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Abstract

Linear stability analysis of a dielectric fluid confined in a cylindrical annulus of infinite length is performed under

microgravity conditions. A radial temperature gradient and a high alternating electric field imposed over the gap

induce an effective gravity that can lead to a thermal convection even in the absence of the terrestrial gravity. The

linearized governing equations are discretized using a spectral collocation method on Chebyshev polynomials to

compute marginal stability curves and the critical parameters of instability. The critical parameters are independent

of the Prandtl number, but they depend on the curvature of the system. The critical modes are non-axisymmetric and

made of stationary helices.
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1. Introduction

A combined action of a radial temperature gradient

and an electric field on a dielectric liquid is of great in-

terest from both fundamental research and applications.

The temperature gradient induces a gradient of the per-

mittivity ǫ = ǫ(T ) and the latter is coupled with the elec-

tric field to produce an electric body force [1]. When the

electric field is alternating with a high frequency, i.e.,

with a time-period much shorter than the charge relax-

ation time, there is no free charge in the liquid [2] and

the density of the electric force is given by

fe = −
1

2
E2
∇ǫ − ∇

[

1

2
ρE2

(

∂ǫ

∂ρ

)

T

]

, (1)

where E is the local electric field and ρ is the liquid

density. The first and second terms are called the di-

electrophoretic and electrostrictive forces, respectively.

As the first term is related to the temperature gradient,

it can develop thermal convection through a thermo–

electro–hydrodynamic instability without any other ex-

ternal force, e.g., the terrestrial gravity. From the funda-

mental standpoint, this convection considered in a cylin-

drical or spherical geometry is of particular interest.

With applying a radial temperature gradient and electric

field, the dielectrophoretic force is aligned in the radial

direction and can be deemed as an effective gravity that

we call the electric gravity. Many geophysical problems

can be simulated by this convection in the dielectric liq-

uid [3, 4]. The application of the temperature gradient

and the electric field may be used for heat transfer en-

hancement in dielectric liquids and may yield large re-

ductions in weight and volume of heat transfer systems.

This technique is attractive for aerospace cooling sys-

tems [5].

In the present paper, we consider the configuration of

an annulus filled by a dielectric liquid and subjected to a

radial temperature gradient and a radial alternating elec-

tric field. The stability in this configuration was investi-

gated by Chandra & Smylie [6] with assuming the mi-

crogravity environment where the buoyancy associated

with the terrestrial gravity was absent. They considered

the linear stability to axisymmetric disturbances and

found instability above a critical electric Rayleigh num-

ber Rac. Chandra & Smylie took into account only dis-

turbances in the velocity and temperature fields in their

analysis. No disturbance in the electric field was consid-

ered, although the permittivity (and electric field) would

have perturbation components through its temperature

dependence. This possible feedback effect of the tem-

perature disturbances on the electric permittivity was

taken into account by Takashima [7] by including the
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Gauss’s law for the electric field in the linear stability

problem. He considered the problem in the same annu-

lar geometry for axisymmetric disturbances. His anal-

ysis showed the critical Rayleigh number depends on

another parameter β representing the thermal variation

of the permittivity. Besides these theoretical stability

analyses in the annular geometry, some works exist for

the spherical geometry [8, 9, 10]. Yavorskaya et al. [8]

considered a dielectric liquid layer between two con-

centric spherical surfaces with a radial temperature gra-

dient and a radial electric field. They found instabil-

ity occurrence and a sensitive dependence of the critical

Rayleigh number on the radius ratio of the two surfaces.

Futterer et al. [10] performed a numerical simulation by

a spectral code for cases with and without the rotation

of the inner surface. They found development of steady

convection as well as periodic and chaotic behavior of

the flow. When the rotation is absent, they found sudden

transition from steady to chaotic flows.

In the literature, some experiments are found that

were performed in the annular geometry. Chandra &

Smylie [6] reported an experiment conducted under

the terrestrial gravity condition.They used vertically in-

stalled concentric cylinders with the gap filled by a

silicone oil. When Ra exceeded a critical value Rac,

they observed the rapid increase of the Nusselt num-

ber from the unity. The experimental Rac agreed well

with their theoretical result under the microgravity con-

dition. However, there will be a thermal convection due

to the terrestrial gravity in the basic state [11, 12]. Fur-

ther justification is needed to conclude that this Nusselt

number behavior is associated to the TEHD instability.

Recently, Sitte et al. [13] conducted an experiment in

microgravity conditions. They visualized the thermal

field in the gap of two cylinders by the Schlieren tech-

nique and observed convection at large electric Rayleigh

numbers. Their results indicate the non-axisymmetric

behavior of flow, which has never been considered in

the stability analysis for the annular geometry.

The present work deals with linear stability to non-

axisymmetric as well as axisymmetric disturbances. In

Section 2, we present the governing dynamical and elec-

tric equations. The results are given in Section 3. The

last section is concerned with the discussion and con-

clusion.

2. Governing Equations

We consider an incompressible Newtonian dielectric

fluid confined between two coaxial cylinders of radii R1

and R2 (R1 < R2), maintained at temperatures T1 and T2

(T1 > T2), respectively. A high frequency alternating

electric tension is imposed over the gap. As the liquid

does not have enough time to react to the rapid field

variations, only the effective field from the mean value

E(r) pertains to the electric force (1).

We adopt a Boussinesq–type approximation: ther-

mal variation of fluid properties influences the dynamics

only through the destabilizing electric body force (1).

As to the permittivity, we assume a linear dependence

on the temperature:

ǫ (T ) = ǫ2 [1 − e (T − T2)] (2)

where ǫ2 is the electric permittivity at temperature T2

and e is the thermal coefficient of permittivity. The

equations governing the flow subjected to a temperature

gradient and an alternating electric field are [1],

∇ · v = 0, (3a)

∂v

∂t
+ (v · ∇) v = −

1

ρ
∇P + ν△v +

1

2

ǫ2e

ρ
E2
∇T, (3b)

∂T

∂t
+ (v · ∇) T = κ△T, (3c)

∇ · (ǫE) = 0, (3d)

E = −∇φ, (3e)

where ν is the kinematic viscosity, κ is the thermal dif-

fusivity, v is the velocity. The generalized pressure P

includes the electrostriction component:

P = p +
1

2
ρ

(

∂ǫ

∂ρ

)

T

E2. (4)

We take the gap size d = R2 − R1 as characteris-

tic length and τ0 = d2/ν as characteristic time as in

Takashima [7]; it represents the shortest timescale for

most of dielectric liquids. The characteristic velocity

is given by V = ν/d, correspondingly. The temper-

ature is nondimensionalized by temperature difference

∆T = T1 −T2 between the cylindrical walls. Further the

pressure is scaled by P0 = ρν
2/d2 and the electric field

by E0 = Ve/d, where Ve is the effective value of the

potential difference applied across the cylinders. The

scaling leads to a set of four dimensionless parameters

necessary to specify the flow: the dimensionless curva-

ture δ = d/R1, the Prandtl number Pr = ν/κ, the ther-

mal variation of permittivity over the imposed tempera-

ture difference β = e (T1 − T2) and the electric Grashoff

number:

Gr =
geα∆Td3

ν2
with ge =

ǫ2eVe
2

2ραd3
, (5)
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where ge is the electric gravity. The parameter β has

been omitted in [6, 8] by assuming either a small coef-

ficient e or a small temperature difference. We will also

use later the electric Rayleigh number Ra = GrPr.

When the imposed temperature and electric poten-

tial differences are small, the electric gravity is colin-

ear with the temperature gradient, so that there is no

source of vorticity and velocity fields. The basic state

will then be purely conductive without fluid motion:

v = 0. For an infinite cylindrical annulus, the basic

state is expected to be axisymmetric and axially invari-

ant, i.e., E = −(dΦ/dr)er and T = T (r). Thus it is gov-

erned by the following nondimensionalized equations

obtained from Eqs. (3b)–(3e)

dP

dr
−Gr

(

dΦ

dr

)2
dT

dr
= 0, (6a)

1

r

d

dr

(

r
dT

dr

)

= 0, (6b)

1

r

d

dr

(

rǫ
dΦ

dr

)

= 0, (6c)

with the boundary conditions

T (r1) = 1 and T (r2) = 0, (6d)

Φ(r1) = 1 and Φ(r2) = 0, (6e)

where r1 and r2 are the dimensionless radii of the inner

and outer cylinders, respectively: r1 = δ
−1, r2 = 1+ δ−1.

The integration of these equations yields the tempera-

ture and the electric potential of the basic state as

T (r) = −
log

(

δ
1+δ

r
)

log (1 + δ)
and Φ(r) =

log
[

1 + βT (r)
]

log (1 − β)
.

(7)

The generalized pressure of the basic flow is obtained

by substituting these solutions into equation (6a):

P = Gr

∫ (

dΦ

dr

)2
dT

dr
dr. (8)

The stability of the flow can be examined by con-

sidering linearized governing equations about the basic

state with respect to infinitesimal perturbation expanded

into the normal mode:

Ψ (r) exp
[

ikz − inϕ + st
]

with Ψ =
[

u, v,w, π, θ, φ
]T
,

(9)

where k is the axial wavenumber and n is the azimuthal

mode number. In general, the time evolution rate of the

perturbation s is complex : s = σ + iω where σ and ω

are the temporal growth rate and frequency respectively.

The perturbative velocity components in the radial, az-

imuthal and axial directions are u, v and w respectively.

The perturbations of the generalized pressure, the tem-

perature and the electric potential are denoted by π, θ

and φ. Substituting the normal mode into the governing

equations, subtracting the basic flow and neglecting the

nonlinear terms in perturbation, we obtain the following

linearized equations:

1

r

d

dr
(ru) −

in

r
v + ikw = 0, (10a)

△u−
u

r2
+

2in

r2
v−

dπ

dr
+Gr















(

dΦ

dr

)2
dθ

dr
+ 2

dΦ

dr

dT

dr

dφ

dr















= su,

(10b)

△v −
v

r2
−

2in

r2
u +

in

r
π −

in

r
Gr

(

dΦ

dr

)2

θ = sv, (10c)

△w − ikπ + ikGr

(

dΦ

dr

)2

θ = sw, (10d)

1

Pr
△θ −

dT

dr
u = sθ, (10e)

(1 − βT )△φ−β
dT

dr

dφ

dr
−β

[

dΦ

dr

(

d

dr
+

1

r

)

+
d2Φ

dr2

]

θ = 0,

(10f)

with the Laplacian

△ =
d2

dr2
+

1

r

d

dr
−

(

n2

r2
+ k2

)

. (11)

In the equations of motion (10b)–(10d), the terms in-

cluding the Grashof number Gr stem from the dielectric

force term in Eq. (3b). The coupling of electric and ther-

mal fields affects liquid motion. Such coupling is also

seen in the terms proportional to β in Eq. (10f). The

temperature dependence of the permittivity can modify

the system behavior through these terms, as Takashima

examined its influence on the stability [7]. These cou-

plings contain the radial temperature gradient dT/dr,

the basic electric field (−dΦ/dr) and the gradient of the

electric field, (−d2Φ/dr2). Since these three gradients

depend on the curvature of the annulus, the stability of

the system will be sensitive to the curvature.

As to boundary conditions, perturbation velocity,

temperature and electric potential must vanish on cylin-

drical surfaces:

u =
du

dr
= v = w = θ = φ = 0 at r = r1, r2. (12)
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3. Results

The governing equations (10a)–(10f) is discretized

using collocation method [14, 15] and considered only

at finite number of points r j inside the gap ( j =

1, 2, · · · ,N − 1). N is the highest order of considered

Chebyshev polynomials. These points are related to

the Chebyshev–Gauss–Lobatto collocation points x j =

cos( jπ/N) by r j = (x j + 1)/2+δ−1. The discretized gov-

erning equations and the boundary conditions results in

a generalized eigenvalue problem:

LΨ = sMΨ, (13)

where the operators L andM contains the characteris-

tics on the basic state.

The eigenvalue problem (13) is solved in order to

obtain the eigenvalue relation F (Pr,Gr, η, n, k, σ, ω) =

0 for the parameter ranges Pr ∈ [1, 200] and η ∈

[0.1, 0.9]. Marginal stability curves Gr = Gr(k) is

computed for different values of n. The critical mode

(kc, nc, ωc) is then determined from the curves. Fig-

ure 1 shows few marginal stability curves for differ-

ent values of the curvature δ and a fixed value of the

Prandtl number Pr = 7. The lowest minimum belongs

to the marginal stability curve with n = nc , 0, i.e., the

critical mode is non-axisymmetric. Moreover, it is ob-

served that the critical modes are stationary (ωc = 0).

Values of the critical parameters from Fig. 1 are given

in Table 1. The values of kc and nc imply the con-

vection rolls of the critical mode are made of helices

which are inclined to the azimuthal direction by an an-

gle ψ = tan−1[2nδ/k (2 + δ)]. For δ = 0.111, ψ = 57.3◦.

The variation of the critical Grashof number with

Prandtl number is elucidated in Fig. 2 for δ = 0.25.

It is found that the critical values of Gr vary inversely

with Pr for a given curvature δ. This means that critical

Rayleigh number Rac is constant. In the figure, the val-

ues of this critical Rayleigh number Rac are also plot-

ted, showing the instability threshold is characterized

by a Rac independent of Pr. The independence from

Table 1: Critical parameters and the marginal curve minima of ax-

isymmetric mode for different curvatures (Pr = 7, β = 0.01)

Curvature Critical mode Axisymmetric mode

δ kc nc Grc kmin Grmin

(a) 0.111 1.69 25 1075 3.12 1077

(b) 0.25 1.62 12 526.7 3.12 530.6

(c) 1 1.53 4 171.3 3.14 183.5

(d) 4 1.41 2 71.37 3.25 98.31
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Figure 1: Marginal stability curves for axisymmetric (n = 0) and non-

axisymmetric (n = nc , 0) perturbations for Pr = 7, β = 0.01 and

various values of curvature δ: (a) δ = 0.111, (b) δ = 0.25, (c) δ = 1

and (d) δ = 4.

the Prandtl number is also found in the critical axial

wavenumber kc and the critical azimuthal mode num-

ber nc (Fig. 3). It is also seen that kc is always around

1.5 and becomes smaller with increasing δ, in contrast

with nc which decreases substantially with δ. The in-

fluence of the curvature δ on the critical Rayleigh num-

ber Rac is shown in Fig. 4. The value of Rac decreases

with δ, i.e., the curvature lowers the instability thresh-

old. This would be related to the fact that the electric

field and temperature gradient take locally large values
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at the inner cylindrical surface for large curvatures: the

dielectrophoretic body force becomes consequently im-

portant.

4. Discussion

The obtained results are different from those reported

in Chandra & Smylie [6] and Takashima [7] who con-

sidered only axisymmetric disturbances. Therefore, the

criterion given by these authors to predict the instability

has to be extended to non-axisymmetric perturbations.

The independence of the critical parameters from the

Prandtl number is also found in the ordinary Rayleigh-

Bénard problem, in which a liquid layer between two

horizontal plates is heated from below. The critical

value of the Rayleigh number Ra′ = gα∆T ′d′3/κν (∆T ′:

temperature difference, d′: depth of the layer, g: gravi-

tational acceleration) is 1708 and the critical wavenum-

ber k′c is 3.117, independent of Pr [16]. The main differ-

ences of the TEHD instability problem considered in the

present work from this Rayleigh-Bénard problem is that

the electric gravity depends on electric force and geom-

etry, while the gravity is constant in the latter problem.

As a consequence, the critical parameters in the present

problem depend sensitively on the curvature (Figs. 3

& 4). Such a sensitive dependence is also found in the

TEHD instability problem in a spherical geometry [8].

In the ordinary Rayleigh-Bénard problem, the behavior

above the criticality depends on Pr, e.g., the occurrence

of zigzag, cross-roll and bimodal instabilities found in

the nonlinear regime is influenced by Pr [16]. One may

expect such dependence on the Prandtl number in the

TEHD instability.

According to our results, under microgravity condi-

tions, it is easier to trigger critical modes for an annulus

with a large curvature, i.e., a system of cylindrical sur-

faces with largely different radii. In Table 2, values of

the electric tension Ve required to provoke the TEHD

instability are shown for different curvatures in two di-

electric liquids. The corresponding electric gravity ge is

also presented for the gap d = 5 mm. Considered liquids

are the Baysilone R© silicone oil M5 and the 1-Nonanol,

which were used in the GeoFlow experiments [3, 4]

and should be used in future experiments with annu-

lar geometries in microgravity conditions. The imposed

temperature difference ∆T is assumed to be 5 degrees.

The critical parameters (kc, nc,Rac) for both liquids take

similar values for the same curvature δ, as these param-

eters are independent of Pr. Small differences in values

of Rac are due to the difference in the thermal variation

of the permittivity β. It is seen that Ve at large curvature

is substantially lower than Ve at small curvature. By
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Figure 2: Variation of critical Grashof number Grc and critical

Rayleigh number Rac with Prandtl number Pr for δ = 0.25 and

β = 0.01.
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Figure 3: Variation of the critical mode with the Prandtl number Pr

for different values of curvature δ. (a) Critical axial wavenumber kc

(b) Critical azimuthal mode number nc.
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Figure 4: Variation of critical electric Rayleigh number Rac with the

curvature δ.

choosing the geometry of δ = 1, for example, one can

lower Ve by a factor 0.4 from the value for δ = 0.111.
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Table 2: Few values of the critical electric potential Ve for the

Baysilone R© silicone oil M5 (I) and the 1-Nonanol (II).

Liquid δ Rac Ve (kV) ge (m/s2)

I

0.11 7785 6.60 4.46

1 1206 2.60 0.691

4 501 1.67 0.287

II

0.11 7254 3.38 13.8

1 1192 1.37 2.27

4 498 0.89 0.951

I. ρ = 920 kg/m3, ν = 5×10−6 m2/s, ǫ/ǫ0 = 2.7, e = 1.065×10−3 (25◦C)

II. ρ = 829 kg/m3, ν = 14.2×10−6 m2/s, ǫ/ǫ0 = 8.83, e = 3.03×10−2 (20◦C)

5. Conclusion

We have conducted the linear stability analysis of the

dielectric fluid confined between two coaxial cylinders

and subjected to a radial temperature gradient and a ra-

dial alternating electric field. The instability threshold is

characterized by the critical Rayleigh number Rac. The

value of Rac as well as the critical mode (kc, nc) are in-

dependent of the Prandtl number Pr, while they depend

sensitively on the curvature δ. The critical modes are

stationary helices (ω = 0, nc , 0). When the curva-

ture δ is large, the basic state is more unstable to non-

axisymmetric disturbances than to axisymmetric ones.
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