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Abstract

The damping in a carbon �ber reinforced plastic (CFRP) laminate is greater than that which occurs in most metallic materials.
In the supercritical regime, the damping can trigger unstable whirl oscillations, which can have catastrophic e� ects. The
vibrations occurring in a supercritical composite drive shaft are investigated here in order to predict instabilities of this kind.
A simply supported carbon/epoxy composite tube mounted on viscoelastic supports is studied, using an approximation of
the Rayleigh-Timoshenko equation. The damping process is assumed to be hysteretic. The composite behavior is described
in terms of modulus and loss factor, taking homogenized values. The critical speeds are obtained in several analytical forms
in order to determine the e� ects of factors such as the rotatory inertia, the gyroscopic forces, the transverse shear and the
supports sti� ness. Assuming that the hysteretic damping can be expressed in terms of the equivalent viscous model, the
threshold speed is obtained in the form of an analytical criterion. The in�uence of the various factors involved is quanti�ed
at the �rst critical speed of a subcritical composite shaft previously described in the literature. The in�uence of the coupling
mechanisms on the unsymmetrical composite laminate and the end �ttings is also investigated using a �nite element model.
None of these parameters were found to have a decisive in�uence in this case. Those having the greatest e� ects were the
transverse shear and the supports sti� ness. The e� ects of the composite stacking sequence, the shaft length and the supports
sti� ness on the threshold speed were then investigated. In particular, drive shafts consisting only of� 45° or� 30° plies can
be said to be generally unstable in the supercritical regime due to their very high loss factors.

Keywords: composite shaft, drive shaft, rotating damping, hysteretic damping, critical speed, threshold speed

1. Introduction

The use of driveshafts in the supercritical regime has proved to be of great interest in many applications, especially
those involving long drivelines (helicopters, tilt rotors, etc.). However, in the �eld of rotor dynamics, internal damping,
which is also called rotating damping, is known to cause whirl instabilities in this speed regime. In particular, with long
driveshafts consisting of materials which are more dissipative than metallic materials (such as most CFRP laminates [1]),
these instabilities tend to occur more frequently. The aim of the present study was to develop a theoretical model for
predicting these instabilities and to establish the most decisive physical parameters involved.
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Nomenclature

A, B, D in-plane, coupling and bending sti� ness matrix

of the laminate

c viscous damping

d modal damping or decay rate

E longitudinal Young's modulus of the shaft

E11, E22,

� 12, G12

longitudinal and transverse Young's modulus,

Poisson's ratio and in-plane shear modulus of

the ply

E� ;G� complex modulus

f oscillation frequency

G transverse shear modulus of the shaft

h height of the layer

Ix, Iy, Iz polar and transverse area moment of inertia of

the shaft

i imaginary unit
p

� 1

k curvature �eld vector

k sti� ness

l shaft length (between the two supports)

M bending moment vector in the laminate

m mass

N membrane force vector in the laminate

n number of sine modes or number of harmonic

p number of composite layers

Q in-plane sti� ness matrix of a ply

r shaft radius

S shaft cross-section area

t thickness

u displacement (complex or real)

U complex amplitude of the complex

displacementu
cUel Elastic strain energy per surface unit

x, y, z coordinates

" strain �eld vector

" 0 strain �eld vector of the laminate middle plane

" shaft eccentricity

� loss factor matrix

� loss factor

� out-of plane cross-section rotation (complex or

real)

� complex amplitude of the complex rotation�

� shear coe� cient

� shaft complex frequency

� Poisson's ratio

� shaft mass density

� stress �eld

! natural frequency of the �exural modes


 spin speed

Subscript

B� , B+, lower and higher backward whirl speeds

b bearing

c critical

e external

eq equivalent

F� , F+ lower and higher forward whirl speeds

i internal

m medium

p 2 fB� ; B+; F� ; F+g

s shaft

th threshold speed

0 gyroscopic e� ects assumed to be negligible

(� n � 0)

Superscript

T transpose

¯ order of magnitude of a quantity

The instabilities mentioned above can be counterbalanced by applying su� ciently strong external damping and/or using
the e� ect of suspension anisotropy [2, 3]. There exist several passive ways for increasing this non-rotating damping. Most
turbines are constructed with hydrodynamic bearings or squeeze-�lm dampers, but the main disadvantages of these devices
are their cost, their complexity and the additional instabilities they induce. Rolling-element bearings do not destabilize
rotors but provide insu� cient damping. During the last twenty years, dissipative materials such as elastomers have emerged
as suitable materials for bearing suspensions [4–6]. Here it is proposed to study this low cost con�guration consisting of
an axisymmetric composite shaft simply supported on classical rolling-element bearings mounted on viscoelastic materials
(Fig. 1).

Various approaches based on beam and shell theories have been presented for determining the critical speeds of an ax-

Figure 1: Simply supported axisymmetric tubular composite shaft with rolling-element bearings mounted on viscoelastic supports.
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Table 1: Material properties for a 0.6 volume fraction

Material Abbr. � (kg m� 3) E11 (GPa) E22 (GPa) G12 (GPa) � 12 tply (mm)

Gubran et al. [12] CEG
a 1500 130 10 7.0 0.25

Narmco 5505 [14] BEb 1965 211 24.1 6.9 0.36 0.1321

T300/5208 [15, 16] CEL: 1680 181 10.3 7.17 0.28 0.125
a CE : carbon/epoxy ;b BE : boron/epoxy.

isymmetric tubular composite shaft mounted on elastic or in�nitely rigid supports [7–13]. The simplest of these approaches
is called the Equivalent Modulus Beam Theory (EMBT) [14]. This method involves calculating the eigenvalues of the
isotropic Bernoulli beam, using the longitudinal modulus of the composite material computed with the classical laminate
theory (LT). Several authors have established the accuracy of this method in the case of symmetric laminates, but the EMBT
approach has proved to have some limitations in the case of unbalanced and unsymmetrical laminates, as summarized below.
The EMBT does not take into account the ply location relative to the axis when dealing with multilayered unsymmetrical
laminates. However, Gubran and Gupta [12] have established that the di� erence in the natural frequencies amount to only
5% in the most extreme cases, i.e., [0°,90°] versus [90°,0°] (shaft properties:l = 1 m, ts = 4 mm andrm = 50 mm and
CEG, see Table1 and the list of nomenclature for the symbol de�nitions). This di� erence is greater in the case of shafts
with small diameters. The EMBT does not take shear-normal coupling into account in the case of unbalanced laminates,
or bending-stretching and bending-twisting coupling in that of unsymmetrical laminates [10, 12]. However, the numerical
analysis presented in this paper shows that the latter two e� ects are negligible in the case of composite tubes, due to the tubu-
lar structure (see3.1.5). Furthermore, the beam theories cannot take into account of the e� ect done by the centrifugal forces
associated with the deformation. Martínez-Casas et al. [17] have established with a shell theory that this e� ect can increase
the �rst natural frequency by about 0.5% on a steel cylinder (shaft properties:l = 1:5 m, r = 50 mm,� = 7800 kg m� 3,
E = 210 GPa and� = 0:3). An EMBT was developed here, in which transverse shear, rotatory inertia and gyroscopic e� ect
were taken into account. The signi�cance of these factors is discussed in the last part of the paper (see3.1).

The internal damping resulting from dissipation in the shaft material and dry friction between assembled components
is conventionally included in the governing equations using the viscous damping model. However, most materials such as
CFRP composites undergo a damping which resembles hysteretic damping much more than viscous damping [1, 18, 19].
The main characteristic of hysteretic damping is that the corresponding stress-strain loop is independent of the excitation
frequency. It is generally de�ned in terms of the complex modulusE� = E(1+ � ), where� is the loss factor. However, since
it is not easy to introduce the complex model into rotor dynamic equations, it is necessary to use the classical equivalence
with the viscous damping model [20–22]. In the present analysis, all the internal damping is assumed to be hysteretic.
This approach has been called the equivalent complex modulus beam theory (ECMBT), by analogy with EMBT. The model
developed here was previously studied for use with isotropic materials and with Bernoulli assumptions in [6].

The �rst part of this paper deals with the composite shaft dynamics. The critical speeds are calculated in various forms,
depending on the assumptions. The threshold speed is then obtained with an analytical criterion. The procedure used to
determine the equivalent modulus and the equivalent damping of the shaft is described. In the second part, the case of
the composite shaft studied by Zinberg and Symonds [14] is investigated. The results obtained are compared with data
previously published in the literature. The aim of this numerical analysis is to assess the contribution of the main factors
such as the rotatory inertia, the gyroscopic forces, the transverse shear and the supports sti� ness to the critical speeds. The
e� ects of the coupling mechanisms in the unsymmetrical composite laminate and those of the end �ttings are then studied
by performing �nite element (FE) simulations on ABAQUS [23]. In the last part, the critical speeds and the threshold speed
of composite shafts with internal hysteretic damping are computed with several stacking sequences. Lastly, the e� ects of the
shaft length and the supports sti� ness on the stability are investigated.

2. Rotordynamic analysis

2.1. Governing equations

The dynamic properties of the simply supported composite drive shaft mounted on viscoelastic supports shown in Fig.1
were studied. The bearings, which are assumed to be in�nitely rigid in comparison with the supports, are simply modeled
in terms of their massmb. The supports are assumed to be axisymmetric and are accounted for in terms of their sti� nesske

and their loss factor� e . For the sake of convenience, equivalent external and internal viscous damping termsce andci will
be used in the equations.

The displacements will be expressed in the complex form. The cross-sectional displacement, i.e., the displacement of the
shaft section center (denoted C in Fig.1) relative to the �xed frame, is composed of a rigid-body displacementub = uby+ iubz
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(cylindrical whirl), a rigid-body rotation� b = � by + i� bz (conical whirl) and a de�ection of the shaftus = usy + iusz. It can be
written as follows:

u(x; t) = ub(t) +
 
x �

l
2

!
� b(t) + us(x; t) (1)

Note thatu00= u00
s where ()0 = @=@x. The cross-sectional rotation relative to the �xed frame is composed of the rigid-

body rotation� b and the bending rotation� s = � sy + i� sz. It can be written as follows:

� (x; t) = � b(t) + � s(x; t) (2)

With the above assumptions, using Timoshenko equations for the �exural vibration of beams [24] and adding the gyro-
scopic components, the equations of motion for an axisymmetrical shaft (whereIy = Iz in particular) are:

� Sü + � SG
�
� 0

s � u00
s
�

= 0 (3)

� Iy�̈ � i
 Ix �� � EIy� 00
s + � SG

�
� s � u0

s
�

= 0 (4)

where ( � ) = @=@t, � = ms=S l is the mass density and
 is the spin speed. Note that the terms involving the shaft inertia
depend onu and� , while those involving the rigidity depend onus and� s. We can now di� erentiate Eq. (4),

� Iy�̈ 0 � i
 � Ix �� 0 � EIy� 000
s + � SG(� 0

s � u00
s ) = 0 (5)

and we write Eq. (3) in the following form:

� 0 = � 0
s = u00

s �
�

� G
ü (6)

Replacing� 0 and� 0
s in Eq. (5) by the above equation, we obtain the Rayleigh-Timoshenko equation for a rotating shaft:

ü �
Iy

S

�
1 +

E
� G

�
üs

00+ i

Ix

S
�us

00+
� Iy

� SG
....
u �

i
 � Ix

� SG
...
u +

EIy
� S

u0000
s = 0 (7)

In the case of long shafts (l=r � 10), a dimensional analysis shows that the terms corresponding to
....
u and

...
u in the

above equation are small. Let us take the notation ¯ to denote the order of magnitude of a quantity. The orders of magnitude
of the area moment of inertia (I ) and the surface (S) aret̄r̄3 andt̄r̄, respectively. Let us divide the Rayleigh-Timoshenko
equation (Eq. (7)) by ū f̄ 2 to obtain a non-dimensionalized equation. The order of each term in the above equation can be
approximated as follows:

1
ū f̄ 2

@2u
@t2

� 1 (8)

1
ū f̄ 2

Iy

S

�
1 +

E
� G

� @4us

@t2@2x
�

Ē
�̄ Ḡ

� r̄
l̄

�2
(9)

1
ū f̄ 2



Ix

S
@3us

@t@2x
�

� r̄
l̄

�2
(10)

1
ū f̄ 2

� Iy

� SG
@4us

@t4
�

�̄ r̄2

�̄ Ḡ
f̄ 2 (11)

1
ū f̄ 2


 � Ix

� SG
@3us

@t3
�

�̄ r̄2

�̄ Ḡ
f̄ 2 (12)

1
ū f̄ 2

EIy
� S

@4us

@x4
�

Ēr̄2

�̄ l̄4
1
f̄ 2

(13)

If the shaft is su� ciently long, the oscillation frequency will obviously depend mainly on the �rst and last terms in the
Rayleigh-Timoshenko equation. It can be concluded that these two terms are of a similar order of magnitude:

1
ū f̄ 2

EIy
� S

@4us

@x4
�

1
ū f̄ 2

@2u
@t2

� 1 ) f̄ �

s
Ēr̄2

�̄ l̄4
(14)
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Let us replacef̄ in Eqs. (11) and (12) so as to obtain the order of magnitude of the terms in
....
u and

...
u:

1
ū f̄ 2

� Iy

� SG
@4us

@t4
�

Ē
�̄ Ḡ

� r̄
l̄

�4
(15)

1
ū f̄ 2

i
 � Ix

� SG
@3us

@t3
�

Ē
�̄ Ḡ

� r̄
l̄

�4
(16)

In the case of a composite shaft, the order of magnitude ofE=�G is about 10 (exactly 16.3 in the case of theZinberg
and Symonds' shaft [14]). Assuming l/r=10, the order of magnitude of the second, third, fourth and �fth terms in the
Rayleigh-Timoshenko equation (Eq. (7)) are 10� 1, 10� 2, 10� 3 and 10� 3, respectively. It can be concluded that the terms in
....
u and

...
u are very small in comparison with the others, and that the term in ¨u0 (the gyroscopic e� ect) is small. We can then

approximate the Rayleigh-Timoshenko equations in the useful form:

ü �
Iy

S

�
1 +

E
� G

�
üs

00+ i

Ix

S
�us

00+
EIy
� S

u0000
s = 0 (17)

The internal damping (relative tous and notu) and the unbalanced forces can be added to obtain the local governing
equation of motion:

ü �
Iy

S

�
1 +

E
� G

�
üs

00+ i

Ix

S
�us

00+
EIy
� S

u0000
s +

ci

� S l
( �us � i
 us) = " (x)
 2ei
 t (18)

If E=�G is removed, the above equation becomes the Euler-Bernoulli equation investigated in [6].
The boundary conditions for the shaft and the equations governing the bearings and viscoelastic supports can be written:

u00
s (0; t) = u00

s (l; t) = 0; us(0; t) = us(l; t) = 0 (19)

and
� l

0
� Südx + 2mbüb + 2ce�ub + 2keub =

� l

0
� S" (x)
 2ei
 tdx (20)

� l

0
� S

 
x �

l
2

!
üdx + 2mb

l2

4
�̈ b + 2ce

l2

4
�� b + 2ke

l2

4
� b =

� l

0
� S

 
x �

l
2

!
" (x)
 2ei
 tdx (21)

2.2. Critical speeds

Solutions for free motion (Eqs. (18-21) with " = 0) can be assumed in the following form:

us(x; t) = Usnsin
� � nx

l

�
ei� nt; (22)

ub(t) = Ubnei� nt; � b(t) = � bnei� nt (23)

wheren 2 N� and� n are the harmonic number and the complex eigenvalues, respectively. Applying the Galerkin principle
to Eq. (18) with " = 0 and the trial function (22) (for the detailed procedure, see [6]), we obtain complex characteristic
equations of order 4 in� n, where the typicalnth equation is:

	 n� 4
n �

h
� n
 + i(� nden + din)

i
� 3

n �
h
! 2

sn + � n! 2
bn + dinden � i
 (� nden + din)

i
� 2

n

+
h
(� n! 2

bn + dinden)
 + i(din! 2
bn + den! 2

sn)
i
� n + (! 2

sn � idin
 )! 2
bn = 0 (24)

with

! sn =
� n�

l

�2
s

EIy
� S

=

s
ksn

ms
; ! bn =

s
ke

mb + ms
2(2+(� 1)n)

; den =
ce

mb + ms
2(2+(� 1)n)

=
ceke

! 2
bn

; din =
ci

ms
=

ciksn

! 2
sn

;

� n =
Ix

S

� n�
l

�2
; � n = 1 +

Iy

S

� n�
l

�2 �
1 +

E
� G

�
; � n =

ms

mb + ms
2(2+(� 1)n)

; 	 n = � n �
4

n2� 2
� n; (25)

where! sn is thenth natural frequency of the shaft without any rotatory inertia, gyroscopic e� ect or transverse shear and
without any support coupling e� ects (when the supports are assumed to be in�nitely rigid),! b1 and! b2 are the natural
frequencies of the cylindrical rigid-body mode and that of the conical rigid-body mode (when the shaft is assumed to be
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in�nitely rigid), respectively. We express the eigenvalue solution in the complex form as follows� n = ! n + idn. The real
part! n and the imaginary partdn are an angular frequency term and a modal damping term, respectively. Hence, assuming
the presence of weak damping yields! � d and in particular,f! n; ! sn; ! bn; 
 g � f dn; den; ding. This assumption makes it
possible to calculate the real part of Eq. (24) at zero order relative tod:

	 n! 4
n � � n
 ! 3

n � (! 2
sn + � n! 2

bn)!
2
n + � n
 ! 2

bn! n + ! 2
bn!

2
sn � 0 (26)

When
 = ! cn or 
 = � ! cn, Eq. (26) yields the two critical speeds of the forward modes and the two critical speeds of
the backward modes in the case of thenth harmonic:

! cnF� =
1

p
2� n�

r

! 2
sn + � n� ! 2

bn �
q

! 4
sn + 2(� n� � 2� n� ) ! 2

sn! 2
bn + � 2

n� ! 4
bn (27)

! cnB� = �
1

p
2� n+

r

! 2
sn + � n+ ! 2

bn �
q

! 4
sn + 2(� n+ � 2� n+) ! 2

sn! 2
bn + � 2

n+ ! 4
bn (28)

with

� n� = 	 n � � n; � n� = � n � � n (29)

where� stands for the two equations with a positive and negative sign, written in a contracted form. When the supports are
assumed to be in�nitely rigid, the above equations give the critical speed in the simple form:

lim
! bn! +1

! cnF+ = +1 (30)

lim
! bn! +1

! cnF� =
! snq

1 + Iy

S

�
n�
l

�2 �
E
� G � 1

� (31)

lim
! bn! +1

! cnB+ = �1 (32)

lim
! bn! +1

! cnB� = �
! snq

1 + Iy

S

�
n�
l

�2 �
E
� G + 3

� (33)

2.3. Threshold speeds

After some computations, the imaginary part of Eq. (24) at �rst order relative tod yields the modal damping of thenth
harmonic:

dn(
 ) � din

! 3
n(1 + den

din
� n) � (! 2

bn + den
din

! 2
sn)! n + (! 2

bn � ! 2
n(1 + den

din
� n))


2! n(2	 n! 2
n � ! 2

sn � � n! 2
bn) + � n(! 2

bn � 3! 2
n)


(34)

This equation gives the stability of the system. An analytical solution for this expression is obtained when an analytical
expression for! n is known. Let us assume the gyroscopic e� ects to be negligible, as proved to be the case in the above
dimensional analysis, i.e.,� n � 0. Eq. (26) therefore becomes a quadratic expression which is independent of the spin speed.
This directly gives the following four natural frequencies! np0:

! nF� 0 = � ! nB� 0 =
1

p
2	 n

r

! 2
sn + � n! 2

bn �
q

! 4
sn + 2(� n � 2	 n)! 2

sn! 2
bn + � 2

n! 4
bn (35)

It should be noted that if the supports are assumed to be in�nitely rigid, the above equation gives the classical relation
for the lateral natural frequency of a Rayleigh-Timosheko beam with transverse shear deformation and rotatory inertia [24]

lim
! bn! +1

! nF� 0 =
! snq

1 + Iy

S

�
n�
l

�2 �
E
� G + 1

� (36)

It should also be noted that if one sets
 = 0 andu = us, Eq. (7) gives the same frequencies without neglecting the
....
u

term

! n0 =

r

� n + 
 �
q

(� n + 
 )2 � 4
! 2
sn with � n =

1
2�

� n�
l

�2
(E + � G) ; 
 =

� GS
2� I

(37)
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In the case of external and internal hysteric damping (the viscous case and the mixed case were investigated in [6]), it is
therefore necessary to computedin andden carefully with the classical equivalence between viscous and hysteretic damping:

ceq =
� k
j! j

(38)

whereceq is the equivalent viscous damping. Flexural critical speeds can be handled separately [20]. Equivalent external
damping of thenpth mode (wherep stands forfB� ; F�g ) can therefore be expressed as� eke=j! np(
 )j, where! np(
 ) can be
approximated by! np0. From Eq. (25), the external modal damping can be expressed as follows:

denp = � e
! 2

bn

j! np0j
(39)

The internal damping has to be included in the rotating frame of reference. The excitation frequency therefore corre-
sponds toj! np(
 ) � 
 j. In this case, the equivalent internal damping of thenpth mode can be expressed as� iksn=(j! np(
 ) �

 jl) where! np(
 ) can be approximated by! np0. According to Eq. (25) and assuming
 > 0, the internal modal damping
can be expressed as follows:

dinp(
 ) =

8
>>>>>>>>>><
>>>>>>>>>>:

� i ! 2
sn


 � ! np0
for p 2 fB�g

or for (p 2 fF�g and
 > ! nF� 0)
� i ! 2

sn

! np0 � 

for (p 2 fF�g and
 < ! nF� 0)

(40)

The above equivalences (39-40) and Eq. (35) can be included in Eq. (34), and the positivity of these new equations can
be studied analytically. Based on the previous study [6], the following conclusion can be reached: backward whirl modes are
always stable, and forward whirl modes can be unstable only in the supercritical range. This important conclusion con�rms
the role of hysteretic damping in rotors described by Genta [21]. In addition, an analytical instability criterion can be written
in the following form:

� eke� n(� n! 2
nF+0 � ! 2

sn) � � iksn(! 2
nF+0 � ! 2

bn)

8
>><
>>:
< 0 =) ! thnF+ = ! nF+0

> 0 =) stable
(41)

and

� eke� n(� n! 2
nF� 0 � ! 2

sn) � � iksn(! 2
nF� 0 � ! 2

bn)

8
>><
>>:
> 0 =) ! thnF� = ! nF� 0

6 0 =) stable
(42)

It then su� ces to compute the lowest instability speed to be able to determine the threshold speed of the shaft:

! th = min
n2N� ;p2F�

(! thnp) (43)

2.4. Equivalent sti� ness and damping of the shaft model
Flexural vibrations of a composite tube create a tensile/compressive state in the laminate in the direction of the tube axis.

The laminate equivalent modulus in this loading case can be computed via the LT as previously described in the case of a
symmetrical laminate in [25] (seeAppendixA) :

E =
1

tsa11
(44)

G =
1

tsa33
(45)

� = �
a12

a11
(46)

wherea = A � 1. Despite this restriction, the above equations will be used even if the laminate is unsymmetrical (see3.1.5).
The shear coe� cient is approximated with the relation obtained for a cylinder consisting of a homogeneous material

� =
2(1+ � )
4 + 3�

(47)
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The equivalent loss factor denoted� i is computed with Adams and Bacon's theory [1, 26, 27], using complex properties
of the ply E�

11, E�
22 andG�

12. In this theory, the strain energy is computed in the case of a particular plane stress state (e.g.
tension/compression in the case of the shaft) with the LT. A dissipative energy is then de�ned for each strain energy term
(longitudinal tension/compression, transverse tension/compression and in-plane shear). The internal loss factor can then be
obtained directly by dividing the local dissipative energy by the local strain energy, i.e.,

� i =

pP

k=1

�
1
2

� hk
hk� 1

" T �� dz
�

pP

k=1

�
1
2

� hk
hk� 1

" T � dz
� with � =

2
666666664

� 11 0 0
0 � 22 0
0 0 � 12

3
777777775

(48)

where� is the loss factor matrix expressed in the ply frame of reference (see Eqs. (A.2) and (A.3) for the de�nition of
stresses and strains). In the case of unsymmetrical laminate, as it will be discussed latter in3.1.5, the composite coupling
mechanism can be neglected due to structural e� ects. Hence, assuming the coupling matrixB to be null in the computation
of Eq. (48), a better approximation of internal loss factor will be obtained.

The damping properties of the ply, which are assumed to be independent of the frequency, are assumed to be equal to
� 11 =0.11 %,� 22 =0.70 % and� 12 =1.10 % as in [19].

3. Numerical results

3.1. The case ofZinberg and Symonds' shaft

In order to assess the accuracy of the critical speed predictions, the case of the helicopter tail rotor shaft described by
Zinberg and Symonds [14] is studied with the equations obtained above. The properties of boron/epoxy material are listed
in Table 1 and the geometric parameters are:l = 2:47 m, ts = 1:321 mm andrm = 62:84 mm. The laminate stacking
sequence is: [90� ; 45� ; � 45� ; 0�

6; 90� ] from inner to outer surface. In their study,Zinberg and Symondsdetermined the main
properties of the shaft using various experimental methods. They obtained the �rst natural frequency at 5500 rev min� 1 with
a shaker at the span center, which imposed a sinusoidal input. They estimated the �rst critical speed by performing a rotation
test. Since the oscillation amplitude of the shaft was too great, the test was stopped at 5100 rev min� 1 and only two points
in the unbalanced response curve were measured at the shaft center which was 0.64 mm and 1.27 mm at 3700 rev min� 1

and 4500 rev min� 1, respectively. The authors extrapolated the unbalanced response with the undamped theoretical curve
(without giving any details about the rotor unbalance) and predicted the critical speed to be 6000 rev min� 1. The torsional
modulus was measured by performing a pure torsion test and found to be 16.5 GPa. The longitudinal modulus was found to
be 142 GPa with a shaft tested in the same way as a cantilever beam. With this value, the �rst critical speed was determined
with the method now known as EMBT and a value of 5840 rev min� 1 was obtained.

This long composite shaft was investigated by several authors, taking various factors into account, such as the transverse
shear, the laminate couplings, etc (see. Table2). Since we cannot be sure of the accuracy of experimental estimates of
the critical speed, all the results obtained here will be compared below with the theoretical values obtained byZinberg and
Symonds. It should be noted that the value of the mean radius was confused in the original studies [7, 9, 11–13] with that of
the outer radius (0.0635 m). In comparison with the original data, all these critical speeds have been corrected in Table2 by
simply multiplying them by the ratio between the two radii (i.e., 0:06284=0:0635). This ratio gives an approximation of the
di� erences in the value of

p
Ix=S.

Most of these authors obtained a critical speed showing good agreement with the experimental values. Using Donnel's
theory, dos Reis et al. [7] underestimated the critical speed, whereas Kim and Bert [8] overestimated this speed using the
same theory.Kim and Bertmentioned that they previously established that Donnel's theory is not suitable for use with long
beams.

To determine the in�uence of various factors on the shaft critical speed, the classical relation! s1 in Eq. (25) was used
as the basis of our calculations. This equation gives almost the same critical speed as that obtained by Zinberg and Symonds
[14] with an error of only 0.2%, which was certainly a round-o� error.

3.1.1. E� ects of the rotatory inertia
The rotatory inertia was the �rst parameter to be investigated. The comparisons made in Table2 between Eq. (25) and

Eq (36), where E
� G is assumed to be null, show that this factor was responsible for a decrease of only 0.1% in the critical

speed predictions.

3.1.2. E� ects of the gyroscopic forces
The Campbell diagram shows the evidence that the gyroscopic e� ects are small in the �rst mode (see. Fig.2). It can be

seen from Eqs. (31) and (33) that the �rst critical speed corresponds to the backward mode. The e� ects of the gyroscopic

8



Table 2: First critical speed in Zinberg and Symonds' case [14] using various theories (Di� . = relative di� erence in comparison with classical EMBT,
Gyr. = gyroscopic e� ect, R.I.= rotatory inertia, Sh.= transverse shear e� ect, Sup.= support sti� ness e� ect, Co.= laminate coupling mechanism and
E.F.= end �tting)

Investigators Critical sp. Di� . (%) Gyr. R.I. Sh. Sup. Co. E.F. Theory

(rev min� 1)

Zinberg et al. [14] 5840 0 EMBT

6000 2.7 Extrapolated from the unbalance response

5500 -5.8 Experimental without rotation

Dos Reis et al. [7] 4899* -16.1 � � ? � FE beam with sti� nesses determined

using Donell's shell theory

Kim et al. [8] 5883 0.7 � � � � Flügge's shell theory

5872 0.5 � � � � Sanders' shell theory

5892 0.9 � � � � Love's �rst approximation shell theory

5856 0.3 � � � � Loo's shell theory

5878 0.7 � � � � Morley's shell theory

6399 9.6 � � � � Donnel's shell theory

Bert et al. [9] 5728* -1.9 � � � � EMBT including bending-twisting e� ects

Chang et al. [11] 5702* -2.4 � � � � � � Continuum based Timoshenko beam theory

Gubran et al. [12] 5759* -1.4 � � � � LBT including bending-twisting e� ects

5494* -5.9 � � � � MEBT including bending-twisting e� ects

Sino et al. [13] 5707* -2.3 � � � � SHBT (FE beam)

5378* -7.9 � � � � � SHBT (FE beam)

Present study

! s1 in Eq. (25) 5852 0.2 EMBT

Eq. (36) with E
� G = 0 5843 0.1 � EMBT

Eq. (33) with E
� G = 0 5825 -0.3 � � EMBT

Eq. (37) 5697 -2.5 � � EMBT

Eq. (36) 5696 -2.5 � �y EMBT

Eq. (33) 5679 -2.8 � � � y z EMBT

Eq. (35) with E
� G = 0 5732 -1.8 � � � ECMBT

Eq. (35) 5598 -4.1 � �y � � ECMBT

Eq. (28) with E
� G = 0 5715 -2.1 � � � � ECMBT

Eq. (28) 5582 -4.4 � � � y z � � ECMBT

ABAQUS with 5694 -2.5 � � � Thin shell FE (S4R)

in�nitely rigid end �t.

ABAQUS with 5622 -3.7 � � � � Thin shell FE (S4R)/

realistic end �t. 3D FE (C3D8R) for end �ttings
* corrected values due to the error in the mean tube radius value –y ....

u term neglected –z
...
u term neglected –

? ke = 1:74� 1012 N m� 1 – � exist in the reference study but not used here –� ke = 1 � 107 N m� 1 andme = 0:48 kg

forces can be obtained by comparing the values obtained with Eqs (36) and (33), assuming the termE
� G to be null in both

cases. This comparison shows that the gyroscopic e� ects were responsible for a decrease of only 0.4%. This result con�rms
our previous suggestion that experimental values of the critical speed should be equal to approximately the �rst natural
experimental frequency, i.e., 5500 rev min� 1.

3.1.3. E� ects of the transverse shear

All the authors quoted above except forZinberg and Symondsincluded the transverse shear e� ects. The e� ects of this
factor can be determined by comparing the values obtained with Eq (36), where E

� G is assumed to be null, and Eq. (37).
These comparisons showed that the transverse shear e� ect decreased the critical speed by about 2.6%. A similar di� erence
was obtained whether or not the termE� G was removed from Eq. (33), Eq. (35) or Eq. (28) (see Table2). Sino et al. [13]
obtained a value of about 5.6%. Comparisons between the values obtained with Eqs (37) and (36) also showed that the
e� ects of

....
u term are negligible. Comparisons between the values obtained with Eqs (36) and (33) con�rmed in addition

that the term
...
u is negligible if the gyroscopic e� ects are assumed to be equal to a value of about 0.4%.
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Figure 2: The Campbell diagram of theZinberg and Symonds' shaft (with ke = 107 N m� 1, (—) forward modes, (- - -) backward modes).

Table 3: Normalized middle plane strains, curvatures and elastic strain energy inZinberg and Symondscomposite for the �rst mode

Method " 0
xx or " 0

rr " 0
yy or " 0

�� " 0
xy or " 0

�� kxx or krr (m� 1) kyy or k�� (m� 1) kxy or kr� (m� 1) cUel (N m� 1)

FEM Plate (static tension) 1 -0.291 0.0555 -1007 271 360 0.4027

Laminate theory (static tension) 1 -0.294 0.0680 -1037 299 415 0.4026

FEM cylindrical shell (�rst bending mode) 1 -0.248 0.00100 20.0 3.06 0.96 0.4465

Laminate theory withB = 0 (static tension) 1 -0.258 0 0 0 0 0.4452

3.1.4. E� ects of the support sti� ness
The e� ects of the support sti� ness were investigated using Eqs (35) and (28). In the reference study, no information was

provided about the sti� ness of the test rig. The bearing and the test rig were assumed here to be very sti� . The sti� ness was
therefore taken to be equal to 107 N m� 1. The mass of the rotating part was estimated at 0.48 kg with the CAD drawing. With
these numerical values, the critical speed obtained was only approximately 2% below the reference value. This di� erence is
of the same order of magnitude as with the e� ects of the transverse shear.

3.1.5. E� ects of the composite coupling
The coupling mechanisms in the laminate were investigated with the FE method in ABAQUS and compared with the

results obtained using the LT (seeAppendixA). The �nite elements (S4R) were of the thin shell type. First of all, a plate
measuring 0.1 m in thex direction by 0.06 m in they direction was studied in order to test the validity of the comparisons
between FE method and LT. This plate consisted of the same laminate asZinberg and Symonds' shaft. A climb condition
was applied to one of the smaller edges, and tension was applied to the opposite edge. The strain �eld (" xx, " yy and" xy)
was analyzed at the plate center. As it can be seen in Eq. (A.2), the linear evolution of the strains is given by the middle
plane strains (denoted" 0

xx, " 0
yy and" 0

xy) and the curvatures (denotedkxx, kyy andkxy). Fig 3ashows the strain �eld obtained
both in the laminate frame of reference with the FE method and directly with the LT by applying a normal force. To
compare the results obtained with the two methods, the middle plane longitudinal strain" 0

xx was normalized to 1. In this
�gure, it is worth noting that the strains in each of the plies are a function of the height, although this is a tension loading
case. This height-dependence was due to unsymmetry of the laminate i.e. to the occurrence of bending-stretching coupling
and bending-twisting coupling. The excellent agreement observed with the LT shows that the FE method can be used to
understand what happens in the case of unsymmetrical composite cylinders. The comparisons between middle plane strains,
curvatures and elastic strain energies made in Table3 also con�rm the existence of good agreement between the two methods,
where the elastic strain energy per surface unit can be expressed as follows:

cUel =
1
2

pX

k=1

� hk

hk� 1

� xx" xx + � yy" yy + � xy" xydz (49)
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(a) (b)

Figure 3: Normalized strain distribution in the �rst mode of a composite withZinberg and Symondscomposite. (a) ABAQUS FEM plate vs. laminate
theory; (b) ABAQUS FEM cylindrical shell vs. laminate theory.

(a) (b)

Figure 4: Finite element simulation of the Zinberg and Symonds [14] shaft with ABAQUS: e� ects of the end �ttings on the �rst natural frequency. (a)
First mode of the shaft with thin and in�nitely rigid end �ttings and detailed mesh of an end �tting; (b) �rst mode of the shaft with elastic end �ttings
and detailed mesh of an end �tting.

Zinberg and Symonds' shaft was studied in the �rst bending mode without any rotating e� ects. The shaft was closed
with thin end �ttings assumed to be in�nitely rigid and quasi massless (Fig.4a), which were meshed using linear hexahedral
elements of the C3D8R type. Pinned and slider conditions were applied at the center of these end �ttings. Fig3b compares
the normalized strain �eld obtained in the laminate frame of reference between FE method and LT. On contrary to the case
of plates, no agreement was found to exist between the results obtained with the two methods. A structural e� ect occurred
in this case, which blocked all the curvatures. Only thekrr curvature can be distinguished in the �gure, but it is very small
in comparison with that observed in the case of plates (see Table3). This results in a completely di� erent stress �eld, which
makes it possible to cancel the curvatures due to the coupling e� ects. If this �eld is now compared with a modi�ed LT where
the coupling matrixB (de�ned by the Eqs (A.5-A.6)) is taken to be null, good agreement is observed with the FE results
(Fig 5a). With this assumption, Fig5b and Table3 also show the existence of excellent agreement in terms of the stress
�eld and the elastic strain energy. It is concluded that this simpli�ed approach accurately predicts the eigenvector in the �rst
bending mode. There is practically no elastic strain energy in the curvatures, and the eigenvalue is practically not a� ected
by the coupling mechanism due to the tubular structure. A good estimate of the critical speed can therefore probably be
obtained by neglecting the coupling mechanism, and Eqs. (44-46) can be used even if the laminate is unsymmetrical.

3.1.6. E� ects of the end �ttings
The e� ects of the end �ttings are the last e� ects studied with the FE method. Since no information is available about the

exact geometry of the original end �ttings, the FE model presented in Fig.4b is based on the picture published inZinberg
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(a) (b)

Figure 5: Normalized strain distribution (a) and stress distribution (b) in the �rstZinberg and Symonds' shaft mode: ABAQUS shell vs. laminate
theory withB = 0.

and Symonds' paper. A smaller tube is assumed to maintain the total shaft length between boundary conditions at a value
of 2.47 m. The end �ttings are assumed to be made of aluminum. As in the previous case, the end �ttings are meshed using
linear hexahedral elements of the C3D8R type. Tie conditions are applied between the junction and the composite tube. The
computations show that these end �ttings decrease the critical speed by 1.3%, which is relatively little (see Table2).

3.1.7. Partial conclusion on the equations considered
It can be concluded that the �rst critical speed of a composite shaft can be accurately predicted with Eqs. (31-33), which

takes the rotatory inertia, gyroscopic e� ect and transverse shear e� ect into account, assuming the composite coupling to be
canceled out by structural e� ects. A more accurate estimate of the critical speed can be obtained with Eqs. (27-28) if the
sti� nesses and masses of the supports are known.

3.2. Dynamic behavior and stability of a composite shaft with internal hysteretic damping

No numerical studies on damping instabilities in a single composite shaft have been published so far to the best of our
knowledge. Only Sino et al. [13] have investigated the case of a composite shaft with two disks. In the present study,
comparisons were made between the results obtained with our theory and EMBT in the case of six di� erent composite
stacking sequences (Table4). The stacking sequences used for this purpose, whether or not they were symmetrical and of the
same thickness, corresponded to classical con�gurations previously studied in the literature, most of which resist torque loads
and/or maximize the longitudinal sti� ness [28]. Since EMBT and ECMBT do not take the order of plies into account, only
one order of plies was studied for each laminate stacking sequence. The properties of T300/5208 carbon/epoxy material are
listed in Table1, and the geometric parameters of the shaft studied were:l = 2 m,ts = 1:5 mm andrm = 39:25 mm. To ensure
stability in the supercritical regime, the shaft was mounted on dissipative supports with a low sti� nesske = 2 � 106 N m� 1

and a large loss factor� e = 7%. The bearing mass on each side (mb) was equal to 1 kg.
In this example, the rigid-body modes obtained were mostly in between the �rst and second �exural modes obtained

with EMBT (see Table4). This ampli�ed the coupling mechanism between the two types of modes. EMBT does not take the
rigid-body modes into account, which can result in large errors in this case. With ECMBT, four critical speeds (two backward
modes and two forward modes) were determined for each �exural mode. For example, in the �rst mode of shaft N°1,! c1F+

and! c1F� correspond to two coupled modes. The �rst mode is mainly the cylindrical mode and the second one is mainly
the �rst �exural mode. Frequencies are shifted from 177 Hz to 224 Hz and 102 Hz to 95 Hz, respectively. A similar pattern
is observed in the backward modes. It is ampli�ed when the �exural frequency is very similar to the rigid-body frequency.
For example, the second mode of the shaft N°3 at 168 Hz and the cylindrical mode at 177 Hz became two coupling modes
at 157 Hz and 232 Hz, respectively. It should be noted that di� erences were also found to exist between the EMBT and
ECMBT data obtained due to the gyroscopic e� ect, the rotatory inertia and the transverse shear. In particular, the gyroscopic
e� ect can be clearly distinguished in the second modes from the di� erences between backward and forward frequencies (e.g.
! c2F+ and! c2B+ of the shaft N°1). As regards the stability, the shafts with the lowest longitudinal sti� ness and the highest
longitudinal damping (shafts N°2 and 3) were already unstable after the �rst �exural mode. These con�gurations, involving
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Table 4: Comparison between ECMBT and EMBT with various stacking sequences in a composite shaft (T300/5208) mounted on dissipative supports
(l = 2 m,ts = 1:5 mm,rm = 39:25 mm,ke = 2 � 106 N m� 1, � e = 7 % andmb = 1 kg)

Shaft N° 1 2 3 4 5 6

Stacking sequence [� 15]3s [� 30]3s [� 45]3s [90,03, [902,07, [902,08,

45,-45]s 452,90] 45,-45]

LT E GPa 146.9 64.8 25.1 106.8 113.8 130.5

G GPa 17.0 36.7 46.6 20.3 12.6 13.7

� - 1.060 1.370 0.747 0.295 0.101 0.203

Adams' th. � i % 0.358 1.234 1.957 0.299 0.268 0.244

with B = 0

Rigid-body modesa cylindrical ! b1 Hz 176.8

conical ! b2 Hz 204.9

1st �exural modes EMBT ! s1 Hz 101.9 67.7 42.1 86.9 89.7 96.1

ECMBT ! c1F+ Hz 224.3 218.0 214.8 221.0 220.7 222.2

! c1F� Hz 94.9 65.9 41.7 82.7 84.6 89.9

! c1B� Hz 94.7 65.7 41.6 82.5 84.4 89.7

! c1B+ Hz 223.7 217.5 214.4 220.5 220.2 221.7

2nd �exural modes EMBT ! s2 Hz 407.7 270.8 168.4 347.6 358.9 384.2

ECMBT ! c2F+ Hz 414.3 299.3 232.0 363.4 363.6 387.0

! c2F� Hz 201.4 194.2 157.1 199.6 199.9 200.8

! c2B� Hz 201.3 194.0 155.5 199.6 199.9 200.7

! c2B+ Hz 408.2 294.8 230.5 358.0 358.5 381.5

Threshold speed ECMBT ! th Hz 824.4 65.8 41.6 729.3 713.0 760.6
a considering in�nitely rigid shaft

ply orientations of� 45� or � 30� , are not suitable for use in the supercritical regime. The other four stacking sequences can
be used in the supercritical regime and are stable until the rotational speed reaches the third mode.

The second study dealt with the e� ects of the shaft length on the dynamic stability. Shaft N°4 was studied with variable
lengths in the 0.8 to 2.5 meter range (Fig.6a). The �gure shows the decrease in the critical speeds which occurred with
increasing shaft lengths. The coupling between the �exural and rigid-body modes was found to occur at around 1.3 m. In
particular, at 1.36 m, where! b1 = ! s1 = 188 Hz, the frequencies! c1F+ and! c1F� di� ered considerably from this frequency.
The stability domain showed a sawtooth pattern. Up to 0.85 m, the shaft cannot be supercritical. Between 0.85 and 1.3 m,
the instability occurred after the second �exural mode. From 1.3 to 2.3 m, the instability shifted to the third �exural mode.
Beyond 2.3 m, it developed after the fourth �exural mode. It is sometimes possible to increase the stability by increasing the
shaft length, as shown by the mathematical form of the stability criteria (Eqs. (41-42)).

As can be seen in these criteria, the support sti� ness can be used as an optimized variable to increase the stability
margins, as shown in Fig6b. The same support material was again used for this purpose, but the theoretical size of the
support was reduced in order to increase the sti� ness from 105 to 108 N m� 1. The external loss factor remained unchanged
in this case. It can be seen from this �gure that the stability domain increased when the �rst �exural frequency was near
the cylindrical rigid-body frequency. This can be explained by the fact that the energy dissipation necessitates the greatest
displacement of the supports. This is only possible when the rigid-body modes are excited with �exural modes, i.e., when
both frequencies are almost similar.

4. Conclusion

In conclusion, the critical speeds of a composite shaft mounted on viscoelastic supports were obtained here in the analytic
form, adopting Timoshenko assumptions and including the gyroscopic e� ects. This method, which we have called ECMBT,
accurately predicts the �rst critical speed ofZinberg and Symonds' composite shaft. In fact, in the case of this example, it
was established here numerically that the rotatory inertia and the gyroscopic e� ect are negligible because they a� ect the �rst
critical speed prediction by only 0.1% and 0.4%, respectively. Likewise, the e� ects of the transverse shear amounted to only
about 2.6%, probably due to the slenderness of the shaft. FE simulations showed that the tubular structure, unlike that of
plates, blocks the bending-stretching coupling and bending-twisting coupling mechanisms in the unsymmetrical laminate.
These factors therefore have little e� ect on the critical speed. The e� ects of the end �ttings were investigated with the FE
method and also found to be small. One of the main advantages of the ECMBT method is that it takes the sti� ness of the

13



(a) (b)

Figure 6: Evolution of the critical speeds and threshold speed of a composite shaft (T300/5208) mounted on dissipative supports ([90,03,45,-45]s,
ts = 1:5 mm,rm = 39:25 mm,� e = 7 % andmb = 1 kg). (a) Critical speeds and threshold speed vs. the shaft length withke = 2� 106 N m� 1 ; (b) critical
speeds and threshold speed vs. the support sti� ness withl = 1:2 m.

shaft support into account. This factor can be of the same order of magnitude as the transverse shear e� ect in the case of
rigid supports. It cannot be neglected in the case of �exible supports.

Since the damping which occurs in carbon/epoxy material resembles the hysteretic damping model much more closely
than viscous damping, shaft instabilities due to rotating damping were investigated here with the hysteretic damping model.
With the equivalent viscous damping approach, the threshold speed can be obtained in ECMBT using an analytic criterion. A
study on various composite shafts showed that the internal damping signi�cantly a� ects the dynamic stability. In particular,
shafts consisting of� 45� or � 30� plies are generally not suitable for use in the supercritical regime due to their very high
loss factors, which amounted here to up to 2.0% and 1.2%, respectively. All the con�gurations including 0° plies tested
were found to be less dissipative and to be stable up to the third �exural critical speed. Lastly, a parametric study on the
e� ects of the shaft length and the support sti� ness on the stability of composite shafts showed the importance of the support
sti� ness. In particular, the stability of the shaft increases greatly when the �rst �exural frequency is approximately equal to
the cylindrical rigid-body frequency.

AppendixA. Some results of the laminate theory (LT)

We considered a composite plate with a small thickness constituted ofp plies and perpendicular to thez direction. In the
case of the Kircho� -Love theory, a segment orthogonal to the middle plane remains straight and orthogonal to the middle
plane after deformation. With these assumptions, the displacement �eldu can be written in the following simpli�ed form

ux(x) = u0
x(x; y) + z

@uz

@x
(x; y) ; uy(x) = u0

y(x; y) + z
@uz

@y
(x; y) ; uz(x) = u0

z(x; y) (A.1)

whereu0 is the displacement �eld of the middle plane. The strain in the plate can be deduced from the previous �eld

" (x) = " 0(x; y) + zk(x; y) with " T =
h

" xx " yy " xy

i
; kT =

h
kxx kyy kxy

i
(A.2)

where" 0 andk are the strain �eld of the middle plane and the curvature of the middle plane, respectively. In the orthotropic
frame of reference (1;2;3) (where1 and2 correspond to the �ber and the transverse directions, respectively), the in-plane

14



orthotropic elastic law is

� = Q" with � T =
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(A.3)

whereQ is the sti� ness matrix. The forces and the moments in the plate are obtained through the integration of the stresses
along the ply thickness

N =
� h

2

� h
2

� dz; M =
� h

2

� h
2

� zdz with NT =
h

Nx Ny Nxy

i
; MT =

h
Mx My Mxy

i
(A.4)

which can be expressed in terms of strain via the orthotropic elastic law

"
N
M

#
=

"
A B
B D

# "
" 0

k

#
(A.5)

with

A =
1
2

pX

k=1

� hk

hk� 1

Qkdz; B =
1
2

pX

k=1

� hk

hk� 1

zQkdz; D =
1
2

pX

k=1

� hk

hk� 1

z2Qkdz (A.6)

whereQk is the sti� ness matrix of the plyk expressed in the plate frame of reference (x; y; z).
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List of �gure captions

Figure 1: Simply supported axisymmetric tubular composite shaft with rolling-element bearings mounted on viscoelastic
supports.

Figure 2: The Campbell diagram of theZinberg and Symonds' shaft (with ke = 107 N m� 1, (—) forward modes, (- - -)
backward modes).

Figure 3: Normalized strain distribution in the �rst mode of a composite withZinberg and Symondscomposite. (a) ABAQUS
FEM plate versus laminate theory; (b) ABAQUS FEM cylindrical shell versus laminate theory.

Figure 4: Finite element simulation of the Zinberg and Symonds [14] shaft with ABAQUS: e� ects of the end �ttings on
the �rst natural frequency. (a) First mode of the shaft with thin and in�nitely rigid end �ttings and detailed mesh of an end
�tting; (b) First mode of the shaft with elastic end �ttings and detailed mesh of an end �tting.

Figure 5: Normalized strain distribution (a) and stress distribution (b) in the �rstZinberg and Symonds' shaft mode:
ABAQUS shell versus laminate theory withB = 0.

Figure 6: Evolution of the critical speeds and threshold speed of a composite shaft (T300/5208) mounted on dissipative
supports ([90,03,45,-45]s, ts = 1:5 mm,rm = 39:25 mm,� e = 7 % andmb = 1 kg). (a) critical speeds and threshold speed
versus the shaft length withke = 2 � 106 N m� 1 ; (b) critical speeds and threshold speed versus the support sti� ness with
l = 1:2 m.

List of table captions

Table 1: Material properties for a 0.6 volume fraction

Table 2: First critical speed in Zinberg and Symonds' case [14] using various theories (Di� . = relative di� erence in com-
parison with classical EMBT, Gyr.= gyroscopic e� ect, R.I.= rotatory inertia, Sh.= transverse shear e� ect, Sup.= support
sti� ness e� ect, Co.= laminate coupling mechanism and E.F.= end �tting)

Table 3: Normalized middle plane strains and curvatures inZinberg and Symondscomposite for the �rst mode

Table 4: Comparison between ECMBT and EMBT with various stacking sequences in a composite shaft (T300/5208)
mounted on dissipative supports (l = 2 m,ts = 1:5 mm,rm = 39:25 mm,ke = 2 � 106 N m� 1, � e = 7 % andmb = 1 kg)
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