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Using Trust and Possibilistic Reasoning to Deal with Untrustworthy

Communication in VANETs

Andrew Koster1 Andrea Tettamanzi2 Ana L. C. Bazzan1 Célia da Costa Pereira2

Abstract— VANETs allow for unprecedented amounts of
information to be sent between participants in traffic. Unfortu-
nately, without countermeasures, they also allow selfish agents
to take advantage of communication to improve their own
utility. In this paper we present a novel framework for dealing
with potentially untrustworthy information. The framework
consists primarily of two components: a computational trust
model for estimating the amount of uncertainty in received
information and a possibilistic beliefs-desires-intentions agent
system for reasoning about this uncertain information in order
to achieve the driver’s goals. We demonstrate the framework’s
effectiveness in an easy to understand but realistic scenario of
a freeway system in which we also show that deceit may have
a larger impact on traffic flow than previously thought.

I. INTRODUCTION

A recent article reports that, by 2015, 80% of the cars

that the Ford Motor Company sells on the US Market

will have wireless communication technology built in [1].

The same article cites other suppliers of car to car (C2C)

communication technology; all of them expect a large growth

of sales in the near future. This will enable the upcoming

generation of cars to communicate directly with each other

using an ad hoc network. Some initial applications of the

technology are already being experimented with, such as the

Cooperative Forward Collision Warning, which assists the

driver in avoiding rear-end collisions with other vehicles [2].

Nevertheless, much of the potential for this technology is

still unexplored. In particular, the use of communication in

order to assist the driver for non-safety related tasks, such as

signalling other drivers about upcoming congestion, is still

very much an open issue.

One major problem in inter-vehicular communication is

that selfish agents may be better served communicating

false information than the truth. Agents may not just try to

choose actions that optimize their utility, but actively attempt

to deceive others in order to improve their own utility.

Such deceitful agents are incompatible with approaches to

cooperative driving, such as the one described by Bejan and

Lawrence [3], where agents’ truthfulness is a necessary pre-

requisite to obtain accurate information about the state of the

road. Such truthfulness, however, cannot be expected in many

traffic situations. For instance, if a deceitful driver knows that

the highway he wants to take is congested, he is best suited

convincing other drivers that it is clear, in order to avoid

heavy traffic on the alternative road. Kraus et al. [4] analyzed
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a traffic scenario in which deceitful agents can exploit C2C

communication over a VANET, in order to optimize their

own travel time. Their research indicates that the effect of

deception on travel times is low, however the simulation is

for a downtown environment with all cars moving in different

directions. We expect that misinformation is more serious on

major arteries, such as those used by commuter traffic, where

the origin and destination of the drivers are more similar.

Kraus et al. also present some approaches to obtain truthful

information in environments with deceiving agents. Firstly,

they propose to take historical information about the road

into account when evaluating received information. This is

a way of evaluating the trustworthiness of received infor-

mation, by comparing it with another information source.

We consider historical data about the road as an alternative

source of information, but using it to evaluate communicated

information a priori defeats the purpose of communication in

the first place: we require communication specifically when

other sources of information are insufficient. In a similar way,

they consider communications from trusted sources, such as

ambulances or police cars. This is similar to considering a

centralized source of information, such as a GPS path finding

service, or the news broadcast by the radio. Such sources

have no incentive to lie, but are often unavailable, or provide

outdated information.

Instead of relying only on trusted channels, which may be

expensive or unavailable, we propose a new framework for

reasoning about communicated information. We emphasize

that while the individual techniques used are not new, their

combination and application to evaluating the truthfulness of

communication in VANETs is. We use a possibilistic beliefs-

desires-intentions (BDI) framework, as first presented by da

Costa Pereira and Tettamanzi [5], to reason about the uncer-

tainties stemming from the various sources of information.

The use of an intelligent agent model has various advantages.

The first is that it is essential for the automated transmission

of messages: deciding what message to send and when to

send it is a complex decision, especially as bandwidth in

a VANET is limited. Second, an intelligent agent can help

with the interaction with the driver. As more and more

information is available to the user, it becomes increasingly

important to reduce the information overload. Intelligent

agents are eminently suited to this task [6]. Moreover, a BDI

framework allows for reasoning about the communication

and the source; thereby providing a context in which the

trustworthiness of his message can be assessed.

The BDI framework we are using here has two important

features: it allows to consider information from sources



which can be partially trusted and updates the agent’s beliefs

with respect to both new information and the associated trust

degree and it proposes a reasoning model to generate the

agent’s goals under the new situation. Because our approach

is possibilistic, unlike Kraus’ approach, which necessarily

needs historical data, ours can work even when the available

data is incomplete and a qualitative ordering of the trusth-

worthiness of the sources is the only thing that is available.

To deal with deception in C2C communication we use a

computational trust model. Many computational trust models

have been proposed for a variety of domains [7]. As Zhang

[8] points out, however, C2C communication faces problems

that are not addressed in such models. Most conventional

trust models rely on repeat interactions with an individual

agent to build up a trust relationship. In the absence of such

repeated interactions, they turn to their peers, who may have

repeated interactions, or a centralized authority that holds

reputational information. Unfortunately, in communication in

a VANET, none of these methods are available. The massive,

decentralized nature of a VANET makes repeat interactions

with a single car unlikely, and precludes the presence of a

centralized source of reputation information. We present a

trust model in Section II-A that considers the VANET as a

whole as a single source, and also deals with aggregating

information from other sources such as a GPS path finding

service or institutional sources.

In Section III we discuss the experimental setup, in which

we demonstrate the effect deceitful agents can have on traffic

flow, and how our model improves the situation. We conclude

this paper in Section IV.

II. OUR FRAMEWORK

Our method for dealing with uncertainty in C2C com-

munication uses an autonomous agent framework to reason

about all received information, and to use this intelligently

to achieve the user’s goals; regardless of whether this is

communication about congested roads, as we discuss in

this paper, or communication about free parking spots or

hazardous situations on the road. The main building blocks

of this system are (1) a computational trust model that is able

to assess the trustworthiness of various information sources,

in particular C2C communication, and (2) a possibilistic

BDI agent, to reason about uncertain information and make

decisions. We describe both these systems in detail in this

section.

A. Trusting communication

Cars equipped with modern communication technology

will be able to receive information from a variety of sources.

We consider C2C communication devices in particular, but

other information sources are taken into account as well.

For instance, GPS-based path planning services, such as

Google Maps or TomTom already provide information about

traffic conditions to their clients, and government authorities

could use wireless communication with cars, in addition to

the already present methods — such as digital information

boards on freeways or counters with free parking spaces in

the inner city — for communicating to cars on the road.

We do not consider any of these sources to be inherently

better than any other, but rather use a computational trust

model to evaluate information from each of them. Addi-

tionally, we consider different types of messages separately,

allowing the context to be taken into account when consid-

ering each source. For example, consider that government

authorities may be very trustworthy when supplying infor-

mation about traffic congestion, but their information about

available parking spots is found to be out of date. In this case,

we should treat information from the government authority

about congestion differently from that about parking spaces:

the trustworthiness of the source is dependent on the context

of the message. After analyzing the trustworthiness of each

source individually, the information from various sources is

combined, using a consensus operator [9] and passed on to

the possibilistic BDI agent, which reasons about how the

communication affects its plans.

1) Trust and context: Before we discuss the trust model

and consensus operator, we need to define the messages

that are sent. We assume that the content of the message

uses a shared communication language LComm. An example

of such a language, which might be used in a full-scale

implementation, is the one specified by the Ontology of

Transportation Systems [10]. In this work, however, we

restrict the communication to the set of literals of a First-

Order Language. We introduce this restriction for the sake of

simplicity. Firstly, bandwidth and computational power is at

a premium in VANETs: by restricting messages to literals,

we restrict their size, as well as the computation required

for processing them. Secondly, it allows us to define message

contexts as predicate symbols. In a richer language, message

contexts can also be defined (using, for instance, clustering

with a distance measure over the language), but this is outside

the scope of this paper. The context of a message allows us to

generalize over multiple messages with similar content: these

other messages allow for the trustworthiness to be evaluated.

To obtain the context of a message, we take advantage

of the structure of First-Order Logic and we define each

predicate (also called a property) as a separate context. Mes-

sages, being literals, communicate a property of a constant

(which represents an object in the world). For any literal p in

the communication language, we denote its context using the

function context(p). Because communication is restricted to

literals, a message will always belong to a single context.

The computational trust model assigns a trust evaluation

to each message, dependent on the source’s trustworthiness

with regards to the message’s context. For most sources,

we can rely on existing trust models, because these sources

are persistent. We can use the truthfulness of past messages

to evaluate the source’s trustworthiness. We therefore do

not consider this in much detail, but assume that a trust

evaluation is a numerical evaluation in the range [0, 1],

which we can interpret as the likelihood that the source

will communicate truthfully. We refer to Pinyol et al. [7]

for a recent survey of trust models for multi-agent systems.



They also show that most contemporary models compute an

evaluation that can be interpreted in the manner described.

Information from C2C communication, however, must be

treated differently. A VANET allows for direct communi-

cation with hundreds, or even thousands, of other cars and

the chance of a repeat interaction with any individual car is

small. Furthermore, it would require a large amount of stor-

age to maintain a database of messages previously received

from each car. We therefore consider all C2C communication

together as a single source of information. In other words,

the VANET, rather than individual cars, is considered as

a source of information, whose trustworthiness must be

evaluated. Additionally, when doing this, we need to take

into consideration when a message was sent: which messages

do we aggregate together and consider as a single piece

of information that is provided by the C2C communication

source.

2) Trust in a VANET: In order to combine information

received over a VANET with information from other sources,

we must aggregate it into a similar structure: a single

predicate in LComm and an associated trustworthiness. To

assess this, we use Maximum Likelihood Estimation.

We make a slight adjustment in that we only consider re-

cently received information. We define a threshold Pcontext,

a maximum period of time that may have passed for the

message to still be relevant. This threshold is dependent on

the context, because some messages describe events that are

only true for a very short period of time — for instance, a

bridge being open — whereas others, such as congestion,

take longer to become invalidated.

When communicating, a source states that either the atom

p is true or false. We thus consider each such message

as evidence for the statement p: all messages stating p

support it, and all messages stating ¬p conflict with it. Over

the VANET, the agent may receive many messages both

supporting and conflicting an atom. We therefore consider

that C2C communication gives a likelihood for the message

content. The frequency of any atom p, as given by C2C

communication, is FC2C(p) =
|M(p)|

|M(p)|+|M(¬p)| , where M(p)
is the set of messages received at most Pcontext time ago,

that contain p.
However, this is only the likelihood that the new informa-

tion is truthful, not taking into account prior communications.
To obtain the actual trustworthiness in the information, we
must further take the trustworthiness of the source into
account. The trust we can place in the communication of
atom p, as communicated through a VANET is as in Eq. (1),
where Trust(C2C, p) is the trustworthiness of the source
C2C in context(p).

TC2C(p) = Trust(C2C, p) · FC2C(p)

+ (1− Trust(C2C, p)) · FC2C(¬p)
(1)

To calculate Trust(C2C, p) we use BRS [11], a simple,

but widely used statistical trust model. In particular, we use

one of the extensions proposed by Jøsang and Ismail, which

allows for discounting older information. This is crucial

in such a dynamic system as a traffic network, where the

number of trustworthy cars may change over time. Moreover,

we can only consider those messages for which we know the

true state of the world. This information could be obtained

by evaluating sensor data, such as the odometry of the car,

or by obtaining information afterwards; for instance, from a

trusted, centralized, database when the car is in its home

garage. This provides the agent with a knowledge base,

and we evaluate the truth of messages in comparison to

this knowledge base. The trustworthiness of a source is the

posterior likelihood of communicating a truthful message.

3) Aggregating over different sources: When evaluating

how trustworthy the information concerning a specific atom

p is, we must aggregate information about p from various

different sources, each with their own trustworthiness. Sim-

ilar to the case of C2C communication, we must take into

account that the sources may disagree. This is a similar prob-

lem to that encountered in data fusion for sensor networks,

but most data fusion methods rely on the measurements over

time and are not applicable to the problem we consider.

Jøsang proposes to use a consensus operator [9], which is

specifically designed to take advantage of the trustworthiness

of different sources.

We wish to consider all sources equally, weighted by

their trustworthiness. We thus use the same insight that we

used in computing the trustworthiness of a message in C2C

communication (see Eq. (1)): we consider events as binary

and if a source communicates p with trustworthiness t, it

can also be seen as communicating ¬p with trustworthiness

1 − t. We use this property in the fusion of information

from different sources and compute the trustworthiness of

p as the mean of the trustworthiness of all the sources’

communication of p.

We use the result in reasoning about the communicated

information. In particular, we have to reason about its trust-

worthiness in comparison to other sources of information,

such as the car’s odometry data or a GPS signal. For this

we need to interpret the trustworthiness of the information

in terms of beliefs. We thus update the agent’s belief base

with the new information and its associated trustworthiness.

The possibilistic BDI framework takes care of the rest, as

briefly discussed in the next section.

B. Reasoning about uncertain information in traffic

The communicated information must be combined with

other available information and a decision must be made

based on this in order to best achieve the user’s goals. Such

goals can be, for example, to get home as fast as possible,

or park the car near a supermarket. The information an

agent has available is uncertain and possibly incomplete.

We thus need a goal-oriented reasoning system that can

deal with uncertain, incomplete information. For this we

use the possibilistic BDI model that was first proposed

by da Costa Pereira and Tettamanzi [5]. The model has

two features in particular that make it uniquely equipped

for decision-making in traffic. The first is that it performs

automated belief revision. The agent has multiple sources of

information. So far we have focused on communication, but

this is only part of the picture: it must use this information



together with information from other sources, such as a GPS

signal, odometry data or lidar. Such information is more or

less accurate and must be integrated correctly in a belief

base. The proposed model provides a way of doing so in

accordance with the AGM postulates of belief revision [12].

Even more important is that the model takes the uncer-

tainty of its beliefs into account when selecting goals. The

best set of goals to be pursued is not only dependent on

the utility that can be obtained, but also on the feasibility

of actually achieving the goal. The process of selecting

goals must thus deal with the uncertainty of information.

For instance, if the GPS signal fails, then it is unfeasible

to give the user navigation instructions and instead of doing

so erratically, it may be better to display other information,

such as a roadmap with the route and last known location.

Similarly, if we received trustworthy communication that

there is no street parking available downtown, it may be

better to direct the user straight to a parking garage, rather

than waste time going around the block, whereas going

around the block may be the preferred action if there is more

uncertainty about parking availability.

In this paper we explain the use of the possibilistic

BDI framework using an example, which we will use for

evaluating the framework in Section III. For technical details

of the framework we refer to [5].

III. EMPIRICAL EVALUATION

In the previous section we presented a framework for deal-

ing with uncertain communication. We empirically demon-

strate its applicability in this section. The scenario represents

a freeway with a single alternative route. For example,

consider the map in Figure 1a. The thick red line repre-

sents the major freeway between Utrecht and Amsterdam,

two large cities in The Netherlands. This freeway is often

congested with commuter traffic between the two cities and

the surrounding towns. However, all the alternatives are slow

roads that twist around the countryside (we have drawn one

of them in blue). Usually, as it is the case here, there are a

number of alternatives, but we focus on just one (the shortest,

as calculated by Google Maps) to keep the example scenario

clear. The framework as presented can equally well deal with

multiple different routes: it is simply more information that

must be taken into account.

A. Scenario

The road network is represented in the graph of Figure

1b. All agents have the aim of traveling from A to C. In

node B they can switch from the freeway onto the side road,

or vice versa. We consider the cost of each edge i as the

time it takes to travel along it from start to finish, which is

dependent on the speed with which drivers can move along

it. This, in turn, is dependent on the amount of traffic T

on the edge. We base this relationship on the fundamental

diagram of traffic [13] and some basic assumptions about the

road. The maximum speed vmax along the freeway is 120
distance/time, whereas the side road has a speed limit of

60 distance/time. An edge is never completely blocked, and

(a) Example of a road map for the

experimentation ( c© 2012 Google)

A

B

C

costfreeway(T )

costfreeway(T )

costside(T )

costside(T )

(b) Graph representation of roads

for experimentation

Fig. 1: Experimental scenario

there is a minimum speed vmin of 10 distance/time along the

freeway and 5 distance/time along the side road. We use the

sigmoid function v(T ) = vmax
vmax−vmin

1+e5−T/1000 to represent the

fundamental diagram in a continuous function, resulting in

the speeds dependent on the amount of traffic T . The speed

is normalized around a maximum occupancy of both roads

at 10, 000 cars, an easy number for use in the simulation.The

cost is then simply the distance over the speed. In addition

to allowing a higher speed, the freeway is shorter. The two

edges along the freeway are 120 distance units each, whereas

the side road is 1.5 times as long, with each edge being

180 units long. Note that all values are arbitrarily chosen,

although it is normal for side roads to be both longer and

slower than the main route.

With 10, 000 cars traveling along the network, there is a

unique mixed Nash equilibrium, in which each car chooses to

go along the freeway with probability 0.6358 and otherwise

along the side road, resulting in a cost of 3.69 each. However,

we will assume cars with no prior information do not know

about the amount of traffic and will always choose to travel

along the freeway. The only situation in which a driver

considers the side road is if he receives some information

indicating that the freeway is congested. In such cases

the side road may be a better alternative for reaching his

destination.

A driver considers the freeway congested if he is forced

to drive slower than half the maximum speed, which occurs

at an occupancy of 5, 183 cars. For the sake of simplicity,

if the freeway is congested at the start of the simulation,

there are 6, 000 cars on it. We run the simulation with a

further 4, 000 cars that have the ability to communicate and

reason about the communication. We further assume that

20% of the reasoning agents have access to some form

of prior information, informing them whether an edge is

congested or not. They may then choose to communicate

truthfully or not. We further assume that any car that does

not have prior information does not attempt to create chaos

and fabricate messages. We choose 20% of the cars having

prior information in order to ensure there are enough cars

that may communicate.



B. Agents

The use of trust in interpreting communication is a

straightforward application of the equations in Section II-

A. To reason about the communication and decide whether

to take the freeway or the alternative road, we program a

possibilistic BDI agent as follows.

Firstly, there are only two beliefs to consider: (1) in(n),
the belief that the agent is in node n of the network, and (2)

isCongested(e), the belief that edge e is congested. Secondly,

the agent must decide which road to take based on its beliefs.

For this there are three high-level actions: freeway(xy) (take

the freeway to go from x to y), sideroad(xy) (take the side

road to go from x to y) and stop.

Reasoning about which action to take is performed using

desire-generation rules as follows:

if B(in(A)) and 0.01 then freeway(AB),
if B(in(A) ∧ isCongested(AB)) then sideroad(AB),
if B(in(A) ∧ ¬isCongested(AB)) then freeway(AB),
if B(in(B)) and 0.01 then freeway(BC),
if B(in(B) ∧ isCongested(BC)) then sideroad(BC),
if B(in(B) ∧ ¬isCongested(BC)) then freeway(BC),
if B(in(C)) then stop.

Here, B(φ) represents the degree to which the agent be-

lieves formula φ, and the 0.01 constants appearing in the

antecedents are a generalization of the logical constants ⊤

and ⊥, i.e., 0.01 is an atom whose trustworthiness is 0.01.

The trustworthiness of beliefs gives a priority ordering over

the rules. In this case, if congested(AB) is believed with a

trustworthiness greater than 0.01, then the sideroad will be

chosen instead of the freeway. In practice this means that

any amount of communication will lead to either the second

or the third rule to be prioritized over the first. However, if

we raise the trustworthiness of the default rule, then it may

be prioritized if there is high uncertainty about the beliefs

(ergo, the trustworthiness is low). This allows an agent to

reason about the trustworthiness of its available information.

This default rule is not chosen arbitrarily. In a real setting,

this default choice to take the freeway comes from some prior

information, for instance, historical data such as that used

by Kraus et al. [4]. The trustworthiness associated with this

rule corresponds to the trust the agent puts in this data. In

this case, while defaulting to taking the freeway, the agent

has no trust in this action and any other information may

change it. However, if an agent were to have more trust in

the default choice, then it could raise this value: in this case

the communication must be more trustworthy in order to

override the default rule.

C. Communication and deception

As mentioned in the introduction, deceitful drivers who

have some form of a priori information about the state of

the freeway can improve their travel time by lying about

this information. If there is congestion, then they want as

few people as possible on the side road, so will try to

deceive others into believing the freeway is clear. In the

reverse situation, if there is no congestion, then the fewer

drivers on the freeway, the better, however minimal the gain.

Either situation is severely detrimental to a naive driver who

believes the communication.

Nevertheless, not all drivers act in their own best interest

all the time. Because communication in cars is a new

technology, no research has been done yet on whether drivers

send trustworthy communication (or their intelligent agents

do that on their behalf). Instead we rely on research done

on altruism in traffic in a broader sense. Mujcic et al. [14]

found that 40% of drivers cede way at intersections when

they do not have to. Other researchers find similar numbers,

or lower of altruistic drivers in traffic scenarios. We will run

experiments with different numbers of altruistic agents, and

adopt a baseline of 40% for the results in Table I.

There are two opportunities for communication. The first

round is before the simulation starts, and the second is before

the second choice point in node B of Figure 1b. In the

second round of communication, all agents have additionally

received information about the true state of the first stretch of

freeway, allowing them to assess the trustworthiness of the

first round of communication. For the sake of simplicity, we

assume the population is homogenous and the percentage of

altruistic agents stays at the same throughout the simulation.

D. Results

The experiment serves firstly to demonstrate that deceitful

behaviour has a detrimental effect upon traffic flow in the

network, and secondly to show that our method for reasoning

about the trustworthiness of information allows agents to

improve their performance.

1) The use of trust: We run the simulation scenario with

four different settings. The first is that none of the agents

have any prior information about the state of the roads. The

second is to provide 20% of the agents with truthful prior

knowledge about the state of the freeway. In the third setting,

we add the ability to communicate: 60 % of the agents are

deceitful. Without trust, we use a simple majority vote to

interpret the C2C communication. Finally we allow agents

to use trust and reasoning to interpret C2C communication.

In this final setting, the trust model needs to be initialized

with a default value for trust. We use a naive setting: before

being able to evaluate, C2C communication is a fully trusted

information source. The results can be found in Table I for

two different traffic scenarios: one with, and one without

congestion on the freeway.

The first thing to note is that if there is no congestion, then

deceitful agents gain little from lying to others, however the

agents who rely entirely on C2C communication for their

information about the state of the freeway are tricked into

taking the sideroad, resulting in their travel time doubling. So

while it may not be worthwhile for the deceitful agents, the

victims of the deception are significantly affected. In the case

of a congested freeway the reverse is true: the agents without

information were going to get stuck in the traffic jam on the

freeway in any case. Similarly, the deceitful agents with prior

knowledge of the congestion were going to take the side road

in any case, so in this case their deceitful communication

alone does not have any affect on the performance.



No congestion Both freeway edges congested
Average Deceitful Others Average Deceitful Others

No knowledge 2.65 22.35
Knowledge, no communication 2.65 2.65a 17.75 6.08a

Knowledge, communication 5.94 2.03 6.90 17.75 6.08 20.64
Knowledge, communication and trust 4.28 2.34 4.77 12.85 7.02 14.31

a There is no communication, so these are all of the agents (20%) who have knowledge about congestion.

TABLE I: Travel time through graph of Figure 1b using different settings

When using trust and possibilistic reasoning to interpret

the communication and act accordingly, we see the situation

changes significantly. The cars trust the information (erro-

neously) in the first round of C2C communication, but in the

second round, they are able to adjust and obtain the under-

lying truth. This mitigates the negative impact of deceitful

communication in the case where there is no congestion,

and significantly improves agents’ performance when there

is congestion, if they rely only on C2C communication.

2) Balancing information sources: The way our trust

model works, the smaller the minority group, regardless of

whether they are truthful or lying agents, the higher the trust

we can place in VANET communication. The 40% truthful

agents is thus not a favourable example for us, as the agents

have very low trustworthiness in communication. If 50% of

the agents are truthful, then we can say nothing at all about

the trustworthyness of the VANET. The further from 50%,

the better we can estimate the trustworthiness of the VANET.

In order to decide whether to use the communicated

information, the trustworthiness in the default choice is given

by prior reasoning about some statistical data regarding the

expected state of the freeway. Because the environment is

dynamic, and the trust model is capable of adapting over

time, it may be the case that in some situations the ad-

hoc communication over the VANET overrides the default

choice, while at others, trust in the VANET is low and the

agent advises the car to follow the default choice. This is

precisely the kind of adaptive behaviour that we wish to

obtain by using a possibilistic BDI agent.

IV. DISCUSSION

The experiment in the previous section is a proof-of-

concept demonstration of the framework for reasoning about

C2C communication. We show that under some basic as-

sumptions about the behaviour of traffic, selfish, deceitful

agents have a significant impact on traffic flow. Furthermore,

our framework is able to learn how to interpret deceitful in-

formation and improve the agent’s functioning. Nevertheless,

we acknowledge that further experimentation is necessary.

Particularly in a microsimulation, where it is possible to gen-

erate numerous different behaviours, which can change over

time. In addition, we intend to gather data about how human

participants in traffic use the ability to deceive when being

able to communicate easily between each other, in order to

calibrate the experimentation scenario better. Furthermore,

C2C communication should be considered within the overall

problem of congestion management: it is not clear what cars

should communicate and when, even if the information is

trustworthy.

The framework we proposed performs well in a homoge-

nous population, but it may be possible to consider C2C

communication as not simply a single source of information,

but make a more fine-grained distinction. While we cannot

evaluate each car’s trustworthiness individually, there may

be some characteristics that can be associated with trustwor-

thy behaviour: for instance, cars traveling in the opposite

direction on the freeway have less incentive to lie about

congestion than cars traveling in the same direction. This

could be achieved by a richer modeling of other agents in

the system, including their possible goals.

C2C communication through VANETs is a valuable tool

for providing drivers with more, and more accurate informa-

tion. However, to process this information it is necessary to

take into account that it may be false and to reason about

what to present to the user. We presented a comprehensive

framework for doing so.

Acknowledgements: Andrew Koster is supported by

CAPES (PNPD). Both Andrew Koster and Ana Bazzan are

supported in their work by CNPq.

REFERENCES

[1] R. Lever, “Wi-fi cars hitting the information superhighway,” Agence
France-Presse, March 26 2011.

[2] C2C-CC, “Car 2 car communication consortium manifesto,” 2007.
[3] A. Bejan and R. Lawrence, “Peer-to-peer cooperative driving,” in

Proceedings of ISCIS, Orlando, USA, 2002, pp. 259–264.
[4] S. Kraus, R. Lin, and Y. Shavitt, “On self-interested agents in vehicular

networks with car-to-car gossiping,” IEEE Transactions on Vehicular

Technology, vol. 57, no. 6, pp. 3319–3332, 2008.
[5] C. da Costa Pereira and A. G. B. Tettamanzi, “An integrated possibilis-

tic framework for goal generation in cognitive agents,” in AAMAS’10,
Toronto, Canada, 2010, pp. 1239–1246.

[6] P. Maes, “Agents that reduce work and information overload,” Comm.

of the ACM, vol. 37, no. 7, pp. 30–40, 1994.
[7] I. Pinyol and J. Sabater-Mir, “Computational trust and reputation

models for open multi-agent systems: a review,” Artificial Intelligence

Review, In Press.
[8] J. Zhang, “A survey on trust management for VANETs,” in Proceed-

ings of IEEE AINA’11, Biopolis, Singapore, 2011, pp. 105–112.
[9] A. Jøsang, “A logic for uncertain probabilities,” International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 9, no. 3,
pp. 279–312, 2001.

[10] B. Lorenz, H. J. Ohlbach, and L. Yang, “Ontology of transportation
networks,” University of Munich, REWERSE Project, Tech. Rep. A1-
D4, 2005.

[11] A. Jøsang and R. Ismail, “The beta reputation system,” in Proceedings

of the Fifteenth Bled Electronic Commerce Conference e-Reality:

Constructing the e-Economy, Bled, Slovenia, 2002.
[12] C. E. Alchourrón, P. Gärdenfors, and D. Makinson, “On the logic

of theory change: Partial meet contraction and revision functions.”
Journal of Symbolic Logic, vol. 50, no. 2, pp. 510–530, 1985.

[13] B. D. Greenshields, “A study of traffic capacity,” in Proceedings of

the 14th Annual Meeting of the Highway Research Board, 1935, pp.
448–481.

[14] R. Mujcic and P. Frijters, “Altruism in society: Evidence from a natural
experiment involving commuters,” IZA Discussion Papers, Tech. Rep.
5648, 2011. [Online]. Available: http://ftp.iza.org/dp5648.pdf


