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Abstract

When we have a proper action of a Lie group on a manifold, it is well known
that we get a stratification by orbit types and it is known that this stratifi-
cation satifies the Whitney (b) condition. In this article we will see that this
stratification satisfies the strong Verdier condition.



This article is based on an idea of David Trotman.

1 Stratification by orbit types

In this section we will recall the definitions and principal results about
stratifications by orbit type. The classical references underlying what will
come are [8], [14]. We will follow mostly the notations of M. Pflaum in [15]
which synthesizes works by [1], [3], [5], [7], [10], [16].
Let M be a manifold and G a Lie group.

Definition 1. A (left) action of G is a smooth mapping (i.e. C∞)
Φ : G×M → M, (g, x) 7→ Φ(g, x) = Φg(x) = gx such that:
∀g, h ∈ G, ∀x ∈ M,Φg(Φh(x)) = Φgh(x),Φe(x) = x, where e is the unit
element of G.

Definition 2. A G-action Φ : G×M → M is called proper if the mapping
Φext : G×M → M×M, (g, x) 7→ (gx, x) is proper.

With such proper actions several results are known, in particular M admits a
G-invariant Riemannian metric. The most important result is the so called
slice theorem ([8], [14]). Here it is as stated in [15]:

Theorem 1. Let Φ : G×M → M be a proper group action, x a point of M
and Vx = TxM/TxGx the normal space to the orbit of x. Then there exists a
G-equivariant diffeomorphism from a G-invariant neighborhood of the zero
section of G×Gx

Vx onto a G-invariant neighborhood of Gx such that the zero
section is mapped onto Gx in a canonical way (where Gx is the isotropy group
of x).

If we denote M(H) the set {x ∈ M|Gx ∼ H} where Gx is the isotropy group
of x and ∼ means "conjugate to", we get in particular that for a compact
subgroup H of G each connected component of M(H) is a submanifold of M.
The isotropy subgroups Gx are compact in the case of a proper group action.
Assigning to each point x ∈ M the germ Sx of the set M(Gx) we get a
stratification of M in the sense of Mather ([13]), called stratification by orbit
type.
This stratification has been studied a lot and has been also recently described
in [6], [4]. This stratification is known to be Whitney (b) regular.

2 Verdier’s condition

About Verdier’s condition the reader may look for [19], [9], [17], [2]:

Definition 3. Let X be a C1 submanifold of Rn, and a subanalytic set. Let Y
be an analytic submanifold of Rn such that 0 ∈ Y ⊂ X \X. Verdier ([19])
defines X to be (w)-regular over Y at 0 if there is a constant C > 0 and a
neighborhood U of 0 in Rn such that if x ∈ U ∩X and y ∈ U ∩ Y , then
d(TyY, TxX) 6 C|x− y|.
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(with d(A,B) = sup{dist(x,B)|x ∈ A, |x| = 1}).
This condition is known to be stronger than the Whitney (b) condition for
subanalytic sets (Kuo has shown that condition (w) implies condition (b) in [9]
and Trotman in [18] has shown that the converse is false (in the real case)).
But we also have a stronger version of Verdier’s condition:

Definition 4. Let X be a C1 submanifold of Rn, and a subanalytic set. Let Y
be an analytic submanifold of Rn such that 0 ∈ Y ⊂ X \X. In [11] (see also
[12]) Li, Trotman and Wilson define X to be strongly Verdier regular over Y
(or differentiably regular) at 0 if for all ǫ > 0 and a neighborhood U of 0 in Rn

such that if x ∈ U ∩X and y ∈ U ∩ Y , then d(TyY, TxX) 6 ǫ|x− y|.

The next theorem is an enhancement of the theorem 4.3.7 that can be found
page 160 in [15], most of the notations will be conserved.

Theorem 2. The stratification by orbit types of a G-manifold M with a
proper action is a strong Verdier stratification.

Proof. Suppose that K ( H ⊂ G are two isotropy groups of M, we have
M(H) < M(K). Let y ∈ M(H). With the slice theorem, we can suppose that:
M = G×H V = (G×H W)× VH et y = [(e, 0)] where V is an H-slice, VH is
the subspace of the H-invariant vectors, and W = (VH)⊥ is the orthogonal
space relative to the H-invariant inner product on V . Let g be the Lie algebra
of G, h that of H, and m the orthogonal space of h ⊂ g related to the
H-invariant inner product on g. By the exponential map on G we have a
natural chart on an open set U of M containing y:
φ : U → m× V , φ([(exp(ξ), ν]) = (ξ, ν), ξ ∈ m, ν ∈ V. We have ([15] page
159):M(K) = (G×H W(K))× VH et M(H) = G/H × {0} × VH and through
this chart on U they become parts of m×W(K) × VH and m× {0} × VH . This
chart is smooth and so we can check Verdier’s condition (which is
C2-invariant) at ỹ = (0, 0, 0) in φ(M(H) ∩ U) (open set of m× {0} × VH), let
x̃ ∈ φ(U ∩M(K)) (open set of m×W(K) × VH) we have,
Tỹ(φ(M(H) ∩ U)) = m× {0} × VH ⊂ Tx̃(φ(U ∩M(K)), (we also have a strict
inclusion because W(K) is invariant by multiplication by a non-vanishing
scalar), so we have d(Tỹ(φ(M(H) ∩ U)), Tx̃(φ(U ∩M(K))) = 0 and so strong
Verdier condition holds at ỹ (in fact we have something even stronger).
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