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Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alter-
nating electric field and a temperature gradient is investigated under microgravity conditions. A
thermo-electric coupling resulting from the thermal variation of the electric permittivity of the fluid
produces the dielectrophoretic (DEP) body force, which can be regarded as thermal buoyancy due
to an effective gravity. This electric gravity can destabilize a stationary conductive state of the fluid
to develop convection. The similarity of the DEP thermal convection with the Rayleigh-Bénard
(RB) convection is examined by considering its behavior in detail by a linear stability theory and
a two-dimensional direct numerical simulation. The results are analyzed from an energetic view-
point and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a
thermo-electric feedback make the critical parameters different from those in the RB instability.
The nonuniformity of the electric gravity arising from the finite variation of permittivity also affects
the critical parameters. The characteristic constants of the GL equation are comparable with those
for the RB convection. The heat transfer in the DEP convection is weaker than in the RB convection
as a consequence of the feedback that impedes the convection.

I. INTRODUCTION

The application of an electric field E on a dielectric
fluid gives rise to the electrohydrodynamic force den-
sity fEHD [1]:

fEHD = ρfE − 1
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)

T

E2

]

, (1)

where ρf is the free electric charge density, E is the mag-
nitude of E and T is the temperature. The electric per-
mittivity and mass density of the fluid are denoted by ǫ
and ρ, respectively. The first term is the electrophoretic
force arising from the Coulomb forces that the field ex-
erts on free charges. It is often the dominant compo-
nent of fEHD under a static or low frequency electric
field. When the frequency f is high compared with the
viscous time scale τν = d2/ν (d: the length scale of a
flow, ν: the kinematic viscosity of the fluid), the fluid
cannot respond to the rapid variation of E and the elec-
trophoretic force has no influence on its motion, as long as
the charge density ρf does not vary over the period f−1.
Under such a high frequency electric field, the second
term of Eq. (1) called the dielectrophoretic (DEP) force
becomes dominant, as E2 has a static component. The
third term is an electrostrictive force which would not
influence flows when the fluid is incompressible and has
no mobile boundaries [2].
The DEP force can arise when the fluid is subjected

to a temperature gradient. The electric permittivity ǫ is
a decreasing function of the temperature in the most of
dielectric fluids and can be modeled by a linear relation-
ship:

ǫ (θ) = ǫ1(1 − eθ), (2)
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where ǫ1 is the electric permittivity at a reference tem-
perature T1 and θ is the temperature deviation from the
reference temperature: θ = T−T1. A temperature gradi-
ent then results in a DEP force directed from low to high
temperature regions in the fluid. This thermo-electric
force can generate a thermal convection and, hence, it
can be used to enhance heat transfer in dielectric fluids
even under microgravity conditions.
The electric gravity ge is often employed in the analysis

of the DEP thermal convection for its intuitive compre-
hension. With use of Eq. (2), the DEP force can be devel-
oped as −E2

∇ǫ/2 = ∇(eθǫ1E
2/2)− θe∇(ǫ1E

2/2). The
first term is a gradient force that can be lumped with the
pressure term in the dynamical equations of fluid motion.
The second term can be regarded as a thermal buoyancy
force, −ραθge (α: the coefficient of thermal expansion),
due to an effective gravity ge:

ge =
e

αρ
∇

(

ǫ1E
2

2

)

, (3)

which represents the variation of the electric energy
stored in the dielectric fluid per volume. This electric
gravity varies in space and time in general. The electric
Rayleigh number L = α∆θge0d

3/κν is then introduced as
control parameter of the DEP thermal convection, where
ge0 is the characteristic value of the electric gravity (d,
∆θ: the gap and the temperature difference between the
electrodes, κ: the thermal diffusivity).
Roberts [3], Turnbull [4] and Stiles et al. [5] have in-

vestigated the linear stability of a horizontal fluid layer
between two parallel plane electrodes kept at different
temperatures. Under the assumption that the DEP force
was the primary component of the electrohydrodynamic
force, they found its destabilizing effects on the station-
ary conductive state. Convection developed beyond crit-
ical values Lc of the electric Rayleigh number, even in
ordinarily stable thermal stratification where the temper-
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ature gradient was directed upwards. Under micrograv-
ity conditions, it was found that Lc = 2128.7 with the
critical wavenumber kc = 3.226/d. Takashima & Hama-
bata [6] have considered the same problem but in a ver-
tical configuration of electrodes, assuming a vertical ba-
sic flow in the conductive regime. Instability occurred in
different modes: hydrodynamic, thermal and electric, de-
pending on the values of L and the Grashof number Gr.
In the limit of small Gr, the electric mode instability ap-
peared at the same Lc and kc as those in microgravity.
The DEP convection in its nonlinear regime has not been
investigated so much. Stiles et al. [7] have performed a
weakly nonlinear analysis. They have estimated the heat
transfer enhancement by convection for a Prandtl num-
ber Pr(= ν/κ)= 10 and found Nu − 1 ≈ 0.8(L/Lc − 1)
in the vicinity of the criticality.
The similarity of the DEP thermal convection with the

ordinary thermal convection has been noticed for a long
time. However, the above critical parameters and Nus-
selt numbe are different from those in the RB convection.
These differences have never been explained to the au-
thors’ knowledge. Furthermore, the DEP convection in-
volves a parameter γe = e∆θ which has no corresponding
part in the RB convection. This dimensionless permittiv-
ity variation γe has been assumed to be small: |γe| ≪ 1
in the previous theoretical works [3, 5–7], although it can
be significant in some dielectric fluids with a large ther-
mal coefficient e, e.g., in acetonitrile and nitrobenzene,
e ≈ 0.2.

In the present work, we examine the similarity of the
DEP thermal convection in plane geometry with the RB
convection by detailed theoretical considerations. We
perform a linear stability analysis in a system with an
infinite lateral extension with taking into account finite
values of γe. A two-dimensional direct numerical simula-
tion for a system with a large aspect ratio is also carried
out for different Pr (≥ 1) to investigate the nonlinear be-
havior of the convection. Obtained results are analyzed
from an energetic viewpoint and in the framework of the
Ginzburg-Landau equation.
The governing equations of the DEP thermal convec-

tion are given in Sec. II with the basic conductive state.
An energy equation is also given there for later discus-
sions. The linear stability theory and its results are pre-
sented in Sec. III. The results of the direct numerical
simulation are given in Sec. IV with their analysis by
the Ginzburg-Landau (GL) equation. The heat trans-
fer enhancement is also discussed. The final section is
concerned with the conclusion.

II. PROBLEM FORMULATION

A. Governing equations

A dielectric fluid layer subjected to an alternating elec-
tric voltage

√
2V0 sin(2πft) and to a temperature differ-
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FIG. 1. Geometrical configuration of the problem.

ence ∆θ is considered (Fig. 1). For an electric field with
a high frequency compared to the viscous time scale τν ,
only the time-averaged component of the DEP force can
induce the convective motion of the fluid [8, 9]. In this
high frequency approximation, the equations of continu-
ity, of motion and of heat conduction and the Gauss’s law
of electricity read in the electrohydrodynamic Boussinesq
approximation [8]:

∇ · u = 0, (4)

∂tu+ u ·∇u = −∇π +∇2u− L

Pr
θge, (5)

∂tθ + u ·∇θ =
1

Pr
∇2θ, (6)

∇ · [ǫ(θ)∇φ] = 0 with E = −∇φ, (7)

where u is the two-dimensional velocity field: u =
ux̂+ vŷ (x̂, ŷ: the unit vectors along the x- and y-axes),
π is the generalized pressure including electrohydrody-
namic components and φ is the electric potential. The
equations have been nondimensionalized with scales d of
length, d2/ν of time, V0 of electric potential and ∆θ of
temperature. In the present study the scale of time d2/ν
is more appropriate than the time scale of thermal diffu-
sion d2/κ, as the former is the smallest when Pr > 1,
the case in which we are interested. The permittiv-
ity is scaled by ǫ1 and its thermal variation is given by
ǫ = 1− γeθ according to Eq. (2).
These equations are completed by the boundary con-

ditions on the electrodes at y = ±1/2 and on the walls
at x = ±Γ/2 (Γ: the aspect ratio):

u = 0, θ = 1

2
, φ = 1 at y = − 1

2
(8)

u = 0, θ = − 1

2
, φ = 0 at y = 1

2
(9)

u = 0, ∂xθ = 0, ∂xφ = 0 at x = ±Γ

2
(10)

We have assumed that the walls are thermally adiabatic
and made of a material with a small electric permittivity
compared to the fluid (Eq. 10), considering the problem
in its simplest configuration.

In the theoretical model formulated by Eqs. (4)–(10),
we have considered an initially electroneutral fluid layer
and have assumed that no space charge accumulation
is induced by the electric field: ρf = 0 in the bulk of
the fluid during the entire development of convection
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flow. This assumption is valid under the following con-
ditions: i) f ≫ τ−1

e , τ−1
m , τ−1

d and ii) d ≫ λD, where τe,
τm and τd are the time scales of the charge relaxation,
migration and diffusion processes, respectively. The De-
bye length λD represents the thickness of the diffusion
layer, which is an electrically charged layer constituting
the outer part of the electric double layer formed on each
fluid-electrode interface. Under condition i), the electric
field varies too rapidly to alter the spatial distribution of
charges in the fluid; under condition ii), the charge trans-
port by the convection flows from the diffusion layer into
the bulk will be negligible.
For a bipolar system consisting of positive and negative

charges of the same magnitude q, the time scales and the
Debye length are given by [10]:

τe =
ǫ

σ
, τm =

h

E (b+ + b−)
, τd =

h2

K+b
−
+K

−
b+

b++b
−

,

λD =

√

ǫkBT

2q2n∞

, (11)

where σ is the electric conductivity, h is a length scale,
kB is the Boltzmann constant, n∞ is the number den-
sity of both charges far from electrodes, and b± and
K± are the mobilities and diffusion coefficients of posi-
tive/negative charges, respectively. In silicone oils, the
time scales are estimated for the diffusion layer (i.e.,
h = λD) as τe ∼ 10–102 s, τd ∼ 102 s and τm ∼
8.2×106ν1/2E−1(q/qe)

−1/2 [s] with λD ∼ 10−4 m, where
qe is the elementary charge and ν and E are their val-
ues in the units of m2/s and V/m, respectively [11]. The
migration time τm gives the smallest value among the
three time scales at practical field strengths (E ∼ 105–
106 V/m), being, e.g., τm = 0.026 s for a silicone oil with
ν = 10−5 m2/s. According to conditions i) and ii), the
theoretical model (4)–(10) would enable to describe the
flow in a layer of the latter oil, thicker than a few millime-
ters and subjected to an electric field with a frequency
higher than τ−1

m = 38 Hz.

B. Conductive state

When the imposed temperature difference is small, the
purely conductive state (u = 0) is established. The tem-
perature and electric fields, θ = θ̄(y), φ = φ̄(y) are
then obtained analytically from Eqs. (6) and (7) with
the boundary conditions (8)–(10).

φ̄ =
log
(

1+γey
1+γe/2

)

log
(

1−γe/2
1+γe/2

) , θ̄ = −y (12)

This conductive state is independent of the aspect ratio Γ
thanks to the idealized boundary condition (10). It will
therefore be considered as the basic state both in the
linear stability theory performed for Γ → ∞ and in the

DNS for a large but finite Γ. The electric gravity (3) in
the conductive state is given by:

ḡe = ḡeŷ with ḡe = − 1

(1 + γey)
3
. (13)

We have chosen for scaling ḡe the electric gravity at
the middle of the gap: ge0 = eǫ1V

2
0 γ

3
e /ραd3[log{(1 −

γe/2)/(1 + γe/2)}]2. The electric Rayleigh number L in
Eq. (5) is based on this characteristic gravity:

L =
ǫ1V

2
0 γ

4
e

ρκν

[

log

(

1− γe/2

1 + γe/2

)]−2

, (14)

which recovers the electric Rayleigh number introduced
in the previous works [3, 5–7] in the limit of small γe.

C. Energy equation

An equation that governs the evolution of the flow ki-
netic energy can be derived from the Navier-Stokes equa-
tion (5). Taking the inner product of the equation with u

and integrating over the whole fluid domain, we have

dK

dt
= WBG +WPG −Dv, (15)

where K, WBG, WPG and Dv are the flow kinetic energy,
the work done by the basic electric gravity ḡe, the work
done by the perturbation electric gravity g′

e = ge−ḡe and
the viscous dissipation, respectively. They are computed
by integrating over the fluid domain the corresponding
quantities per volume:

K = |u′|2 /2, (16)

wBG = −Pr−1Lθ′u′ · ḡe, (17)

wPG = −Pr−1L
(

θ̄u′ · g′

e + θ′u′ · g′

e

)

, (18)

dv = ∇u′ : (∇u′)
T
, (19)

where the primes indicate perturbation quantities.
The basic electric gravity ḡe can be regarded as

the counterpart in the DEP thermal convection to the
Earth’s gravity in the ordinary thermal convection. The
perturbation electric gravity g′

e represents a thermo-
electric feedback associated with the electric field per-
turbations that arise from the permittivity variation due
to temperature disturbances (Eq. 7). The contribution
of the work WPG to the kinetic energy evolution is hence
distinctive of the DEP convection.

III. LINEAR STABILITY THEORY

Governing equations (4)–(7) are linearized about the
basic state (12). Developing perturbations into normal
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modes est+ikx with the complex growth rate s and the
wavenumber k, we have

0 = ikU +DV, (20)

sU =
(

D2 − k2
)

U − ikΠ− L

Pr
θ̄Gex, (21)

sV =
(

D2 − k2
)

V −DΠ− L

Pr
ḡeΘ− L

Pr
θ̄Gey, (22)

sΘ = V +
1

Pr

(

D2 − k2
)

Θ, (23)

0 = −γe
[

Dφ̄D +D2φ̄
]

Θ

+
[

(1 + γey)
(

D2 − k2
)

+ γeD
]

Φ, (24)

where (U, V,Π,Θ,Φ) are the normal mode amplitudes
of the perturbations (u′, v′, π′, θ′, φ′), respectively, and
the operator D = d/dy. The normal mode ampli-
tudes (Gex, Gey) of the perturbation electric gravity g′

e

are given by

Gexx̂+Gey ŷ =
1

γ3
e

[

log

(

1− γe/2

1 + γe/2

)]2

×
[

ikDφ̄DΦx̂+
(

Dφ̄D2Φ+D2φ̄DΦ
)

ŷ
]

. (25)

On the electrodes the perturbations satisfy the fol-
lowing boundary conditions corresponding to Eqs. (8)
and (9):

U = DU = V = Θ = Φ = 0 at y = ± 1

2
. (26)

The condition on the adiabatic walls (10) has been re-
moved, as we consider a system with an infinite lateral
extension (Γ → ∞) in the present linear theory.
The set of equations (20)–(24) are discretized by a

spectral collocation method. All the unknown functions
are developed into Chebyshev series and the equations
are considered only at the Chebyshev-Gauss-Lobatto col-
location points. The highest order of considered Cheby-
shev polynomials is set at 60 to ensure the convergence.
The discretized governing equations are coupled with the
boundary conditions (26) to form a generalized eigen-
value problem. Its eigenvalues and eigenvectors are com-
puted by employing the QZ-decomposition.

Marginal stability curves are obtained by solving the
eigenvalue problem for different values of L and k at
given Pr and γe. The minimum of a marginal curve
gives the critical parameters (kc, Lc), which are found
to be independent of the Prandtl number. The corre-
sponding critical mode is stationary as in the RB prob-
lem [12, 13]. The critical parameters for small γe (< 0.1)
are constant, recovering the results of the existing theo-
ries [3, 5, 6]. For large γe (> 0.1), the critical parameters
depend on it (Fig. 2): significant decrease and increase
are found in Lc and kc, respectively.
The basic electric gravity ḡe provides energy to per-

turbation flow, i.e., WBG > 0 (Fig. 3). The mechanism
driving the convection is hence the thermal buoyancy as-
sociated with a temperature perturbation θ′ in the grav-
ity ḡe, similar to the RB instability. In contrast, the per-
turbation gravity g′

e dissipates energy, WPG < 0 (Fig. 3).
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kinetic energy K.

This stabilization by g′
e is absent in the RB convection

and explains why Lc at small γe is larger than the critical
Rayleigh number Rc (= 1708) in the RB convection in
spite of the apparent similarity in the driving mechanism.
The effect of WPG is also found to be more significant at
small wavenumber, giving an explanation to kc = 3.226
that is larger than in the RB instability (kc = 3.117).

For large γe, the work WBG is enhanced significantly,
although the work WPG is almost constant (Fig. 3). This
suggests that the basic electric gravity performs work
more efficiently at large γe than at small γe to destabilize
the conductive state at small Lc. Indeed, the spatial
nonuniformity of the basic electric gravity ḡe is reinforced
at large γe (Eq. 13). Strong electric gravity field in the
vicinity of the hot electrode (y = − 1

2
) provides energy

to the fluid locally (Fig. 4a) and provokes the instability
within a fluid sublayer attached to the electrode. As
a consequence, the kinetic energy of developed flow is
also concentrated in the region near the hot electrode
(Fig. 4b): the convection develops within an effective
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sublayer of a small thickness. This explains the observed
large critical wavenumbers (i.e., small wavelengths) at
large γe.

IV. DIRECT NUMERICAL SIMULATION

We have considered the nonlinear behavior of the DEP
thermal convection for a small γe (= 0.03) and a large
aspect ratio Γ = 114, solving the set of partial differen-
tial equations (4)–(7) with the boundary conditions (8)–
(10) by the finite element method implemented in a com-
mercial software (COMSOL MultiphysicsTM). Numeri-
cal grids are made of identical rectangles with sides of
∆x = 0.15 and ∆y = 0.1 so that the fluid domain is
divided by 760 and 10 along the x- and y-directions, re-
spectively. The backward differentiation formula is used
for the time integration. The convergence of computa-
tion was verified by grid refinements. The initial fields
are specified as null for the velocities, the temperature
and the electric field: the solved problem corresponds to
a situation where the electric potential V0 and the tem-
perature difference ∆θ are imposed instantaneously on a
steady isothermal fluid layer at t = 0.
For a value of L larger than Lc , small disturbances

grow exponentially to develop convection cells. This lin-
ear growth stage is followed by a saturation where hot
and cold cells are shifted toward the low and high temper-
ature electrodes, respectively, yielding a net heat transfer
enhancement by the convection (Fig. 5a, b). The cells
have a well-defined wavenumber k along the x-direction.
Its Fourier spectrum has a sharp peak with a width
around ∆k = 0.05 arising from the perturbation sup-
pression at the lateral walls.

A. Description by the Ginzburg-Landau equation

The bifurcation at L = Lc is found to be supercriti-
cal. As the critical mode is stationary and has a finite
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FIG. 5. Convection flow in the saturated state for Pr = 10
at L = 2200: (a) velocity (arrows) and perturbation temper-
ature (color), (b) equipotentials of perturbation electric field
and (c) the profile of the transversal velocity component v
at the middle of the gap (y = 0). The left end (x = −57)
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2.

wavenumber kc (i.e., Type I-s instability [14]), the be-
havior of the perturbation amplitude in the weakly non-
linear regime is hence expected to be described by the
Ginzburg-Landau (GL) equation:

τ0∂tA = δA+ ξ20∂
2
xA− ℓ |A|2 A, (27)

where δ is the supercriticality δ = L/Lc − 1. The con-
stants τ0, ξ0 and ℓ are characteristics of a given system.
In the present work, the envelop of the velocity pro-
file v = v(x) at the middle of the gap (y = 0) will be
taken as the amplitude A.
In the saturated state, the amplitude is constant far
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TABLE I. Critical parameters and characteristic constants
of the Ginzburg-Landau equation (27) determined from the
DNS (γe = 0.03).

Pr Lc τ0 ξ0 ℓ
1 2128.2 0.0783 0.388 0.0121
10 2128.9 0.590 0.377 1.15
100 2130.1 5.62 0.380 118
1000 2130.0 55.9 0.381 11800

from the adiabatic walls (Fig. 5c) where the GL equation

predicts |A| =
√

δ/ℓ =
√

(L/Lc − 1)/ℓ (= A0). The crit-
ical electric Rayleigh number Lc can be deduced from the
intersection point of the A2

0-line with the L-axis (Fig. 6a).
We find Lc = 2130, independently from the Prandtl num-
ber (Table I) as in the linear stability theories [3, 4, 6, 7].
The perturbation suppression by the lateral walls affects
little the critical parameters, since the aspect ratio Γ is
large.

In a large system, the solution of the GL equation in
the vicinity of a suppressing lateral boundary is given by
A = eiΦ

√

δ/ℓ tanh[(x − xw)/ξ]. On the first order, xw

is identical to the wall position and the phase Φ is an
arbitrary constant. The constant ξ represents a distance
over which perturbations heal from the suppression at
the boundary and is given by ξ =

√
2ξ0δ

−1/2. The hyper-
bolic tangent profile gives correct envelops to the varia-
tion of (v)y=0 (Fig. 5c). The determined healing length ξ
behaves as the theoretical predictions: ξ−2 increases lin-
early with L and intersects the L-axis at L = Lc (Fig. 6a).

The values of the characteristic constants τ0, ξ0 and
ℓ were found from the linear fits for δ/τ0 (the growth
rate), ξ−2 and A2

0 as functions of the supercriticality δ.
Table I shows the determined values of the constants
for different values of Pr. The characteristic time τ0
increases linearly with Pr and can be correlated by
the same relationship derived for the RB convection:
τ0 = (Pr + 0.5117)/19.65 [15]. The values of ξ0 do not
vary with Pr and are also identical to the value found in
the RB problem: ξ0 = 0.385. The determined ξ0 enables
to draw the stability boundary of the Eckhaus instability:
δ = 3ξ20(k − kc)

2 (Fig. 6b). The wavenumbers obtained
in the DNS are inside the stable zone. The constant ℓ
behaves as ℓ ∝ Pr2, implying |A| ∝ Pr−1. Since we
have chosen the envelop of the velocity v as the ampli-
tude A, this means that the convection velocity is scaled
by Pr−1 · (ν/d) = κ/d, as in the ordinary thermal con-
vections.

B. Heat transfer enhancement

The heat transfer is enhanced by the developed con-
vection for L > Lc. Figure 7 shows the Nusselt number
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FIG. 7. Heat transfer enhancement by saturated convection
flows. The Nusselt number Nu is shown as a function of
the supercriticality δ for different Prandtl numbers Pr (γe =
0.03).

Nu as a function of the supercriticality δ:

Nu =
1

Γ

(

−
∫ Γ/2

−Γ/2

∂yθdx + Pr

∫ Γ/2

−Γ/2

vθdx

)

. (28)

This number is the ratio of the total heat transfer to
the conductive heat transfer in the basic state (12). The
behavior of Nu is correlated by Nu − 1 = 0.78δ [16]
for small spercriticality δ, indifferently from the Prandtl
number Pr (≥ 1). The coefficient 0.78 agrees with its
value obtained in a weakly nonlinear analysis for Pr =
10 [7].
In the RB convection, the relationship Nu − 1 ≈

1.43(R/Rc− 1) [17] has been found for steady roll modes
insensitively from Pr (& 1). The coefficient of the su-
percriticality found for the DEP convection is hence sub-
stantially smaller than in the RB convection. This differ-
ence is too large to be explained by the spatial nonuni-
formity of the basic gravity (13) or by the presence of
the lateral walls: the former effect will be of the or-
der of O(γe) = 10−2 and the latter one will be about
O(Γ−1) = 10−2. In the linear stability theory, it was
found that g′

e tends to dissipate the kinetic energy of
flow (Fig. 3). This tendency persists even after the satu-
ration (Fig. 8). The reduction in convective heat transfer
by the perturbation electric gravity will be of the order
of WPG/WBG ≈ 0.3, agreeing with the relative difference
between the coefficients in the Nu correlations. The im-
peding effect of the perturbation electric gravity g′

e on
convection flows hence gives an explanation to the weaker
heat transfer enhancement in the DEP convection than
in the RB convection.

V. CONCLUSIONS

In the present study, the similarity of the DEP ther-
mal convection in plane geometry with the RB convec-
tion has been examined in detail by a linear stability
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FIG. 8. Different terms in the energy equation (15) in the
vicinity of the criticality in saturated states (Pr = 10). The
work done by the basic electric gravity WBG, the work done
by the perturbation electric gravity WPG and the viscous dis-
sipation Dv are all normalized by twice the kinetic energy K.

analysis and a direct numerical simulation. The problem
was formulated with regarding the DEP force as thermal
buoyancy due to the electric gravity (3). The difference
from the RB convection was highlighted by introducing
the perturbation electric gravity g′

e, which represents the
thermo-electric feedback, and by considering finite values
of the permittivity variation γe, which is associated with
the nonuniformity in the basic gravity ḡe (Eq. 13).
The linear stability theory revealed that the electric

gravity perturbation dissipates flow kinetic energy and
tends to stabilize the basic conductive state. The critical
parameters Lc and kc are hence different from those at
the RB instability even when ḡe is almost uniform over

the gap. When the nonuniformity of ḡe is important
(γe > 0.1), the instability occurs within a fluid sublayer
attached on the hot electrode where the electric gravity is
strong and provides energy efficiently to convection flows.
As a consequence, the critical values of L and k decreases
and increases, respectively, from their values at small γe.

The results obtained by the DNS showed that the con-
vection develops when L > Lc with wavenumbers inside
the Eckhaus stable zone. The convection flow in the non-
linear regime is well described by the GL equation. The
determined characteristic time τ0 increases with Pr in
the same manner as that obtained for the RB convec-
tion. The characteristic length ξ0 is constant, being also
the same as that in the RB convection. In spite of this
similarity, impeding effects of the perturbation electric
gravity persists in the nonlinear regime and results in a
heat transfer enhancement weaker than in the RB con-
vection.
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