transverse shear and
without any support coupling ects (when the supports are assumed to be in nitely ridigy, and! ,, are the natural
frequencies of the cylindrical rigid-body mode and that of the conical rigid-body mode (when the shaft is assumed to
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in nitely rigid), respectively. We express the eigenvalue solution in the complex form as follgws! , + id,. The real
part! 5 and the imaginary pad, are an angular frequency term and a modal damping term, respectively. Hence, assumi
the presence of weak damping yields d and in particularf! ;! spi! by 9 f dn;den; ding This assumption makes it
possible to calculate the real part of EB4) at zero order relative ta:

n!ﬁ n !ﬁ (! §n+ n! tzm)!%+ n !gnln-"lgnl gn 0 (26)
When = | oor = | ¢, EQ. 26) yields the two critical speeds of the forward modes and the two critical speeds o
the backward modes in the case of tiie harmonic:
1 r 2 2 ! 4 212 214
Pen = ﬁz— Lot n!bn Psnt2( n Zn)!sn!bn+ n!bn (27)
n
"enB = ‘ﬂ2—n+ st ns! bn Psnt2( e 2 ne)! & bn nt! bn (28)
with

n = n n n = n n (29)

where stands for the two equations with a positive and negative sign, written in a contracted form. When the supports
assumed to be in nitely rigid, the above equations give the critical speed in the simple form:

! blni!m+1 : onf+ = +1 (30)
|
i | = g - Sn
 Jm ! enr o L a’cE . (31)
ST G
|
| |I|m ' cnB = q ~ N (33)
pn! +1 1+|yn 2 E+3
ST G

2.3. Threshold speeds

After some computations, the imaginary part of Ezfl)(at rst order relative tod yields the modal damping of theth
harmonic:
! ﬁ(1+ _((jj?n” n) (l 2 + d:gnn! 2n)| + (| 2 I 2(1+ ((jj?nn n))

(34)
21 h(2 o3 !én ol 20+ n('2 313

dn( ) din

This equation gives the stability of the system. An analytical solution for this expression is obtained when an analyti
expression fot  is known. Let us assume the gyroscopieets to be negligible, as proved to be the case in the above
dimensional analysis, i.e., 0. Eq. £6) therefore becomes a quadratic expression which is independent of the spin spee
This directly gives the following four natural frequenciegy:

r

1
— — 2 2 4 212 2] 4
'nr o= !nBO—‘p_Z 'snt ol bn !sn+2( n 2 n)! sn! bn+ n! bn (35)
n

It should be noted that if the supports are assumed to be in nitely rigid, the above equation gives the classical relal
for the lateral natural frequency of a Rayleigh-Timosheko beam with transverse shear deformation and rotatorgdhertia |

lim ! nF 0= ¢ L (36)

Pont +1 ly n E
1+ 7 =<*1

It should also be noted that if one sets 0 andu = us, Eq. (7) gives the same frequencies without neglecting'the
term r

: 1
no = nt (n+ )* 4! 2% with n:2—

n 2 GS
|

(E+ G); :ﬁ (37)
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In the case of external and internal hysteric damping (the viscous case and the mixed case were investifjaiedsin [
therefore necessary to compuatg andden carefully with the classical equivalence between viscous and hysteretic damping

k
Ceq= (38)
Ity
whereceq is the equivalent viscous damping. Flexural critical speeds can be handled sepa@tebauivalent external
damping of thenpth mode (wherep stands fofB ; F g) can therefore be expressed ak—! np( )j, where! ,p( ) can be
approximated by np. From Eq. £5), the external modal damping can be expressed as follows:

|2
denp= e (39)
J* npol

The internal damping has to be included in the rotating frame of reference. The excitation frequency therefore co
sponds tq! np( )  j. Inthis case, the equivalent internal damping ofrtiph mode can be expressed @ =j! np( )
jl) where! np( ) can be approximated Hy,p. According to Eq. 25) and assuming > 0, the internal modal damping
can be expressed as follows:

8 |2
%i forp2fBg
!nm

dinp( ) = § orfor(p2fFgand >! ¢ o) (40)
12
U St for(p2fFgand <! e o)
. | nw

The above equivalence83%40) and Eg. 85) can be included in Eq:36), and the positivity of these new equations can
be studied analytically. Based on the previous st@ythe following conclusion can be reached: backward whirl modes are
always stable, and forward whirl modes can be unstable only in the supercritical range. This important conclusion con r
the role of hysteretic damping in rotors described by Ge2ith [n addition, an analytical instability criterion can be written

in the following form:

8
3<0 =) Dthor+ = ! nFso

ke n( nl Zeso 130 kel Brso ! B0 2 0o -) stable (41)
and
20 3
>0 =) !lwor ='nro
eke n( n! %F o ! g iKsn(! ﬁF o ! f,n) _86 0 9 stabnle " (42)

It then su ces to compute the lowest instability speed to be able to determine the threshold speed of the shatft:

l'th= min (! 43
th= ;|p2F (! thnp) (43)
2.4. Equivalent stiness and damping of the shaft model
Flexural vibrations of a composite tube create a teftsit@pressive state in the laminate in the direction of the tube axis.
The laminate equivalent modulus in this loading case can be computed via the LT as previously described in the case
symmetrical laminate inZ5] (seeAppendixA) :

1
E = 44
tsa11 (44)

1
G = 45
tsas3 (45)

a2
S 46
™ (46)

wherea = A 1. Despite this restriction, the above equations will be used even if the laminate is unsymmetrigal See
The shear coecient is approximated with the relation obtained for a cylinder consisting of a homogeneous material

_2(1+ )

T 4+3
7

(47)



The equivalent loss factor denoteds computed with Adams and Bacon's theoty 26, 27], using complex properties
of the plyE,,, E,, andG,,. In this theory, the strain energy is computed in the case of a particular plane stress state (e
tensioricompression in the case of the shaft) with the LT. A dissipative energy is then de ned for each strain energy te
(longitudinal tensiofcompression, transverse tengmmpression and in-plane shear). The internal loss factor can then be
obtained directly by dividing the local dissipative energy by the local strain energy, i.e.,

Fp 1 h "
k=1 2 hkkl T . u 0 0
P = P with = 0 22 0
h n
LT G 0 0

(48)

k=1
where is the loss factor matrix expressed in the ply frame of reference (see £@%.and @.3) for the de nition of
stresses and strains). In the case of unsymmetrical laminate, as it will be discussed &tte§ the composite coupling
mechanism can be neglected due to structurates. Hence, assuming the coupling maBito be null in the computation
of Eqg. @48), a better approximation of internal loss factor will be obtained.
The damping properties of the ply, which are assumed to be independent of the frequency, are assumed to be eq
11 =0.11 %, 22 =0.70% and 12 =1.10% as in19].

3. Numerical results

3.1. The case dinberg and Symondtshaft

In order to assess the accuracy of the critical speed predictions, the case of the helicopter tail rotor shaft describe
Zinberg and Symondslf] is studied with the equations obtained above. The properties of kegoxy material are listed
in Table 1 and the geometric parameters ate= 2:47m,ts = 1:321mm andr,, = 6284 mm. The laminate stacking
sequence is: [9045 ; 45;0 ;90 ] from inner to outer surface. In their studinberg and Symonddetermined the main
properties of the shaft using various experimental methods. They obtained the rst natural frequency at 5500 raitimin
a shaker at the span center, which imposed a sinusoidal input. They estimated the rst critical speed by performing a rote
test. Since the oscillation amplitude of the shaft was too great, the test was stopped at 5100tanchiomly two points
in the unbalanced response curve were measured at the shaft center which was 0.64 mm and 1.27 mm at 3760rev |
and 4500 rev mint, respectively. The authors extrapolated the unbalanced response with the undamped theoretical c
(without giving any details about the rotor unbalance) and predicted the critical speed to be 6000 feviinintorsional
modulus was measured by performing a pure torsion test and found to be 16.5 GPa. The longitudinal modulus was foul
be 142 GPa with a shaft tested in the same way as a cantilever beam. With this value, the rst critical speed was determ
with the method now known as EMBT and a value of 5840 rev himas obtained.

This long composite shaft was investigated by several authors, taking various factors into account, such as the trans
shear, the laminate couplings, etc (see. TabhleSince we cannot be sure of the accuracy of experimental estimates o
the critical speed, all the results obtained here will be compared below with the theoretical values obtaimdxigyand
Symonds It should be noted that the value of the mean radius was confused in the original stu8jesl{13] with that of
the outer radius (0.0635 m). In comparison with the original data, all these critical speeds have been correcte@ loyTable
simply multiplying them t%y the ratio between the two radii (i.eQ82840:0635). This ratio gives an approximation of the
di erences in the value of 1,=S.

Most of these authors obtained a critical speed showing good agreement with the experimental values. Using Doni
theory, dos Reis et al7] underestimated the critical speed, whereas Kim and Biw\jerestimated this speed using the
same theoryKim and Bertmentioned that they previously established that Donnel's theory is not suitable for use with lon
beams.

To determine the in uence of various factors on the shaft critical speed, the classical rélgtionEq. 25) was used
as the basis of our calculations. This equation gives almost the same critical speed as that obtained by Zinberg and Syn
[14] with an error of only 0.2%, which was certainly a round-error.

3.1.1. E ects of the rotatory inertia

The rotatory inertia was the rst parameter to be investigated. The comparisons made i2 bableeen Eq.45) and
Eq (36), where% is assumed to be null, show that this factor was responsible for a decrease of only 0.1% in the critic
speed predictions.

3.1.2. E ects of the gyroscopic forces
The Campbell diagram shows the evidence that the gyroscopict®are small in the rst mode (see. FR). It can be
seen from Eqs.31) and @3) that the rst critical speed corresponds to the backward mode. Thets of the gyroscopic
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Table 2: First critical speed in Zinberg and Symonds' cd<g (ising various theories (Di = relative di erence in comparison with classical EMBT,
Gyr. = gyroscopic eect, R.l.= rotatory inertia, Sh= transverse shear ect, Sup= support sti ness eect, Co.= laminate coupling mechanism and
E.F.= end tting)

Investigators Critical sp. Di. (%) Gyr. R.. Sh. Sup. Co. E.F. Theory
(rev min 1)
Zinberg et al. 14] 5840 0 EMBT
6000 2.7 Extrapolated from the unbalance response
5500 -5.8 Experimental without rotation
Dos Reis et al. 7] 4899* -16.1 ? FE beam with stinesses determined
using Donell's shell theory
Kim et al. [3] 5883 0.7 Fligge's shell theory
5872 0.5 Sanders' shell theory
5892 0.9 Love's rst approximation shell theory
5856 0.3 Loo's shell theory
5878 0.7 Morley's shell theory
6399 9.6 Donnel's shell theory
Bert et al. P] 5728* -1.9 EMBT including bending-twisting eects
Chang et al. 11] 5702* -2.4 Continuum based Timoshenko beam theory
Gubran et al. 12] 5759* -1.4 LBT including bending-twisting eects
5494* -5.9 MEBT including bending-twisting eects
Sino etal. L3 5707* -2.3 SHBT (FE beam)
5378* -7.9 SHBT (FE beam)
Present study
I 4 inEq. @5 5852 0.2 EMBT
Eq. 36) with £ = 5843 0.1 EMBT
Eq. @3 with £ =0 5825 -0.3 EMBT
Eqg. 37) 5697 -25 EMBT
Eq. (36) 5696 -25 y EMBT
Eqg. 33 5679 -2.8 yz EMBT
Eqg. @5 with £ =0 5732 -1.8 ECMBT
Eqg. 35 5598 4.1 y ECMBT
Eqg. @8 with £ =0 5715 2.1 ECMBT
Eq. 28) 5582 -4.4 yz ECMBT
ABAQUS with 5694 -25 Thin shell FE (S4R)
in nitely rigid end t.
ABAQUS with 5622 -3.7 Thin shell FE (S4R)
realistic end t. 3D FE (C3D8R) for end ttings

* corrected values due to the error in the mean tube radius vajug@i-term neglected z U term neglected —
?ke=1:74 10N m ! — existin the reference study but not used hereks=1 10’Nm ! andm, = 0:48 kg

forces can be obtained by comparing the values obtained withd)afd @3), assuming the tern% to be null in both
cases. This comparison shows that the gyroscopgcs were responsible for a decrease of only 0.4%. This result con rms
our previous suggestion that experimental values of the critical speed should be equal to approximately the rst nat
experimental frequency, i.e., 5500 rev min

3.1.3. E ects of the transverse shear

All the authors quoted above except #inberg and Symondscluded the transverse sheareets. The eects of this
factor can be determined by comparing the values obtained With%ﬁqu(vhereiG is assumed to be null, and EQ7).
These comparisons showed that the transverse sheat éecreased the critical speed by about 2.6%. A similagréince
was obtained whether or not the tel% was removed from Eq.3Q), Eq. 35) or Eq. £8) (see Table2). Sino et al. L3
obtained a value of about 5.6%. Comparisons between the values obtained witB7Egad @6) also showed that the
e ects of Ui" term are negligible. Comparisons between the values obtained with3Bgand @3) con rmed in addition
that the termu is negligible if the gyroscopic eects are assumed to be equal to a value of about 0.4%.
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Figure 2: The Campbell diagram of tdénberg and Symondshaft (with ks = 10' N m %, (—) forward modes, (- - -) backward modes).

Table 3: Normalized middle plane strains, curvatures and elastic strain enefigyoarg and Symondsomposite for the rst mode

Method "eorth  "or"® "o or"®  kyorky (m?t)  kyork (m?) kgyork (m?') Gg(Nm?)
FEM Plate (static tension) 1 -0.291 0.0555 -1007 271 360 0.4027
Laminate theory (static tension) 1 -0.294 0.0680 -1037 299 415 0.4026
FEM cylindrical shell ( rst bending mode) 1 -0.248 0.00100 20.0 3.06 0.96 0.4465
Laminate theory wittB = O (static tension) 1 -0.258 0 0 0 0 0.4452

3.1.4. E ects of the support sthess

The e ects of the support sthess were investigated using EG8)(and @8). In the reference study, no information was
provided about the sthess of the test rig. The bearing and the test rig were assumed here to be vempststi ness was
therefore taken to be equal to’l0 m . The mass of the rotating part was estimated at 0.48 kg with the CAD drawing. With
these numerical values, the critical speed obtained was only approximately 2% below the reference valueerBmisalis
of the same order of magnitude as with thesets of the transverse shear.

3.1.5. E ects of the composite coupling

The coupling mechanisms in the laminate were investigated with the FE method in ABAQUS and compared with -
results obtained using the LT (sé@pendixA). The nite elements (S4R) were of the thin shell type. First of all, a plate
measuring 0.1 m in the direction by 0.06 m in thg direction was studied in order to test the validity of the comparisons
between FE method and LT. This plate consisted of the same laminZielasg and Symondshaft. A climb condition
was applied to one of the smaller edges, and tension was applied to the opposite edge. The straip, ‘gjgdnd" «y)
was analyzed at the plate center. As it can be seen inA#),(the linear evolution of the strains is given by the middle
plane strains (denoted,, "Sy and"gy) and the curvatures (denot&g,, kyy andkyy). Fig 3ashows the strain eld obtained
both in the laminate frame of reference with the FE method and directly with the LT by applying a normal force. 1
compare the results obtained with the two methods, the middle plane longitudinal'§yrams normalized to 1. In this
gure, it is worth noting that the strains in each of the plies are a function of the height, although this is a tension loadi
case. This height-dependence was due to unsymmetry of the laminate i.e. to the occurrence of bending-stretching cou
and bending-twisting coupling. The excellent agreement observed with the LT shows that the FE method can be use
understand what happens in the case of unsymmetrical composite cylinders. The comparisons between middle plane s
curvatures and elastic strain energies made in Tablso con rm the existence of good agreement between the two methods
where the elastic strain energy per surface unit can be expressed as follows:

1 X K
Qe = é xx xx T
k=1 Mk

" +

vy yy (49)

Xyll Xde
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Figure 3: Normalized strain distribution in the rst mode of a composite ittberg and Symondsomposite. (a) ABAQUS FEM plate vs. laminate
theory; (b) ABAQUS FEM cylindrical shell vs. laminate theory.

Step: Vib Step: Step-1
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Figure 4: Finite element simulation of the Zinberg and Symotdkghaft with ABAQUS: e ects of the end ttings on the rst natural frequency. (a)
First mode of the shaft with thin and in nitely rigid end ttings and detailed mesh of an end tting; (b) rst mode of the shaft with elastic end ttings

and detailed mesh of an end tting.

Zinberg and Symondshaft was studied in the rst bending mode without any rotatinge&s. The shaft was closed
with thin end ttings assumed to be in nitely rigid and quasi massless (#&).which were meshed using linear hexahedral
elements of the C3D8R type. Pinned and slider conditions were applied at the center of these end ttiBhxoRigares
the normalized strain eld obtained in the laminate frame of reference between FE method and LT. On contrary to the c
of plates, no agreement was found to exist between the results obtained with the two methods. A struetticadcairred
in this case, which blocked all the curvatures. Onlykhecurvature can be distinguished in the gure, but it is very small
in comparison with that observed in the case of plates (see Babléis results in a completely derent stress eld, which
makes it possible to cancel the curvatures due to the coupliagte. If this eld is now compared with a modi ed LT where
the coupling matrixB (de ned by the Eqs A.5-A.6)) is taken to be null, good agreement is observed with the FE results
(Fig 58. With this assumption, Fi§b and Table3 also show the existence of excellent agreement in terms of the stres:

eld and the elastic strain energy. It is concluded that this simpli ed approach accurately predicts the eigenvector in the
bending mode. There is practically no elastic strain energy in the curvatures, and the eigenvalue is practicatigtedt a
by the coupling mechanism due to the tubular structure. A good estimate of the critical speed can therefore probabl
obtained by neglecting the coupling mechanism, and Egs46) can be used even if the laminate is unsymmetrical.

3.1.6. E ects of the end ttings
The e ects of the end ttings are the last ects studied with the FE method. Since no information is available about the
exact geometry of the original end ttings, the FE model presented in4kigs based on the picture publisheddmberg
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Figure 5: Normalized strain distribution (a) and stress distribution (b) in theZisberg and Symondshaft mode: ABAQUS shell vs. laminate
theory withB = 0.

and Symondgpaper. A smaller tube is assumed to maintain the total shaft length between boundary conditions at a ve
of 2.47 m. The end ttings are assumed to be made of aluminum. As in the previous case, the end ttings are meshed u
linear hexahedral elements of the C3D8R type. Tie conditions are applied between the junction and the composite tube.
computations show that these end ttings decrease the critical speed by 1.3%, which is relatively little (s&. Table

3.1.7. Partial conclusion on the equations considered

It can be concluded that the rst critical speed of a composite shaft can be accurately predicted wigi1Bgs. \{hich
takes the rotatory inertia, gyroscopicect and transverse sheareet into account, assuming the composite coupling to be
canceled out by structural ects. A more accurate estimate of the critical speed can be obtained witl2E@S) (f the
sti nesses and masses of the supports are known.

3.2. Dynamic behavior and stability of a composite shaft with internal hysteretic damping

No numerical studies on damping instabilities in a single composite shaft have been published so far to the best of
knowledge. Only Sino et al.1B] have investigated the case of a composite shaft with two disks. In the present stud
comparisons were made between the results obtained with our theory and EMBT in the case oér@rtdiomposite
stacking sequences (Talfle The stacking sequences used for this purpose, whether or not they were symmetrical and of
same thickness, corresponded to classical con gurations previously studied in the literature, most of which resist torque I
andor maximize the longitudinal sthess 28]. Since EMBT and ECMBT do not take the order of plies into account, only
one order of plies was studied for each laminate stacking sequence. The properties/6208@arbofepoxy material are
listed in Tablel, and the geometric parameters of the shaft studied wer& m,ts = 1.5 mm and,, = 39:25 mm. To ensure
stability in the supercritical regime, the shaft was mounted on dissipative supports with a loassie = 2 1PN m 1!
and a large loss factog = 7%. The bearing mass on each sidg)(was equal to 1 kg.

In this example, the rigid-body modes obtained were mostly in between the rst and second exural modes obtain
with EMBT (see Tablel). This ampli ed the coupling mechanism between the two types of modes. EMBT does not take th
rigid-body modes into account, which can resultin large errors in this case. With ECMBT, four critical speeds (two backw:
modes and two forward modes) were determined for each exural mode. For example, in the rst mode of shafiN°1,
and! 1 correspond to two coupled modes. The rst mode is mainly the cylindrical mode and the second one is mait
the rst exural mode. Frequencies are shifted from 177 Hz to 224 Hz and 102 Hz to 95 Hz, respectively. A similar patte
is observed in the backward modes. It is ampli ed when the exural frequency is very similar to the rigid-body frequenc
For example, the second mode of the shaft N°3 at 168 Hz and the cylindrical mode at 177 Hz became two coupling mc
at 157 Hz and 232 Hz, respectively. It should be noted thag¢rdinces were also found to exist between the EMBT and
ECMBT data obtained due to the gyroscopi@et, the rotatory inertia and the transverse shear. In particular, the gyroscopi
e ect can be clearly distinguished in the second modes from tlerelices between backward and forward frequencies (e.g.
I or+ and! g+ Of the shaft N°1). As regards the stability, the shafts with the lowest longitudinalests and the highest
longitudinal damping (shafts N°2 and 3) were already unstable after the rst exural mode. These con gurations, involvir
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Table 4: Comparison between ECMBT and EMBT with various stacking sequences in a composite sh&2@&80@ounted on dissipative supports
(I=2m,ts= 1.5mm,r, =3925mmk. =2 1FPNm?, .=7% andm, = 1kg)

Shaft N° 1 2 3 4 5 6
Stacking sequence [ 15]s [ 301 [ 45 [90,0;, [90,,0;, [90,,0s,
45,-45] 45,,90] 45,-45]
LT E GPa 146.9 64.8 25.1 106.8 113.8 130.5
G GPa 17.0 36.7 46.6 20.3 12.6 13.7
- 1.060 1.370 0.747 0.295 0.101 0.203
Adams' th. i % 0.358 1.234 1.957 0.299 0.268 0.244
withB =0
Rigid-body mode’s cylindrical 'n Hz 176.8
conical [ Hz 204.9
1st exural modes EMBT g Hz 101.9 67.7 42.1 86.9 89.7 96.1
ECMBT TN Hz 224.3 218.0 214.8 221.0 220.7 222.2
I ar Hz 94.9 65.9 41.7 82.7 84.6 89.9
! aB Hz 94.7 65.7 41.6 82.5 84.4 89.7
! B+ Hz 223.7 217.5 214.4 220.5 220.2 221.7
2nd exural modes EMBT l o Hz 407.7 270.8 168.4 347.6 358.9 384.2
ECMBT I core Hz 414.3 299.3 232.0 363.4 363.6 387.0
I coF Hz 201.4 194.2 157.1 199.6 199.9 200.8
! 2B Hz 201.3 194.0 155.5 199.6 199.9 200.7
! B+ Hz 408.2 294.8 230.5 358.0 358.5 381.5
Threshold speed ECMBT Ui Hz 824.4 65.8 41.6 729.3 713.0 760.6

a considering in nitely rigid shaft

ply orientations of 45 or 30, are not suitable for use in the supercritical regime. The other four stacking sequences ¢
be used in the supercritical regime and are stable until the rotational speed reaches the third mode.

The second study dealt with theects of the shaft length on the dynamic stability. Shaft N°4 was studied with variable
lengths in the 0.8 to 2.5 meter range (F&g). The gure shows the decrease in the critical speeds which occurred with
increasing shaft lengths. The coupling between the exural and rigid-body modes was found to occur at around 1.3 m
particular, at 1.36 m, whetley; = ! ¢ = 188 Hz, the frequencidsqr+ and! ¢ di ered considerably from this frequency.
The stability domain showed a sawtooth pattern. Up to 0.85 m, the shaft cannot be supercritical. Between 0.85 and 1
the instability occurred after the second exural mode. From 1.3 to 2.3 m, the instability shifted to the third exural mod
Beyond 2.3 m, it developed after the fourth exural mode. It is sometimes possible to increase the stability by increasing
shaft length, as shown by the mathematical form of the stability criteria (Efyg.2)).

As can be seen in these criteria, the supportn&ss can be used as an optimized variable to increase the stability
margins, as shown in Fgp. The same support material was again used for this purpose, but the theoretical size of t
support was reduced in order to increase thenstss from 10to 18N m 1. The external loss factor remained unchanged
in this case. It can be seen from this gure that the stability domain increased when the rst exural frequency was ne
the cylindrical rigid-body frequency. This can be explained by the fact that the energy dissipation necessitates the gre
displacement of the supports. This is only possible when the rigid-body modes are excited with exural modes, i.e., wi
both frequencies are almost similar.

4. Conclusion

In conclusion, the critical speeds of a composite shaft mounted on viscoelastic supports were obtained here in the an:
form, adopting Timoshenko assumptions and including the gyroscopicie This method, which we have called ECMBT,
accurately predicts the rst critical speed Binberg and Symondsomposite shaft. In fact, in the case of this example, it
was established here numerically that the rotatory inertia and the gyroscauitage negligible because theyet the rst
critical speed prediction by only 0.1% and 0.4%, respectively. Likewise, thete of the transverse shear amounted to only
about 2.6%, probably due to the slenderness of the shaft. FE simulations showed that the tubular structure, unlike th
plates, blocks the bending-stretching coupling and bending-twisting coupling mechanisms in the unsymmetrical lamin
These factors therefore have littleext on the critical speed. The ects of the end ttings were investigated with the FE
method and also found to be small. One of the main advantages of the ECMBT method is that it takesni#ss sfi the
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Figure 6: Evolution of the critical speeds and threshold speed of a composite shaft5a@80mounted on dissipative supports ([3}48,-45],
ts= 1:5mm,r, = 3%25mm, = 7% andm, = 1kg). (a) Critical speeds and threshold speed vs. the shaft lengthkawt® 10°N m *; (b) critical
speeds and threshold speed vs. the suppomesis withl = 1:2 m.

shaft support into account. This factor can be of the same order of magnitude as the transverseesh@atlee case of
rigid supports. It cannot be neglected in the case of exible supports.

Since the damping which occurs in carlbepoxy material resembles the hysteretic damping model much more closel
than viscous damping, shaft instabilities due to rotating damping were investigated here with the hysteretic damping mc
With the equivalent viscous damping approach, the threshold speed can be obtained in ECMBT using an analytic criterio
study on various composite shafts showed that the internal damping signi cartttsathe dynamic stability. In particular,
shafts consisting of 45 or 30 plies are generally not suitable for use in the supercritical regime due to their very higt
loss factors, which amounted here to up to 2.0% and 1.2%, respectively. All the con gurations including 0° plies test
were found to be less dissipative and to be stable up to the third exural critical speed. Lastly, a parametric study on
e ects of the shaft length and the support s&ss on the stability of composite shafts showed the importance of the suppol
sti ness. In particular, the stability of the shaft increases greatly when the rst exural frequency is approximately equal
the cylindrical rigid-body frequency.

AppendixA. Some results of the laminate theory (LT)

We considered a composite plate with a small thickness constituteglafs and perpendicular to tlzadirection. In the
case of the Kircho-Love theory, a segment orthogonal to the middle plane remains straight and orthogonal to the mid
plane after deformation. With these assumptions, the displacement edah be written in the following simpli ed form

@ @
ux(x) = uY(x;y) + z@?(X: Y 5 W)= ugxy) + Z@Z(X: Y) ()= w(xy) (A.1)
whereu? is the displacement eld of the middle plane. The strain in the plate can be deduced from the previous eld
h [ h [
") ="006y) + ZK(xy) with "T = "y "ty o KT = ke Ky Ky (A.2)

where" 9 andk are the strain eld of the middle plane and the curvature of the middle plane, respectively. In the orthotrop
frame of referencel{ 2; 3) (wherel and2 correspond to the ber and the transverse directions, respectively), the in-plant
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orthotropic elastic law is

h i & # 0
|
=Q with = Ql=f & L o (A3)
XX yy Xy o = = 1
o 0 &

whereQ is the sti ness matrix. The forces and the moments in the plate are obtained through the integration of the stre:
along the ply thickness

3 5 h [ h [
N = i dz; M = i zdz with NT= Ne Ny Ny MT= My My My (A.4)
2 2
which can be expressed in terms of strain via the orthotropic elastic law
" N # "A B #Y o H#
M - B D k (A-5)
with
1XP hy 1XP hy lXP hg
A=Z Qudz; B= = ZQdz; D= = ZQdz (A.6)
2 a1 hea 2 a1 hea 2 =1 hea

whereQy is the sti ness matrix of the plik expressed in the plate frame of referencey(z).
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