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Abstract. Composers commonly employ ornamentation and elabora-
tion techniques to generate varied versions of an initial core melodic
idea. Dynamic programming techniques, based on edit operations, are
used to find similarities between melodic strings. However, replacements,
insertions and deletion may give non-musically pertinent similarities, es-
pecially if rhythmic or metrical structure is not considered. We propose,
herein, to compute the similarity between a reduced query and a melody
employing only fragmentation operations. Such fragmentations transform
one note from the reduced query into a possible large set of notes, taking
into account metrical, pitch and rhythm constraints, as well as elemen-
tary parallelism information. We test the proposed algorithm on two
prototypical “theme and variations” piano pieces by W. A. Mozart and
show that the proposed constrained fragmentation operations are capa-
ble of detecting variations with high sensitivity and specificity.3

Keywords: melodic similarity, reduced melody, variations, fragmenta-
tion, musical parallelism

1 Introduction

Ornamentation, embellishment, elaboration, filling in are common strategies em-
ployed by composers in order to generate new musical material that is recognized
as being similar to an initial or reduced underlying musical pattern. This way
musical unity and homogeneity is retained, whilst at the same time, variation
and change occur. This interplay between repetition, variation and change makes
music “meaningful” and interesting. Listeners are capable of discerning common
elements between varied musical material primarily through reduction, i.e. iden-
tifying “essential” common characteristics. Systematic music theories (e. g. Ler-
dahl and Jackendoff [19]) explore such processes, as do high-level descriptions
[10, 22] or semi-Schenkerian computational models [20]. In this paper, we try to
identify ornamentations of a given reduced melodic pattern. The proposed pat-
tern matching algorithm employs not only pitch information but also additional
rhythmic properties and elementary parallelism features.

3 Preprint. Accepted to Computer Music Multidisciplinary Research (CMMR 2013),
Marseille, October 2013.



2 Mathieu Giraud and Emilios Cambouropoulos

Pattern matching methods are commonly employed to capture musical vari-
ation, especially melodic variation, and may be based on dynamic program-
ming techniques. Similarity between melodies can be computed by the Mongeau-
Sankoff algorithm [23] and its extensions, or by other methods for approximate
string matching computing edit-distances, that is allowing a given number of
restricted edit operations [7, 9, 13, 14]. The similarities can be computed on ab-
solute pitches or on pitch intervals in order to account for transposition invari-
ance [4, 11, 16, 25]. Note that some music similarity matching representations do
not use edit-distance techniques [1, 8, 17, 21]. Geometric encodings also provide
transposition invariance [18, 26, 27].

In edit-distance techniques, the allowed edit operations are usually matches,
replacements, insertions, deletions, consolidations and fragmentations. However,
edit operation such as replacement, insertions and deletions of notes are adequate
for various domains (e.g. bioinformatics [12]) but present some problems when
applied to melodic strings. In the general case, insertions or deletions of notes in
a melodic string seriously affect metrical structure, and the same is true for sub-
stitutions with a note of different duration. Fragmentations and consolidations
may be a further way to handle some aspects of musical pattern transforma-
tion [6, 23]. In [2], Barton et al. proposed to focus only on consolidation and
fragmentation operations on pitch intervals: the sum of several consecutive in-
tervals in one melodic sequence should equal an interval in another sequence.
Their algorithm identifies correctly variations, including transposed ones, of a
given reduced pattern, but incorrectly matches a large number of false positives,
the consolidation and the fragmentation being applied only on the pitch domain.

In this paper it is asserted that identifying variations (that contain ornamen-
tations) of a given reduced melodic pattern is best addressed using fragmenta-
tion operations, taking into account both pitch and rhythm information, along
with other higher level musical properties such as parallelism. Apart from leav-
ing aside replacement, insertion and deletion operations (only fragmentation is
employed), this paper gives emphasis to rhythmic properties of melodic strings
and other higher level structural features (e.g. similar ornamentations are intro-
duced for similar underlying patters) showing that such information increases
both sensitivity and specificity of melodic variation detection.

The current study is not meant to provide a general method for identifying
variations of a given melodic pattern, but rather an exploration of some fac-
tors that play a role in some “prototypical” cases of musical variation. Two sets
of variations by W. A. Mozart (K. 265 and K. 331) that are commonly used
in composition as prototypical examples illustrating a number of basic varia-
tion techniques (extensive ornamentation, rhythmic variation, modal change)
are used as the focal point of this research; these sets of variations are quite
challenging for computational modeling as the number of notes can vary signif-
icantly between different versions (some variations may have 8 times or more
notes than the underlying thematic pattern). Variations, however, appear in
many guises and musical similarity is very difficult to pin down and define sys-



Fragmentations with pitch, rhythm and parallelism constraints 3

tematically in a general way [3]; two sets of variations by the same composer
are hardly sufficient for studying the general phenomenon of musical variation –
further research that takes into account a much larger variation dataset will be
necessary. In the last section, limitations of the current proposal are discussed
and future developments suggested.

The paper is organized as follows. Section 2 presents some definitions, Section
3 and 4 describe the algorithm and its results on two sets of variations by Mozart.
On the Andante grazioso of Mozart K. 331, the variation matching with pitch,
rhythm and parallelism constraint has an almost perfect sensitivity with more
than 80% precision. Section 5 discusses some perspectives of this work.

2 Definitions

A note x is described by a triplet (p, o, ℓ), where p is the pitch, o the onset,
and ℓ the length. The pitches can describe diatonic (based on note names) or
semitone information. We consider ordered sequence of notes x1 . . . xm, that is
x1 = (p1, o1, ℓ1), . . . , xm = (pm, om, ℓm), where 0 ≤ o1 ≤ o2 ≤ . . . ≤ om (see
Fig. 1). All the sequences used in this paper are monophonic: there are never
two notes sounding at the same onset, that is, for every i with 1 ≤ i < m,
oi + ℓi ≤ oi+1. We do not handle overlapping notes.
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Fig. 1. A monophonic sequence of notes, represented by (p, o, ℓ) or (∆p, o, ℓ) triplets. In
this example, onsets and lengths are counted in sixteenths, and pitches and intervals
are represented in semitones through the MIDI standard.

Approximate matching through edit operations. Let S(a, b) the score of the
best local alignment between two monophonic sequences xa′ . . . xa and yb′ . . . yb.
This score can be computed by dynamic programming [23]:

S(a, b) = max



























S(a− 1, b− 1) + δ(xa, yb) (match, replacement)
S(a− 1, b) + δ(xa, ∅) (insertion)
S(a, b− 1) + δ(∅, yb) (deletion)
S(a− k, b− 1) + δ({xa−k+1...xa}, yb) (consolidation)
S(a− 1, b− k) + δ(xa, {yb−k+1...yb}) (fragmentation)
0 (local alignment)
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δ is the score function for each type of mutation. If the last line (0) is removed,
this equation computes the score for the best global alignment between x1 . . . xa

and y1 . . . yb. Moreover, initializing to 0 the values S(0, b), the same equation
computes the score for the best semi-global alignment, that is the score of all
candidate occurrences of the sequence x1 . . . xa (seen as a pattern) inside the
sequence y1 . . . yb.

The complexity of computing S(m,n) is O(mnk), where k is the number of
allowed consolidations and fragmentations.
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Fig. 2. The two first measures of the theme and variations of the Andante, K. 331, by
Mozart, preceded by a reduction R of the theme. In the theme, the circled D of the first
measure is a neighbor tone, as the C# of the second measure. This neighbor tone D can
also be found in the variation VI, as an appogiatura. The D that is present in the first
measure of the other variations is better analyzed as a passing tone between C# and
E (a similar role of passing tone can be also argued in a medium-scale interpretation
of the theme). Finally, there are no such Ds in variation I. A “note for note” alignment
between the theme and variation III, IV and V, including some deletions and insertions,
does not lead here to a satisfactory analysis. Less errors are done when considering
fragmentations between the reduced pattern and the variations.
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3 A fragmentation operation for variation matching

Allowing many fragmentations may produce many spurious matches: often frag-
mentation are thus restricted to only 2, 3 or 4 notes, of same length and pitch.
However, fragmentation with more notes and with different pitches does occur in
real cases, especially when a pattern is ornamented. Moreover, if we consider a
reduced pattern, then almost any variation of the pattern can be seen as a frag-
mentation of this reduction. For example, the variations of the Andante grazioso

of Mozart K. 331 (Figure 2) can be seen as a fragmentation between 2 and 6
notes of a reduced pattern, using chord tones but also ornamental tones.

More specifically, we take fragmentation to mean that a relatively long note
is fragmented into shorter notes of the same overall duration (length constraint),
and that the pitch of at least one of the shorter notes matches with the ini-
tial long note (pitch constraint). Additionally, metric structure is taken into
account by assuming that patterns start only on beats. Finally, if the given
reduced theme (query) comprises of repeating pitch and/or rhythm patterns,
we assume that the same ornamentation transformations will be applied on the
repeating pitch/rhythm patterns (this parallelism constraint is enforced in a
post-processing stage).

We thus propose here to consider a semi-global pattern matching between a
reduced pattern x1 . . . xa and a monophonic sequence y1 . . . yb (where y1 is on a
beat, or preceded by a rest on a beat) with only fragmentations:

S(a, b) = max
k

S(a− 1, b− k) + δ(xa, {yb−k+1...yb})

The only operation considered here is the fragmentation of a note xa into
k notes {yb−k+1...yb}. We require that the score function δ(xa, {yb−k+1...yb})
checks the following constraints:

– length constraint – the total length of the notes {yb−k+1...yb}, with their
associated rests, is exactly the length of xa;

– pitch constraint – at least one of the pitches yb−k+1...yb must be equal to the
pitch of xa, regardless of the octave. To match minor variations, we simply
use a “diatonic equivalence”, considering as equal pitches differing from only
one chromatic semitone (or, when the pitch spelling is not known, allowing
±1 semitone between the sequences, as in the δ-approximation [5, 24]).

We are not interested here into fine-tuning error costs: δ(xa, {yb−k+1...yb})
equals 0 when the constraints are met, and −∞ otherwise.4

Finally, we also propose a post-filtering that applies very well to the varia-
tions technique. Usually, inside a variation, the same transformation pattern is

4 Note that with these simplified costs, a consequence of the length constraint is that,
at each position, there is at most one fragmentation for each note xa – so dynamic
programming can be implemented in only O(mn) time.
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applied on several segments of the theme, giving a unity of texture. In Figure 2,
variation I could be described by “sixteenths with rest, using chromatic neighbor
tones”, possibly with the help of some high-level music formalism [10, 19, 22]. We
propose here a simple filter that will be very computationally efficient. The unity
of texture often implies that the underlying base pitch is heard at similar places
(+ marks on the Figure 2). We thus applied a refinement of the pitch constraint:

– pitch position parallelism filtering – when applying the pitch constraint on
a pattern divided into equal segments, at least one matched pitch must be
found at the same relative position in at least two segments.

For example, on Figure 2, all + marks, except the ones in parentheses in
variation V, occur at the same relative position in both measures.

4 Results

4.1 Andante grazioso, Piano Sonata 11 (K. 331)

In order to evaluate the proposed algorithm we apply it on a set of “theme and
variations” by W. A. Mozart, namely, the first movement Andante grazioso of
the Piano Sonata 11 in A major (K. 331).

In a study on the recognition of variations using Schenkerian reduction [20],
the author uses 10 sets of variations by Mozart; only the first four bars of each
theme (10 themes) and variations (77 variations) are used for testing the pro-
posed system. In the current study, the set of variations is used searching for a
reduction of the theme in the whole melodic surface of the piece (144 bars).

We started from .krn Humdrum files [15], available for academic purposes
at kern.humdrum.org, and kept only the melody (without acciaccaturas). The
query is the reduced theme melody R (top of Figure 2), consisting of the four
notes C#EBD. We choose this pattern, having three occurrences in each varia-
tion, instead of the full eight-notes pattern C#EBDABC# B which has only
one complete occurrence in each variation.

Results are summarized on Table 1, and all alignments corresponding to
“length + pitch (diatonic)” constraints can be downloaded from www.algomus.

fr/variations. In the theme and each variation, 3 occurrences have to be found.
As our fragmentations can handle very large sets of notes, the 3 truth occur-
rences are always found, except for the variation III, in minor, when using pitch
matching without diatonic equivalence.

The algorithm has thus an almost perfect sensitivity (recall), and should be
evaluated for his precision. Allowing any fragmentation (even starting only on
beats) leads to many spurious results. Adding only the pitch constraint does not
help so much. Adding only the length constraint gives matching every sequence
of two measures against the pattern.

As soon as both pitch and length constraints are enforced, the algorithm gives
good results, with very few false positives: In the majority of the variations, only



Fragmentations with pitch, rhythm and parallelism constraints 7

m15@336 | Score = 4→ m13@288 
Check pitch parallelism: [×2 ?] ++ Parallelism [×2] found.
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theme variations
I II III IV V VI sens prec

number of notes 88 156 201 201 121 351 304

no constraint (all frag. 1...20) 85 153 198 198 118 348 301 100% <2%
pitch 79 108 186 129 112 327 260 100% <2%
length 36 45 37 40 55 37 81 100% 6%

length + pitch 3 3 8 0 3 14 13 83% 41%
length + pitch + parallelism 3 3 6 0 3 3 4 83% 82%

length + pitch (diatonic) 3 3 8 5 4 14 14 100% 46%
length + pitch (diatonic) + parallelism 3 3 6 3 3 3 4 100% 84%

ground truth 3 3 3 3 3 3 3

Table 1. Number of occurrences of the reduced pattern C#EBD found in the theme
and variations of the Andante grazioso of the Piano Sonata 11 by Mozart (K. 331).
Several fragmentation operations are tested. The columns “sens” and “prec” repre-
sents the sensitivity (recall) and precision of the proposed algorithm compared to the
ground truth (3 occurrences in the theme and each variation). In all the cases, these
3 occurrences are found by the method (true positives), except for the variation III,
in minor, when not using diatonic pitch matching. The “no constraint” line is directly
related to the number of notes of the variation – there are matches everywhere.

the 3 true occurrences are found. The best results are here when using afterwards
the “pitch parallelism” constraint (on two halves of the pattern), filtering out
some spurious matches (see Figure 3). This method has a overall 84% precision.
False (or inexact) positives can still happen in some situations (Figure 4), but
they are very few: only 4 in this piece. Moreover, some false positives are over-
lapping with true matches, and could be discarded with a more precise scoring
system.

4.2 Variations on Ah vous dirai-je maman (K. 265)

We also tested the algorithm on another Mozart piano piece, Twelve Variations

on “Ah vous dirai-je, Maman” (K. 265). The melody has been extracted man-
ually and encoded in symbolic notation (363 bars in our MIDI encoding). The
query consists here in the eight notes C GAGF EDC, this full theme appear-
ing twice in each variation, totaling 26 occurrences. The parallelism constraint
here applies on the three first bars of this pattern, requiring that at least two
bars share common pitch positions.

Results are summarized on Table 2. With pitch, length and parallelism con-
straints, the algorithm outputs 20 true positive occurrences (sensitivity of 77%)
with regular pitch matching, and 22 true positive occurrences (sensitivity of 85%)
with ±1 pitch matching. Note that the sensitivity is not as perfect as in K. 331:
For example, on some variations, the length constraint can not be enforced (see
Figure 5, bottom). Again, there are very few false positives, especially when the
parallelism constraint is required.
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Fig. 5. Two matches found in the first variation of K. 265. (Top.) Good match and
alignment. (Bottom.) Although the end of this match is a true positive, the align-
ment is wrong: the true occurrence should be shifted a quarter before, but the ties
on the melody prevent a good alignment respecting the length constraint across the
fragmentations.

5 Discussion : towards a unique transformation operation

In this paper, we have shown that a unique edit operation – a fragmentation –
gives very good results in matching a reduced query against a theme and a set
of variations. The key point in our approach is to focus on musically relevant
fragmentations, allowing very large fragmentations, but restricting them with
metrical, rhythm and pitch information along with some parallelism.

A very simplified matching procedure and error cost have been used in this
study. This simple model has produced good results in two sets of variations
that contain instances of extensive ornamentation. However, the model may
be improved in many ways. For instance, fine-tuning scores for the δ function
could improve the results, allowing imperfect fragmentations and some other
classical operations. The “parallelism” constraint that was tested here is also very
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occ (tp) sens prec

length + pitch 39 (20) 77% 51%
length + pitch + parallelism 29 (20) 77% 69%

length + pitch (± 1) 71 (22) 85% 31%
length + pitch (± 1) + parallelism 36 (22) 85% 61%

ground truth (26)

Table 2.Number of occurrences (occ) of the reduced pattern C GAGF EDC found in
Twelve Variations on “Ah vous dirai-je, Maman” by W. A. Mozart (K. 265, 1387 notes
in our encoding). The ground truth has 2 occurrences in the theme and each variation,
totaling 26 occurrences. The column “(tp)” shows the number of true positives found
by each method, and the columns “sens” and “prec” give the associated sensibility
and precision. As we encoded the files in MIDI, without pitch spelling information, we
used here a ±1 semitone pitch approximation to match the minor variation (but it also
brings some spurious occurrences).

simple (same pitch position on several segments of a pattern), and the number of
segments was manually selected for each piece. This parallelism constraint could
be extended to become more generic, but its current simplicity makes it very
suitable for efficient computation. Finally, theses ideas could also be adapted to
interval matching, to be transposition invariant.

Note that such an approach with fragmentations works because we start
from a reduced query. Going a step further, we argue that relevant similarities
between two melodies – and maybe even between polyphonic pieces – should be
computed with a unique transformation operation of a group of several notes
{x1, x2...xℓ} into another group of notes {y1, y2...yk}. The traditional edit oper-
ations of match/replacement/insertion/deletion, along with fragmentation and
consolidations, can be seen as particular cases of this transformation operation,
one set of notes being reduced to a singleton or to the empty set. In such a frame-
work, computing δ({x1, x2...xℓ}, {y1, y2...yk}) may require several steps, possi-
bly including dynamic programming with the more classical operations. Seeing
transformation as the basic operation could yield musical similarities that span
a larger range than usual operations.
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