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Abstract 

During the aggregation of fine particles in a shear flow a limit size value aL for aggregates 

is reached. Most researchers have related aL to the shear rate γ�  by means of a power law. 

We examine in this paper the different ways in order to model the phenomena leading to a 

limit size. The main results in the field of drop-drop and bubble-particle systems are briefly 

reviewed to help us to propose a coherent description of phenomena occurring in particle-

particle systems. Kernels for coalescence, aggregation, breakage and erosion are recalled. 

An improvement of the aggregation kernel in the case of the collision between aggregates 

is proposed. We show that an analysis of the whole process in term of aggregation-

fragmentation competition will be preferred to a collision which would be less efficient 

between large aggregates. In this framework we present a modelling relating aggregation 

kernel and fragmentation kernel to a limit size value. As a consequence, the main result is 

the exponent value of the La γ− �  power law. 

 

KEY WORDS : shear aggregation, limit size, aggregation kernel, fragmentation kernel 
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1. Introduction  

Aggregation occurs in many biological, chemical and physical processes. It often concerns 

suspension of small particles in a liquid. Dynamics of aggregation mainly depends on the 

hydrodynamic conditions and on the particle size. In many practical situations, it is 

necessary to put the solid-liquid suspension on motion in order to homogenise or to convey 

it. In this case, whatever the nature (laminar or turbulent) of the flow, the role of the local 

shear flow in collisions becomes predominant. The collisions lead to the formation of 

aggregates. It has been observed that a limit size is reached for aggregates. The higher the 

shear rate γ� , the smaller the limit size La . The causes of the existence of a limit size value 

are not so clear. This can be due to two reasons : breakage or collision efficiency becoming 

zero beyond a critical size. Even if only partial results are available concerning the relation 

between the limit size and the shear rate, all researchers agree with a relation expressed as a 

power law. However, they propose different criteria (time, force or energy) to get it. 

Another problem lies in the link between the exponent and other characteristic parameters 

of aggregation-fragmentation. This paper attempts to bring answers to these three 

questions. 

It is organised as follows : after a brief presentation of the theoretical background 

connected with aggregation and fragmentation of solid particles, previous results in the 

field of other dispersed media (drop-drop system and particle-bubble system) will be 

reminded. Then, we will present a survey of experimental data and results of modelling for 

La γ− �  relation for solid particle system ; at last, we will propose a general expression for 

La γ− �  relation, which will be discussed. 
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2. Theoretical background concerning solid particle suspensions  

2.1. Aggregation 

Aggregation is the consequence of a collision between particles. The mechanism which 

brings particles into close proximity results from the hydrodynamics of the suspension. An 

aggregate is characterised by its number i of primary particles (supposed identical). 

Aggregation between i-mer and j-mer may be represented by the quasi chemical equation : 

i-mer + j-mer →(i+j)-mer 

The corresponding reaction rate can be written as : 

,

d

d
i j agg

i j i j

N
K N N

t
+ =   (1)  

where ,
agg
i jK  is the kinetic constant, also known as kernel. ,

agg
i jK  contains two contributions : 

the particle-particle collision frequency 0, ,
agg

i jK  and the aggregation efficiency ,
agg
i jα  : 

, 0, , ,
agg agg agg
i j i j i jK K α=   (2) 

 

The particle-particle collision frequency function 0, ,
agg

i jK   is depending on the origin of the 

encounters between particles : Brownian motion, differential settling velocity, shear flow. 

The collision efficiency, ,
agg
i jα , depends on the different interactions between particles : 

physical forces and hydrodynamic resistance. 

The morphology of the aggregates depends on the physicochemical and hydrodynamic 

conditions of their formation, as well as on their intrinsic mechanical properties. However 

the aggregation dynamics also depend on the morphology of the colliding particles. 

Experiments  have shown that aggregates have a fractal structure (see for instance [1,2]). 
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An aggregate containing i primary particles of radius a1 is characterised by : its fractal 

dimension Df , its outer radius ai and its hydrodynamic radius aHi ; as the structure of the 

aggregates is non-uniform, their volume density φa(r) depends on the distance r from the 

centre of mass of the aggregate ; the average volume density is written φa . These different 

characteristics are linked by the following relations [3] :    

a a
Si

D f

= 





1

1

i
 (3) 

 φa f

D

r
S

D
r

a

f

( ) =
3 1

3










−

 (4) 

φa
i

D

S
a

a

f

=










−

1

3

 (5) 

where S is a structure factor, which is a function of Df [3]. 

 

2.2. Fragmentation of aggregates 

In the aggregation processes, aggregates usually reach a maximum size. This is due to two 

reasons : a breakage or a collision efficiency becoming zero beyond a critical size. 

2.2.1.  Breakage 

The occurrence of breakage depends on the balance between the desaggregation effects due 

to the action of the fluid, and the overall cohesion of the aggregate due to the interactions 

between primary particles. The hydrodynamic effects are of different natures depending if 

the aggregate is larger or smaller than the Kolmogorov microscale. 

Fragmentation of i-mer into two fragments (i-j)-mer and j-mer may be represented by the 

quasi chemical equation : 
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i-mer → j-mer + (i-j)-mer 

The corresponding reaction rate can be written as : 

d

d
fragi

i i

N
K N

t
=  (6)   

where frag
iK  is the kinetic constant, or kernel, for fragmentation. frag

iK  contains two 

contributions : the eddy-particle collision frequency 0,
frag
iK  and the fragmentation efficiency 

frag
iα  : 

0,
frag frag frag

i i iK K α=  (7) 

A topic still under discussion is relative to the size of the fragments produced by breakage. 

Two cases are currently envisaged : 

- the erosion of single or small groups of primary particles from the aggregate surface [4] ; 

- the production of equisized fragments [5,6]. 

 In all cases, the breakage rate depends on the hydrodynamic conditions of the flow and on 

the characteristics of the aggregates : outer radius, fractal dimension, primary particle 

radius and cohesion force between two primary particles.  

The competition between aggregation and fragmentation leads to a steady particle size 

distribution (PSD). The corresponding mean particle size aL depends on shear rate, 

according to :  

1

mLa

a
γ −∝ �    (8) 

with 0 1m< <  

2.2.2.  Zero collision efficiency 



7 

This approach was especially developed by Brakalov [7]. The collision efficiency between 

two spherical particles of the same size decreases with their particle size. The decrease is 

sharper when the particles are porous which is the case for the aggregates. Otherwise one 

aggregate, which results from two smaller aggregates, can be too loose to survive. Brakalov 

showed that it exists a limit value for the aggregate size. However, the assumption of an 

additional short range interaction force was necessary to interpret the experimental results. 

2.3. Restructuring of aggregates 

Restructuring occurs during aggregation. Restructuring, that is a dynamic process, leads to 

a densification of aggregate, i.e an increase of contact numbers in aggregate. Two 

mechanisms are possible : the rolling of primary particles into aggregates due to the motion 

of the fluid or the rupture into fragments followed by reaggregation. Restructuring is 

characterized by an increase of the fractal dimension with time. At long time, fractal 

dimension value reaches a plateau. Selomulya  et al. [8,9] proposed an empirical law for 

the change of fractal dimension versus time. Their main result was that no restructuring 

(constant low fractal dimension) occurs at low shear, whereas very fast restructuring 

(constant high fractal dimension) occurs at high shear, while restructuring competes, in a 

complex way, with aggregation and fragmentation at intermediate shear. But intensity of 

restructuring depends on the primary particle size. As the aggregate limit size is measured 

at long term, this corresponds to the maximum fractal dimension. So the latter increases 

with shear rate, as observed by [9-12]. 

 

3. Previous results for other dispersed media  
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Before studying the behaviour of  solid particle suspension under shear flow it is interesting to  

examine two related topics : 

- the coalescence and breakage of  emulsion drops in turbulent medium 

- the collection of particles by large bubbles in flotation process 

This preliminaries will be followed by the study of aggregation-fragmentation in solid particle 

suspension. 

 

3.1. Drop-drop system  

  

Drops (with diameter d) undergo coalescence and fragmentation in an emulsion submitted to 

turbulence.  The emulsion is characterized by the interfacial tension σ , by the density and the 

dynamic viscosity of the continuous phase (,c cρ µ ) and  of the dispersed phase (,d dρ µ ). 

Turbulence is characterized by the turbulent dissipation rate ε and the Kolmogorov scaleKλ  . 

3.1.1. Coalescence 

The coalescence Kernel can be written, following Ross’ equation [13] similar to equation  (2), 

by :  

0
coal coal coalK K α=          (9) 

with expcoal coal

contact

t

t
α

 
= − 

 
        (10) 

The term 0
coalK  is coming from the classical work of  Saffman and Turner [14]  for Kd λ<  or 

Abrahamson [15] for Kd λ> . Coalescence efficiency coalα contains two characteristic times : 

the contact time and the coalescence time. The contact time depending on hydrodynamics only 

is given by : 

( )22 / 2contactt d u d∝         (11) 
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where ( )2u λ  is the mean square velocity difference between two points separated by the 

distance λ. 

The coalescence time is expressed depending on the drop deformability : 

For a deformable drop : 

( ) 2
02
,c

coal c

F
t f h h d

µ
σ

∝         (12) 

where F is the hydrodynamic force acting on the two colliding drops : 

( )2 22dF u d dρ∝          (13) 

( )0, cf h h  is an expression  related to the drainage of the liquid film, of which thickness varies 

between the initial value 0h  and the critical or final value ch . 

For a rigid drop : 

2c
coalt d

F

µ∝           (14) 

Recently, Narsimhan [16] proposed a modelling of drops coalescence in a turbulent medium. 

Drops were considered as rigid particles. He wrote the kinetic constant of coalescence as in 

equation (9).  

The 0
coalK  was also coming from  Saffman and Turner for Kd λ< .  Narsimhan presented 

coalescence as a collision governed only by the fluid motion leading to the formation of a 

doublet ; then the doublet might separate with a kinetic constant  sepk  thanks to turbulence, or 

associate with a kinetic constant assk  due to both turbulence and interaction forces. The 

association was followed by a very fast coalescence. So the coalescence efficiency could be 

written by : 

/coal
ass sepk kα =          (15) 
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Because repulsive and attractive forces were considered, the two-drop system presented an 

energy barrier which had to be overcome by turbulence to conduct to coalescence. By using 

the theory of stochastic processes he showed that : 

  ( )22.7 /sepk u d d=          (16) 

Association was studied in a similar way as the trajectory analysis [17], where the drop-drop 

distance h obeyed an ordinary differential equation :  

( )( )2
int/ 8 / 3 'cdh dt h d F F Fπµ= − + +        (17) 

with ( )2 2 / 4dF u h dρ π=         (18) 

and ( )int 0Fh h=
�

 at 0t =  

int, ',F F F were respectively the mean turbulent (attractive) force, the fluctuating turbulent 

force and the interaction forces. Narsimhan considered that coalescence was instantaneous 

when the two drops were so close that the attractive interaction force became stronger than the 

repulsive one ( int 0F < ). He deduced from (17) the expression of the mean association time 

1
assk − . So he showed that association or coalescence time became dramatically long when : 

int/ 0.5F F <  

The two forces are calculated at the distance h corresponding to the force barrier. 

By using a dimensionless form of (17),  the characteristic time 2 /cd Fµ  appears ; then the 

association time and the coalescence efficiency may be written as : 

( ) int /2 / F F
ass ct d F eµ∝          (19) 

int int/ /
2

sep F F F Fcoal ass

sep ass c sep

tk F F
e e

k t d F
α

µ γ
− −= = ∝ ∝

�
     (20) 
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3.1.2. Fragmentation 

 

The fragmentation kernel can be written following Ross equation in [13] by : 

0
frag frag fragK K α=          (21) 

with 

0
frag i

turb

P
K

E
=           (22) 

where iP  and turbE  are respectively the power input and the turbulence kinetic energy at the 

drop scale. iP  and turbE  are expressed by : 

3

6i cP d
πρ ε=           (23) 

and 3 2 11/3 2/3
turb c cE d u dρ ρ ε∝ ∝  ( Kd λ> )     (24) 

Ross (in [13]), Tavlarides [13] and Luo [18] introduced into the fragmentation efficiency the 

ratio of the cohesion or the surface energy cohE  to the turbulence kinetic energy : 

expfrag coh

turb

E

E
α

 
= − 

 
         (25) 

with 2
cohE dσ∝          (26) 

Kostoglou et al. [19] used the Luo’ formalism except that the cohesion energy was replaced by 

a threshold turbulence kinetic energy. 

On the other hand, Sarimeseli [20] et al. proposed a rigorous modelling for drop 

fragmentation based on comparison between two characteristic times : the time fragt  needed 

for fragmentation and the contact time contactt between drop and eddies. The modelling leads to 

the following expressions : 

1
0
frag

contactK t−∝           (27) 
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and exp fragfrag

contact

t

t
α

 
∝ − 

 
        (28) 

with ( )2/contactt d u d∝         (29) 

and  drop surface
frag

c c

p
t

d

σ
ρ ε ρ ε

∆
∝ ∝        (30) 

This modelling was close to Shamlou’s approach [4], for whom the fragmentation efficiency 

might be written using the cohesion strength over fluid stress ratio : 

exp exp( )drop surface frag
frag

contact contact

p t

p t
α

∆ 
∝ − = − ∆ 

      (31) 

with ( )2/contact c contact cp t d u dρ ε ρ ε∆ ∝ ∝      (32) 

The same authors [18,20]  proposed fragmentation kernels for drops in turbulent flow in the 

inertial sub-range. However, all the expressions contain the same dimensionless parameter : 

the Weber number of the drop dWe  : 

2 2/3 5/3
c c

d

u d d
We

ρ ρ ε
σ σ

= =         (33) 

 

Several investigators defined a minimum diameter mind  and a maximum diameter maxd  for an 

emulsion drop in a given turbulent medium : mind  corresponded to a very small value of 

efficiency coalα  and maxd  to a very small value of efficiency fragα . This is equivalent to the 

definition of mind  ( maxd ) by the equation  coal contactt t�  ( coh turbE E�  or frag contactt t� ) . 

So  maxd  obeys the relation ( )maxd criticalWe d We=  for Kd λ<  or Kd λ> , which corresponds to 

the well-known empirical relation [13] for emulsion in a stirred tank : 

0.6
32 / 0.05ad D We−=           (34) 
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with 
2 3

c aN D
We

ρ
σ

=  

32, ,ad D N  are  respectively the Sauter diameter of the drop, the impeller diameter and the 

stirrer speed.   

The limit size for colliding rigid drops dmin obeys the relation : 

1/ 2d γ −∝ �  Kd λ<            (35) 

As a summary, modelling of emulsion dynamics involves at once fragmentation kernel and 

zero collision efficiency to explain the limit drop size. The occurrence of a limit size without 

using fragmentation modelling is due to a coalescence efficiency including an exponential 

function. The characteristic time or force ratio seems the more appropriate one to represent 

coalescence or fragmentation. 

 

3.2. Bubble-particle system  

 

We consider a large bubble rising in a suspension of solid particle. This is equivalent to the 

motion of small particles towards the bubble. In the following dp and db are respectively the 

particle diameter and the bubble diameter, ub is the rising bubble velocity. The particles move 

along the streamlines, go around the bubble, slide on the surface of the bubble and are 

captured. So the whole process, called collection, is divided into three successive steps : 

collision or approach, attachment and bubble-particle set evolution, i.e stability. We might 

define a collection or aggregation kernel, but investigators prefered to introduce quantities 

such as probability or efficiency. The collection efficiency contains the  efficiencies for each 

step :  

sac EEEE =           (36) 



14 

Ec, Ea, Es are respectively the efficiencies for collision, attachment and stability. The collision 

efficiency is proportional to the collision kernel 0, ,
agg

i jK . As collision efficiency is strongly 

depending on hydrodynamics of rising bubble, we will stop the analogy with particle 

suspension in other hydrodynamic conditions. At the contrary, attachment efficiency is exactly 

the aggregation efficiency ,
agg
i jα . The stability efficiency is another way to consider 

fragmentation in an aggregation process, as already done by Brakalov. Hence, we will focus 

our attention on attachment and stability efficiencies. 

Dai [21] and Yoon [22] defined the contact time as the sliding time slt  of the particle on the 

bubble surface and compared it to an induction time it , which is the time needed for rupture 

of the liquid film and the formation of the G-L-S contact line.  

The induction time corresponds to the drainage of the liquid film due to macroscopic forces. 

When the film thickness reaches a critical value, (short range) interaction forces can lead to a 

very fast rupture of the film. Simple expression for it  is available :  

6.0)( pi dAt ψ∝           (37) 

where ψ is the wetting angle of the G-L-S system. 

As efficiency is related to cross section in this case, attachment efficiency obeys the relation :  

2

sin

sin








=

t

a
aE

ϑ
ϑ

         (38) 

where tϑ  is the maximal angle measured from the vertical axis for particle capture by bubble 

(i.e. 1a sE E= = ) and aϑ  with a tϑ ϑ<  is the actual angle considering attachment phenomenon. 

aϑ  is such that the sliding time between aϑ  and tϑ  equals the induction time :  

tan
tan

2

2 sin

t
p b

i g
g ba

d d d
t d and u

u d dr

ϑ

ϑ

ϑ
ϑ

+ Ζ= =∫       (39) 

tangu  is the velocity along a streamline and Z is the stream function for the flow around the 

bubble. Hence, we may write Dai’s theoretical result for the attachment efficiency as : 
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( )( )/ /
n

a p b coal contactE f d d t t=        (40) 

with ( ) ( )( )2 3 /4sin 2atan xf x e π−=  ; coal it t=  ; ( ) ( )/ 4contact p b bt d d uπ= +  

The exponent n is respectively equal to 0 for a large bubble (db > 1mm) and to 1 for a small 

bubble (db <0.1mm). 

In turbulent medium, Li [23] proposed an expression similar to Ross’s for drop 

coalescence (Eq. 11): 

i

contact

t

t
aE e

−
�  with  

( )2

p b
contact

p b

d d
t

u d d

+
≈

+
     (41) 

Thus, as seen in (40) and (41), the attachment efficiency, i.e. aggregation efficiency, is a 

function of the ratio of coalescence and contact times. 

It exists another approach considering short range interaction forces (attractive and repulsive). 

In most cases, the total interaction potential ( )TV h  presents a maximum ,maxTV for a separation 

distance value denoted maxh  and a primary minimum denoted aW− , aW  being the adhesion 

work. Song [24] suggested that the potential barrier was linked to the attachment efficiency, 

whereas the energy gap between primary minimum and maximum was related to the stability 

efficiency. Then, attachment efficiency was expressed as : 

,maxT

c

V

W
aE e

−
=           (42) 

where cW is the kinetic energy of the particle at maxh h=  ; its value was coming from the 

analysis of the particle trajectory. 

The stability efficiency was expressed as : 

,max
'

1
a T

c

W V

W
sE e

+
−

= −          (43) 

where '
cW  is the kinetic energy of the particle attached to the bubble. The adhesion work was 

written by means of macroscopic quantities : 

2
2(1 cos )

4
p

a

d
W

π
σ ψ= −         (44) 

where σ  is the surface tension for liquid-gas system. 

However, Bloom [25] expressed the stability efficiency by means of a Bond number, which 

was defined as a ratio between repulsive force due to inertia in turbulent flow and attractive 

force due to capillarity : 
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3

6
p

p

C

d
a

Bo
F

π
ρ

�          (45) 

acceleration a was written : 

( ) ( )2 /p b p ba u d d d d+ +�  

 

111 Bo
sE e

−−= −           (46) 

Analysis of the different modelling shows a great disparity in the expressions (40-42) of the 

attachment efficiency. Equation (40), contrary to (41) and (42), takes into account the 

geometry of the system. Conversely (41) and (42) consider attachment as a stochastic process ; 

they are more convenient in turbulent medium. However (40) and (41) involve time whereas 

(42) involves energy. Stability efficiency uses either energy ratio (43) or force ratio (45). 

 
4. Particle-particle system  

Many investigators have studied aggregation of micronic particles under shear flow, i.e in a 

Couette flow or in a turbulent flow. Generally chemical conditions are such that only 

attractive forces act between particles, and that the size of formed aggregates is smaller than 

the Kolmogorov scale for turbulent aggregation. Aggregation occurs in the smallest eddies 

which are characterized by a shear rate expressed by : 

( )1/ 2
/γ ε ν∝� . 

4.1. Aggregation kernel 

The kernel 0, ,
agg

i jK  is currently written as ([14],[26]) : 

3
0, ,

4
( )

3
agg

i j i jK a aγ= +�   (47) 

 Experimental and theoretical results are known about :  
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- the aggregation efficiency for collisions between primary particles 1,1
aggα  and 

between aggregates ,
agg
i jα , 

- the fractal dimension of aggregates, 

- the La γ− �  relation (expressed as 
1

mLa

a
γ −∝ � ), 

- the characteristic time of aggregation expressed as ( ) 1
B γφ −

�  or ( ) 1

1,1
aggB α γφ

−
� , where 

φ is the solid volume fraction in suspension and B a constant. This corresponds to 

the time needed for the aggregate to reach the limit size La .     

For instance, aggregation efficiency for two equally sized micronic spheres is expressed as a 

function of the ratio of contact time and aggregation time : 

336A

A
C

aπ µ γ
=

�
         (48) 

where A is the Hamaker constant. This approach is similar to this one for coalescence of rigid 

drops. AC  can be seen as the ratio between attractive Van der Waals force and hydrodynamic 

resistance at surface-surface distance equal to particle radius.   

But contrary to coalescence of drops, it has been theoretically shown [27] that the aggregation 

efficiency is better represented by a power law of  AC  instead of an exponential law : 

1,1
agg n

ACα ∝  with 0 1n< <         (49) 

The aggregation efficiency for two aggregates is more difficult to estimate. ,
agg
i jα is a 

function of 1/2
i

ia

κ
, 1/ 2

j

ja

κ
 and 

3
, ,

'
36A

i j eq

A
C

aπ µ γ
=

�
. iκ  and , ,i j eqa are respectively the 
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permeability of  aggregates and an equivalent radius. For instance, the procedure proposed 

by Kusters et al. [2] (shell-core approach) has been successfully applied for aggregation of 

polystyrene latex, alumina, titania and silica suspensions. Kusters showed that aggregation 

between equally sized aggregates was favoured ([5], fig. 5.11) ; the corresponding 

aggregation efficiency can be approximated by : 

0.43

, 1/ 2
i

1.55agg i
i i

aα
κ

−
 
 
 

�         (50) 

Gmachowski ([3], fig. 2) indicated that  1/2
i

ia

κ
 was a single function of the fractal 

dimension which we will represent as : 

( ) 1.75

1/ 2
i

6.6 3i
f

a
D

κ
−

−�         (51) 

Following the procedures of Kusters [2] and Vanni [28], the permeability can be evaluated. 

According to these authors,  1/ 2
i/ia κ  presents a weak dependence with the number of 

primary particles in aggregate : 

( ) 0.19
1/ 2
i

i
f

a
f D i

κ
�          (52) 

This expression will be preferred to the older one [6] :  

( ) ( )( )1/ 2 1 /2

11/ 2
i

0.6 /
Dfi

f i

a
SD a a

κ
−

�  

then, (50) is reduced to  

( ) 0.082

, 1/ fDagg
i i ia aα −∝          (53) 
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so for all researchers ([2],[3],[28]) ,
agg
i iα is a very weak function of aggregate size. 

Kusters [2] suggested that only the flows outside and inside the aggregates determined the 

aggregation efficiency. However, Van der Waals forces and hydrodynamic resistance could 

contribute to aggregation efficiency especially at the beginning of aggregation. So by 

analogy with (49) Kusters proposed to use : 

, 'agg n
i i ACα ∝           (54) 

as much as the value of ,
agg
i iα  was higher than the one given by (53). 

Kusters [2] mentioned that the contribution of the two opposite primary particles, each one 

in each colliding aggregate, to Van der Waals forces was the most important .  Hence,  'AC  

was expressed by ([2],[7],[29]):  

1 1
3

'
36A A

i i i

A a a
C C

a a aπ µ γ
= =

�
        (55) 

However we think that a more rigorous approach is possible. By considering Van der 

Waals interactions between all the primary particles of aggregates and the hydrodynamic 

radius of aggregates (see Appendix 1), we obtain :  

( ) ( ) ( )
2 75 6 2 0.15/1/ 1/

1' 2 / 3 /
f f ff f

D D DD D

A A f iC C D S a a
− − +=     (56) 

Equations (55) and (56) have the same dependence for 1 / ia a  if 2.53fD � . The 

proportionality constant is equal to 0.64. The value of fractal dimension proposed by 

Kusters  ( 2.5fD � ) for turbulent aggregation is consistent with the above-written 

equations. 

Hence, aggregation efficiency can be written as : 
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( ), 1/
eagg d

i i ia aα γ −−∝ �          (57) 

with 0d =  and 0.082 fe D=  for large aggregate    (57a) 

with d n=  and (9 2 0.15 / )f fe n D D= − +  for small aggregate  (57b) 

if 2.5fD =  and 0.18n = , then e is equal to 0.2 for large aggregate or equal to 0.73 for 

small aggregate. This small value for exponent e is unable to explain the limit size reached 

by aggregates under shear. 

By means of trajectory analysis Brakalov [7] calculated the collision efficiency from the 

following hypothesis :  

- monosized, spherical and impenetrable aggregates 

- interaction between the two opposite primary particles (as Kusters)  

- existence of interparticle short-range repulsive forces. 

The total force was expressed as : 

 ( )8
0(1 / )VWF F h h= −          (58) 

VWF  was the Van der Waals force between two primary particles. h and h0 were 

respectively the distance between the two particles and a fitting parameter. By using this 

force law, the limit size reached by aggregates corresponded to a vanishing collision 

efficiency without considering breakage. 

4.2. Fragmentation kernel 

Fragmentation kernel contains at once the fragmentation frequency and the fragmentation 

efficiency. Shear rate is often chosen as fragmentation frequency. However this is 
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amplified by a surface term if fragmentation mechanism is erosion. So fragmentation 

frequency can be written as :  

( )0, 1/
rfrag

i iK a aγ= �          (59) 

with 0 1r< <  for breakage and 2r =  for erosion. The more evoked mechanism is breakage 

(Table 2). 

Two kinds of expressions were proposed by investigators for fragmentation efficiency : 

- exponential law : frag R
i eα −=       (60) 

- power law : frag q
i Rα −∝   ( 0q > )    (61) 

with /S SR σ τ=  

Sτ and Sσ  were respectively the shear stress and the cohesion strength. They obeyed the 

relations [4] : 

Sτ µγ= �           (62) 

( ) 2.2 2
115 / 4 /S adhF aσ π φ�  with ( ) 3

1/
Df

iS a aφ −=      (63) 

adhF was the adhesion force between primary particles in aggregate. Equation (60) is similar to 

(31) for drop fragmentation.  

Equations (59) and (61) are consistent with the fragmentation kernel expressed as : 

( )1/
pfrag b

i iK a aγ∝ �          (64) 

with 1b q= +  and ( )2.2 3p q Df r= − +  

Equation (64) is often used by researchers. 
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Table 1 gathers a few representative experimental results about characteristics of 

aggregation-fragmentation. Materials were either micronic polymer latex or metallic oxide 

particles. Experiments were carried out in a Couette cell where the flow was laminar or in a 

stirred tank where the flow was turbulent. Ranges of shear rate were similar except for 

aggregation in viscous liquid [30]. Reported values are n, Df, B and m. Expressions for 

fragmentation kernel are also reminded. Thus we can see that the average values of n, Df, B 

and m are respectively about 0.3, 2.4, 10 and 0.5. Unfortunately due to difficulties for 

measuring aggregate size by optical methods all experimental results were not accurate.  

Table 2 gathers the corresponding theoretical results. Values for n are in the range [0.1-0.2]  

whereas  B value equals 10. Main theoretical results concerned the limit size for aggregates 

and the fragmentation kernel.  The limit size was obtained either from comparison between 

aggregate cohesion and fluid motion ([6], [46-48]) or from competition between 

aggregation and fragmentation dynamics ([5], [9], [50]). Two different criteria were used : 

one was based on energy, the other one on stress or force. Investigators did not bring out 

reasons or proofs about their choice. Another uncertainty concerns the use of  

fragmentation and its kernel in order to describe a whole aggregation process under shear 

flow. Modelling of Shamlou [4] and Subbanna [49] rested on equation (60). Conversely, 

modelling of Serra [33-35], Spicer [36] and Lu [50] used equation (61) with q respectively 

equal to 0.75, 0.6 and 1. The same authors used equation (64) with p respectively equal to 

1, 1 and 4. 

4.3. Aggregation dynamics and final size of aggregate 

Aggregation dynamics can be modelized by three ways. 
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i.) The first one uses equations (2) and (7) for aggregation and fragmentation kernels. A 

steady state has been experimentally observed and theoretically [51] showed for long time. 

The relation between the m-exponent and the two kernels can be obtained by the following 

arguments. 

Assuming the inequality , ,
agg agg
i j i iα α� , let us choose a hierarchical model to describe 

aggregation : 

 2 A1 ↔ A2 

 2 A2 ↔ A4 

 2 Aj ↔ A2j j L≤  

A j is an aggregate with j primary particles. The steady state is characterized by : 

1 2 ... 0jW W W= = =  

with 2
, 2 2

agg frag
j j j j j jW K N K N= − +  

The maximum of  steady state PSD corresponds to aggregates with k primary particles : 

/ 2 2k kN N�  and / 2 0k kW W= =  

thus, 

( ) ( )2/3 1/3

2 , / 2, / 2/ /frag agg frag agg
k k k k k k kN K K K K=  

as 1,0 i k
i

N iN kN=∑ �  

Hence by using equations (47), (57) and (64) : 

( )3 /1 // /e Dfagg frag d b p Dfk K K k kγ γ−−∝ ∝ � �  

and ( ) ( )1 / 3b d Df e p
L ka a γ − − − + +∝ ∝ �        (65a) 

then ( ) ( )( )( )/ 3 1 2.2m d q Df q e r= + − − + +      (65b) 
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The condition expressed as /agg fragk K K∝  can be interpreted as the comparison of 

aggregation time aggT  to fragmentation time fragT . 

Kostoglou [51] used a similarity method in order to study the steady state for the case where 

0d e= = . He deduced that : 

- the steady state exists if 3 0Df p− + >  

- the standard deviation of the PSD, assumed as lognormal, is a function of Df, p, nF 

(fragments number after fragmentation). The PSD is not depending on γ� [36]. 

- ( ) ( )1 / 3b Df p
ka γ − − +∝ �        (66) 

Equations (65a) and (66) are equivalent for 0d e= = . By comparing the calculations with the 

experiments  Kostoglou et al. found out 1.5p = . 

 

ii.) Alternately to the first modelling, the second modelling uses alternately a stability 

efficiency ,s i jE +  without fragmentation : 

, 0, , , ,
agg agg agg
i j i j i j s i jK K Eα +=  and 0frag

iK =       (67) 

,s i jE +  can be a step function or a continuous decreasing function of i+j-aggregate size. This 

approach was already used for bubble-particle systems (43,46) and for particle-particle 

systems to a certain extent by Brakalov [7]. 

So applying Bloom’s approach (equation (46)) in the case of shear aggregation and using 

equations (62) and (63) for repulsive and attractive forces one may write : 

1/rep attF F R−∝  

The limit size La  corresponds to : 
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1R =  (or , 0s i jE + = ) 

Thus, from equations (8), (62) and (63) : 

( )( )1/ 2.2 3m Df= −  and ( ) 1/
1 /

, 1
m

i j La a

s i jE e
−

+−
+ = −   i j L+ ≤     (68) 

It should be noted that the stability efficiency as expressed in (46) and (68) is related to the 

fragmentation efficiency by : 

, 1frag
i j s i jEα + ++ �          (69) 

  

This can also be seen in Table 2 ([4],[49]). 

iii.) The third modelling (Kusters) uses stability efficiency ,s i jE +  in the aggregation kernel 

and the fragmentation kernel (equation (69)). 

5. Discussion and conclusion  

One may compare the different expressions for the m-exponent established by Sonntag [6], 

Mills [47-48], Bache [46] and the author ( (65b) and (68)). According to all investigators, 

as the fractal dimension increases in the range [0;2.6], m increases in the range [0;1]. 

Expression of Mills and (68) contain only one parameter : the fractal dimension. 

On the contrary, Sonntag’s and Bache’s expressions contain the exponents r1 or r2 which 

appear in φ-dependence of aggregate mechanical properties. r1 and r2 are close linked by 

the relation 2 12 1r r= − . Mills’ equation corresponds to  2 2r = . High (=5) or low (=1) value 

of  1r  corresponds respectively to a strong or a weak sensitivity of mechanical property 

with the solids volume fraction. As the solids volume fraction has the smallest value at the 

surface of aggregates, the strong sensitivity corresponds to an important weakness at the 

surface, i.e leads to an erosion or to small fragments loss from the surface. Fresh prepared 
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aggregates are characterized by intermediate values of r1  ( 12 3r< < ), whereas aged 

aggregates have higher values of r1 ( 1 4r > ). The former are formed during a 

fragmentation-aggregation process whereas the latter are made by restructuring of the 

former. 

Equation (65b) contains several other parameters : n, r (characterizing erosion or breakage) 

and q. Their standard values can be taken as : n = 0.3 ; r = 1 ;  q = 1 (q is in the range 

[0.6;1.2];see Table 1). 

Figure 1 represents the curves of  m-exponent versus the fractal dimension from Sonntag 

(r1 = 2.5),  Mills, equation (68), equation (65b) for small aggregates (r = 1) and equation 

(65b) for large aggregates (r = 1). Expressions of Sonntag and (65b) for small and large 

aggregates lead to similar results. In the case of shear aggregation ( 2.4fD = ), m is found 

in the range [0.43-0.52]. Expression of Mills and equation (68) overestimate m. Higher 

value of 1r  ( 1 4r > ) has the same effect, i.e. smaller value of m, than high value of 

r ( 2r = ). 

Figure 2 represents the curves of  m-exponent versus the fractal dimension from Sonntag 

( 1 4.5r = ), equation (65b) for small aggregates (2r = ) and equation (65b) for large 

aggregates ( 2r = ). For shear aggregation ( 2.4fD = ), m is found in the range [0.3-0.34]. 

On the table 1, experimental values for m look like scattered. However two ranges of 

values appear : [0.25-0.35] and [0.5-0.75]. The first one can be associated to weak forces 

between primary particles, i.e due to small size or small Hamaker constant. In this case, 

erosion or small fragments loss from the surface predominate [6]. The second one 

corresponds to stronger interaction between primary particles and to larger aggregates. 
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Equation (65b) rests on aggregation-fragmentation dynamics, i.e the comparison of two 

times : collision-aggregation time and fragmentation time. Equation (68) rests on stability 

of a freshly formed aggregate, i.e the comparison of two stresses or forces. Thus there is no 

reason to get the same γ� -dependence of limit size aL. Equation (65b) is coming from an 

accurate analysis of aggregation kernel which does not appear when deriving (68). Forces 

involved in Equation (68) only appear in fragmentation kernel. It can be noted that Scurati 

et al. [53] gave a similar La γ− �  law with exponent ( )1/ 3m Df= −  in the case of 

aggregates coming from the fragmentation of dry aggregates in viscous fluid. 

The modelling of steady state for emulsion and particle suspension can be compared. 

Applying the hierarchical model to emulsion and considering efficiencies expressed as 

exponential function one obtains : 

/ 8 / exp 1
frag

frag coalcoal frag
Vcoal

contact

t tT
K N K C

T t
π

− 
= =  

 
�      (70) 

where CV is the drop volume fraction in emulsion. 

The characteristic time coalT coming from the population balance equation is different from 

the time issued from individual collision coalt . However, both ( coalT , fragT ) are related to 

( coalt , fragt ) by an unique way (Eq. 70). If efficiencies are very weak, then 1
frag

frag

coal
coal

tT

T t
� � . 

This approach would be correct only if coalescence and fragmentation could occur at the 

same time. However it seems that it is not the case for emulsion where depending on the 

initial state either coalescence or fragmentation would occur. Thus only the ratios coal

cont

t

t
 or 

frag

cont

t

t
 determine the limit size. It can be emphasized that the ε-dependence of the drop limit 
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diameter in the inertial range of turbulence is not so different for the two cases : 2/5d ε −∝  

for fragmentation  and 5/17d ε −∝  for coalescence-fragmentation. 

The different dynamics of emulsion and particle suspension are probably due to the higher 

sensitivity with the size of collision efficiency and fragmentation efficiency in the case of 

emulsion. 

We described two ways in order to modelize the whole aggregation process, i.e. either by 

using an aggregation kernel (2) and a fragmentation kernel (7) or by introducing a stability 

efficiency (67) into the aggregation kernel (2). The two modelling contain the same 

ingredients. However the La γ− �  dependences are different. The analysis of the behaviour 

of other dispersed media and the agreement of the modelling of particles aggregation with 

experiments show that the best representation involves fragmentation. 
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APPENDIX 

 

Following the procedure of Hamaker for the calculation of Van der Waals interaction 

potential 12U  between two equally sized porous macroscopic bodies (denoted 1 and 2), one 

derive : 

( ) ( ) ( )
1 1

2
12 1 2 1 2 1 2 1 24 , , /a a

u u

U A r r f r r h r r h dr drφ φ= ∫ ∫       (A1) 

with 

1 / iu a a=  

1 2 3 4f f f f f= + + +  

( )( ) 222
1 1 21/ 2f r r h

−
= − −  

( )( ) 222
2 1 21/ 2f r r h

−
= − − +  

( )( ) 322 2
3 1 1 22 / 3f r r r h

−
= − − −  

( )( ) 322 2
4 1 1 22 / 3f r r r h

−
= − +  

All distances are made dimensionless by dividing them by the aggregate radius. h is the 

surface-surface distance. 1r  or 2r  are the distances between a given point of aggregate 1 or 2 

and its centre. ( )a rφ  is the volume density inside each aggregate. One deduce an 

approximated expression for Van der Waals forces between two aggregates separated by 

1h = , which is suitable for comparison with other results : 

( ) ( ) ( ) ( ) ( )
2 65 2 61/

1 1, , / 3 /
f ff

D DD

VW i f VW i f iF a a D F a D S a a
− −

�  1.6 3fD< <   (A2) 
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( )VW iF a corresponds to the Van der Waals force between non porous spheres with the same 

outer diameter ia . 

The hydrodynamic resistance for fractal aggregates has been studied by Vanni [28] and 

Gmachowski [3]. It is expressed by using a corrective drag coefficient iΩ  , which is a 

function of Df and ai/a1. By using Neale and Veerapaneni’s work, Vanni [28] shows that a 

good approximation for Ωi (Df > 2) is : 

 

2

2

tanh
2 (1 )

tanh
2 3(1 )

i

ββ
β

ββ
β

−
Ω =

+ −
with 

1/ 2
i

i

aβ
κ

=        (A3) 

where iκ  is the aggregate permeability at the aggregate surface.  

It is not possible to find such a simple expression for iΩ  for Df < 2 ; Some authors assume 

that iΩ  only depends on the fractal dimension. Thus, Gmachowski, [3], from different 

considerations, suggests the following expression : 

1/ Df
i SΩ =           (A4) 

The difference between the two approaches is a weak dependence on ai/a1 for the expression 

of Vanni. From the Vanni’s work (figure 7), one can approximate the corrective drag 

coefficient by the simple expression : 

  ( )0.15/1/ 1/
12 / ff f DD D

i iS a a
−Ω �  3

110 / 10ia a< <     (A5) 

Hence,

( )
( )

( )
( ) ( ) ( ) ( )

2 75 6 2 0.15/1 1 1/ 1/
1

, , , ,
' 2 / 3 /

6

f f ff f
D D DVW i f VW i f D D

A A A f i
i i i VW i i

F a a D F a a D
C C C D S a a

a a F aπµ γ
− − += = =

Ω Ω�
 

(A6)  
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TABLES 

 

Table 1 : experimental results for aggregation-fragmentation 

L : laminar (Couette flow) T : turbulent (stirred tank) 

PS : polystyrene latex 

 

 

Table 2 : theoretical results for aggregation-fragmentation 

LA : laminar aggregation  TA : turbulent aggregation  

LF : laminar fragmentation TF : turbulent fragmentation  

β : percentage of broken links between primary particles in aggregate 

E : binding energy between primary particles 

σ: attractive force between primary particles per area unit in aggregate 

r1 :exponent in φ-dependence of elastic shear 

r2 : exponent in φ-dependence of volumic cohesive energy 

* aggX  is differently defined in the Bache’s paper.  



36 

FIGURES 
 
 
 
Figure 1 : m-exponent versus fractal dimension from different modelling 

Case 1 : small values for r1 and r. 
 
 
 
Figure 2 : m-exponent versus fractal dimension from different modelling 

Case 2 : high values for r1 and r. 
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Authors 

 

n Df B m,

1

mLa

a
γ −∝ �

 

fragK  Experimental  system 

Chimmili 
[30] 

0.7   0.56  L/Glass beads ; 4µm  

viscous medium 

( )13 30sγ −< <�  

Sonntag [6]  2.48  0.35  L; PS ; 0.14µm 

( )11800 6000sγ −< <�  

Selomulya 
[8,9] 

 [2.45-
3] 

1.2 0.28  T/PS ; 0.38µm 

( )132 246sγ −< <�  

Gruy 
[12,40] 

0.4 2.4  0.25  T/SiO2 ; 0.5µm and 1.5µm 

( )145 360sγ −< <�  

small aggregates 

Nakaoka 
[31] 

0.24  6   T/PVT ; 2µm 

( )140 200sγ −< <�  

Oles [32]  [2.1-
2.5] 

8 0.5�   L/PS ; 2.2µm 

( )125 150sγ −< <�  

Serra  

[33-35] 

 2.24 7 0.7 1.75
1/ia aγ∝ �

 

L/PS ; 2 µm or 5µm 

( )125 195sγ −< <�  

Brakalov 
[7] 

   0.55-
0.6 

 Mg(OH)2 ; 0.022µm 

Fe(OH)2 ; 0.042µm 

( )180 1200sγ −< <�  

 

Spicer [36] 

0 [2.3-
2.65] 

1 0.5-0.6 1.6
1/ia aγ∝ �

 

T/PS ; 0.87µm  

( )160 130sγ −< <�  

Large aggregates 
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Chin [37] 

0.25
-0.3 

    T/PS ; 0.5µm-1µm  

( )1220 620sγ −< <�  

small aggregates 

De Boer 
[26] 

0.36  20 0.5  T/PS ; 0.88µm 

( )18 280sγ −< <�  

Kusters [2]  2.5 13 0.75  T/PS ; 0.8µm   

( )160 460sγ −< <�  

Tontrup 

[38] 

 2.4  0.6  T/TiO2 ; 0.35µm 

( )160 360sγ −< <�  

Bohin 

[52] 

   0.5  L/SiO2 ; 2mm 

( )125 170sγ −< <�  

dry and homogeneous 

aggregate 

Peng [39]    
1/ 2

L Ka λ
γ −∝

�

�

 

? 4 6
idγ −∝ �

  

  

T/SiO2 ; 40µm 

Concentrated suspension 

( )1100 500sγ −< <�  

   

TABLE 1 : experimental results for aggregation-fragmentation 

L : laminar (Couette flow) T : turbulent (stirred t ank) 

PS : polystyrene latex 
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Authors 

 

n Df B 

1

c

agg mL

fluid

Xa

a X
γ − 

∝ ∝  
 

�

 
exp

frag

agg

fluid

K

X

X
γ

∝

 
−  
 

�
 

Conditions   

Criterium 

Brunk [41] 0.16     TA  

Van de Ven 
[27] 

0.18     LA  

Potanin [42] 0.11     LA  

Hounslow 
[43] 

1     TA+growth 

stress 

Spicer [44]   10   LA 

Brakalov [7]    m=[0.55-0.6]  TA  LA 

Sonntag [6]    

( ) ( )1

1/

1 / 2 3f f

m

D r D

=

− + −
 

1/2
10L

L

a

κ
<  

( )11/ 3 fm r D= −  

1/2
10L

L

a

κ
>  

 LF 

Large 
aggregates 

stress 

Higashitani 
[45] 

   [0.4-0.5]  LF i<100 
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  
 
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stress 

 
TABLE 2 : theoretical results for aggregation-fragmentation 

LA : laminar aggregation  TA : turbulent aggregation  

LF : laminar fragmentation TF : turbulent fragmenta tion  

ββββ : percentage of broken links between primary particles in aggregate 

E : binding energy between primary particles 

σσσσ: attractive force between primary particles per area unit in aggregate 

r1 :exponent in φφφφ-dependence of elastic shear 

r2 : exponent in φφφφ-dependence of volumic cohesive energy 

* aggX  is differently defined in the Bache’s paper.  
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Figure 1 
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Figure 2 
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