
HAL Id: hal-00906428
https://hal.science/hal-00906428

Submitted on 30 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recent advances in monoclinic crystal optics
Yannick Petit, Simon Joly, Patricia Segonds, Benoit Boulanger

To cite this version:
Yannick Petit, Simon Joly, Patricia Segonds, Benoit Boulanger. Recent advances in monoclinic crys-
tal optics. Laser and Photonics Reviews, 2013, 7 (6), pp.920-937. �10.1002/lpor.201200078�. �hal-
00906428�

https://hal.science/hal-00906428
https://hal.archives-ouvertes.fr


LASER & PHOTONICS
REVIEWS Laser Photonics Rev. (2013) / DOI 10.1002/lpor.XXXXXXXXXX

Abstract This article is mainly devoted to the modeling and
measurement of the absorption and fluorescence angular dis-
tributions in polarized light of monoclinic crystals. Up to now
theoretical crystal optics were mostly devoted to crystals having
a high crystallographic symmetry. In these crystals belonging to
the cubic, hexagonal, tetragonal, trigonal or orthorhombic lat-
tice classes, the tensor properties related to the real part of the
dielectric permittivity and to its imaginary part can be described
in the same frame which orientation does not vary as a function
of wavelength. The situation is much more complicated in the
case of monoclinic crystals because it is necessary to define a
specific frame for each property and each wavelength that are
considered. The main features of monoclinic crystal optics are
described in detail, followed by a review of monoclinic materials
and the consequence of these features on their related optical
properties.

Recent advances in monoclinic crystal optics

Yannick Petit1,2, Simon Joly3, Patricia Segonds4, and Benoı̂t Boulanger4,∗

1. Introduction

An increasing number of crystals belonging to the three
monoclinic point groups, i.e. 2, m, 2/m where 2 stands for
a two-fold axis and m for a mirror plane [1], are identified
as promising materials for numerous optical properties and
applications such as laser emission [2], nonlinear frequency
conversion [3], self-doubling [4], scintillation [5], photore-
fractivity [6], quantum memories and slow light [7] for
example. Monoclinic crystals belong to the biaxial optical
class, which means that they have three principal refractive
indices, nx, ny and nz where x, y and z refer to the dielec-
tric axes, exhibiting different magnitudes [8]. Contrary to
the three orthorhombic crystals 222, mm2 and mmm that
are the biaxial crystals of highest crystallographic symme-
try, the crystallographic axes of monoclinic crystals do not
coincide with the dielectric frame that is defined as the
frame where the real part of the complex dielectric permit-
tivity tensor is diagonal [8]. It is a first level of difficulty
for the use of monoclinic crystals since the orientation of
the dielectric frame may vary as a function of any disper-
sive parameters of the refractive index as the wavelength
or the temperature for example, while the crystallographic
frame orientation remains unchanged [9]. Then the abil-
ity to characterize and exploit at best these low symmetry
crystals requires to properly master not only the real part of
the dielectric permittivity but also the imaginary part. Even
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if numerous theoretical treatments of crystal optics includ-
ing absorbing media of any symmetry has been performed
from the 19th century to the beginning of the 20th century
[10], there have been very few experiments devoted to the
investigation of the imaginary part of monoclinic crystals.
The present review article aims at updating the state of
the art of monoclinic crystal optics from several theoretical
and experimental studies devoted to the anisotropy of the
imaginary part of the linear dielectric permittivity, includ-
ing absorption as well as fluorescence [11–17]. Actually
unexpected features were discovered, like the necessity to
define new physical frames, the so-called absorption or fluo-
rescence frames, whose principal axes afford to diagonalize
the imaginary part of the dielectric permittivity tensor and
to measure the corresponding eigenvalues. Furthermore,
the relative orientation between the dielectric, absorption
and fluorescence frames strongly depends on the consid-
ered electronic transition. Another interesting property is
the existence of a continuum of directions of propaga-
tion exhibiting a polarization-independent behaviour for the
magnitude of absorption or fluorescence. All these features
related to the imaginary part of the dielectric permittivity
undoubtedly constitute a significant step of difficulty for
the design of optical devices based on monoclinic crys-
tals. This fundamental review also includes a description of
suited methodologies for accurately characterizing mono-
clinic crystals, a review of the main monoclinic materials



as well as their related optical properties, and opens new
research fields devoted to laser and nonlinear optics, as well
as scintillation science or photorefractivity.

2. Dielectric permittivity

2.1. Tensorial formalism of the complex
dielectric permittivity

This part provides the main theoretical background used
in the article. We consider electromagnetic waves with a
wavelength λ ranging typically from the deep Ultra-Violet
(10 nm) to the far Infrared (100 μm). We are interested in
homogenous dielectric media with no electric conductivity
or free charges, and without magnetic properties. Then we
focus on the electric field of light, its propagation being
described by Maxwell’s equations. We also restrict to media
with large dimensions compared to wavelength so that the
propagation is not affected by diffraction or guiding effects.

We assume sinusoidal monochromatic plane waves for
describing each Fourier component �E(ω) of the light at the
circular frequency ω. Given the previous range of wave-
lengths, the light-matter interaction induces a deformation
of the valence electron density. We will restrict the elec-
tronic response to dipolar response and the corresponding
dipole moment is labeled at the macroscopic scale as the
polarization of the medium and written �P(ω). In the weak
coupling regime, this polarization is directly proportional
to the excitation light electric field vector, which defines the
constitutive equation of the light-matter interaction in the
linear regime, i.e. [18]:

�P(ω) = ε0χ̂
(1)

(ω). �E(ω) (1)

ε0 = (36π109)−1 F/m is the dielectric permittivity of the
vacuum, �E(ω) = �e(ω)E(ω) is the electric field of the exci-
tation light at the circular frequency ω, where �e(ω) is the
unit vector and E(ω) is the complex amplitude; the dot
stands for a contraction product, and the first order elec-

tric susceptibility χ̂
(1)

(ω) is a second rank polar tensor that
writes in any frame as a 3 × 3 matrix. Due to possible

losses in the medium, χ̂
(1)

(ω) is a complex tensor which

real and imaginary parts are labeled as χ
(1)

(ω) and χ ′(1)
(ω)

respectively. Then it comes:

χ̂
(1)

(ω) = χ
(1)

(ω) + jχ ′(1)
(ω) (2)

Note that the spectra resulting from the real and imagi-
nary parts are linked by the Kramers-Krönig relations [19].
For propagation purpose, it is useful to consider the electric
displacement �D(ω) defined as �D(ω) = �P(ω) + ε0 �E(ω);
thus according to Eq. (1) it is written:

�D(ω) = ε0[1 + χ̂
(1)

(ω)]. �E(ω) = ε0ε̂r (ω). �E(ω) (3)

where ε̂r (ω) is the relative dielectric permittivity tensor of
the medium written as following according to Eq. (2):

ε̂r (ω) = εr (ω) + jε′
r (ω) (4)

εr (ω) is the real part of the relative dielectric permittivity
governing the propagation and the refractive index, while

ε′
r (ω) is the imaginary part related to absorption as well as

fluorescence [12]. The general matrix writing of Eq. (4) in
a direct tri-rectangular frame (u, v, w) is:

ε̂r =

⎡
⎢⎣

ε̂ruu ε̂ruv
ε̂ruw

ε̂rvu ε̂rvv
ε̂rvw

ε̂rwu ε̂rwv
ε̂rww

⎤
⎥⎦ =

⎡
⎢⎣

εruu εruv
εruw

εrvu εrvv
εrvw

εrwu εrwv
εrww

⎤
⎥⎦

+ j

⎡
⎢⎣

ε′
ruu

ε′
ruv

ε′
ruw

ε′
rvu

ε′
rvv

ε′
rvw

ε′
rwu

ε′
rwv

ε′
rww

⎤
⎥⎦ (5)

The number of independent tensor coefficients and the
relationships between them can be found using the Neu-
mann principle, which stipulates that a tensor describ-
ing any physical property of a given medium has to re-
main invariant with respect to all the symmetry elements
of this medium [8]. As a consequence, it can be shown
that εri j = εr ji and ε′

ri j
= ε′

r ji
, where (i, j) = (u, v or w),

for all the possible lattice point groups: cubic, hexago-
nal, tetragonal, trigonal, orthorhombic, monoclinic and tri-
clinic [1]. Furthermore, some tensor coefficients of Eq. (5)
can be nil. In the case of the three point groups of the
monoclinic system, i.e. 2, m and 2/m, and by consid-
ering as an example that the v-axis of the (u, v, w)
frame is perpendicular to the mirror m or parallel to the
two-fold axis 2 we get: εruv

= εrvu = εrvw
= εrwv

= 0 and
ε′

ruv
= ε′

rvu
= ε′

rvw
= ε′

rwv
= 0. Finally the application of the

Neumann principle enables to state that the five remaining
non-zero coefficients verify: εruu + jε′

ruu
�= εrvv

+ jε′
rvv

�=
εrww

+ jε′
rww

�= εruw
+ jε′

ruw
= εrwu + jε′

rwu
. The two other

conventions for the relationships between the dielectric
frame and the symmetry elements, i.e. the u-axis or w-axis
perpendicular to the mirror m or parallel to the two-fold axis
2, are less common but may be used, which gives the respec-
tive non-zero coefficients: εruu + jε′

ruu
�= εrvv

+ jε′
rvv

�=
εrww

+ jε′
rww

�= εrvw
+ jε′

rvw
= εrwv

+ jε′
rwv

for the u-
axis case; and εruu + jε′

ruu
�= εrvv

+ jε′
rvv

�= εrww
+ jε′

rww
�=

εruv
+ jε′

ruv
= εrvu + jε′

rvu
for the w-axis case.

2.2. Principal frames associated with the real
and imaginary parts of the relative dielectric
permittivity

When expressed in their respective proper tri-rectangular
frames, the tensors of Eq. (5) write as matrices with only
diagonal coefficients that are the three main values of the
considered tensor. This particular frame for the real part



εr (ω) is the so-called dielectric frame written (x, y, z). How-
ever there is no physical reason that imposes the dielectric
frame to be also the principal frame of the imaginary part

ε′
r (ω). Then in the dielectric frame, the most general writ-

ing of Eq. (5) in the case of a monoclinic crystal where the
y-axis is perpendicular to the mirror m or parallel to the
two-fold axis 2 is the following [13]:

ε̂r =

⎡
⎢⎣

ε̂rxx 0 ε̂rxz

0 ε̂ryy 0

ε̂rxz 0 ε̂rzz

⎤
⎥⎦ =

⎡
⎢⎣

εrxx 0 0

0 εryy 0

0 0 εrzz

⎤
⎥⎦

+ j

⎡
⎢⎣

ε′
rxx

0 ε′
rxz

0 ε′
ryy

0

ε′
rxz

0 ε′
rzz

⎤
⎥⎦ (6)

It can be then useful to introduce and define the specific

principal frame of ε′
r (ω), which we called the absorption

or fluorescence frame according to which property is con-
sidered, written (x’, y’, z’) [13]. Thus in this frame, the
imaginary relative dielectric permittivity tensor becomes
diagonal, i.e.:

ε′
r =

⎡
⎢⎣

ε′
rxx

0 ε′
rxz

0 ε′
ryy

0

ε′
rxz

0 ε′
rzz

⎤
⎥⎦ =

⎡
⎢⎣

ε′
rx ′x ′ 0 0

0 ε′
ry′ y′ 0

0 0 ε′
rz′ z′

⎤
⎥⎦ (7)

with ε′
rx ′x ′ �= ε′

ry′ y′ �= ε′
rz′ z′ according to the symmetry con-

siderations developed in section 2.1. Note that four inde-

pendent elements are required to express ε′
r (ω) in the di-

electric frame, while only three are necessary in the imagi-
nary eigenframe. In the latter frame, the fourth independent
information is then no more a tensor element, but the an-
gle between the orientation of the dielectric and imaginary
frames, as it will be discussed in section 3.3. Even if the
present paper is exclusively devoted to the high frequency
linear response of matter, i.e. the linear electric suscepti-
bility at optical frequencies, it is important to indicate that
for monoclinic crystals the low-frequency (static) electric
susceptibility is defined in its own frame that does not coin-
cide with the “optical dielectric frame” as it will be shown
in section 6.5.

3. Optical angular distributions

3.1. Propagation equation

Light-matter interactions for linear electric dipolar pro-
cesses are well described in the dielectric frame using si-
nusoidal monochromatic plane waves and the following
propagation equation in the linear regime [12, 14]:

n̂2(ω, θ, ϕ)[�u(θ, ϕ) × (�u(θ, ϕ) × �E(ω, θ, ϕ))]

+ ε̂r (ω) �E(ω, θ, ϕ) = 0 (8)

ε̂r (ω) is the linear relative dielectric permittivity defined by
Eqs. (4) and (5); × is the vectorial product; �E(ω, θ, ϕ) is
the light electric field at the circular frequency ω depending
on (θ, ϕ) that are the angles of spherical coordinates in the
dielectric frame (x, y, z) of the unit vector �u(θ, ϕ) of the
wave vector �k(ω, θ, ϕ) = ωc−1n̂(ω, θ, ϕ)�u(θ, ϕ), where c
is the light velocity in vacuum and n̂(ω, θ, ϕ) is the complex
optical index defined by:

	

n(ω, θ, ϕ) = n(ω, θ, ϕ) + jn′(ω, θ, ϕ) (9)

The real part n is the refractive index while the imag-
inary part n′ governs absorption or fluorescence i.e. [12]:

ξ (ω, θ, ϕ) = 2ωc−1n′(ω, θ, ϕ) (10)

ξ [cm−1] can be the absorption or fluorescence coefficient
according to the phenomenon that is considered during the
light propagation. As it appears in the notations above, the
real and imaginary parts of the optical index depend on the
circular frequency, which is well described by the classical
Lorentz model [12].

In monoclinic crystals ε̂r (ω) is given by Eq. (6). The
projection of Eq. (8) on the three principal axes of the
dielectric frame leads to the following linear system of
three coupled equations at the circular frequency ω in the
considered direction of the wave vector (θ, ϕ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ε̂rxx − n̂2

(
u2

y + u2
z

)]
Ex + [

ε̂rxy + n̂2ux uy
]
Ey

+ [
ε̂rxz + n̂2ux uz

]
Ez = 0[

ε̂ryx + n̂2uyux
]
Ex + [

ε̂ryy − n̂2
(
u2

x + u2
z

)]
Ey

+ [
ε̂ryz + n̂2uyuz

]
Ez = 0[

ε̂rzx + n̂2uzux
]
Ex + [

ε̂rzy + n̂2uzuy
]
Ey

+ [
ε̂rzz − n̂2

(
u2

x + u2
y

)]
Ez = 0

(11)

(Ex , Ey, Ez) and (ux , uy, uz) are the Cartesian coordinates
of the electric field vector and of the unit wave vector
respectively. Then ux = sin θ cos ϕ, uy = sin θ sin ϕ and
uz = cos θ . Note that the circular frequency ω does not
appear in Eq. (11) for more clarity. The same omission will
be used in the following.

The calculation of the determinant of the linear system
(11) leads to the determination of two possible non trivial
complex solutions, giving way for the real part of the optical
index to two real solutions, written n+(θ, ϕ) and n−(θ, ϕ) on
the one hand, and to two possible values for the imaginary
part, n′+(θ, ϕ) and n′−(θ, ϕ), on the other hand.

The two sets of solutions (n+(θ, ϕ), n′+(θ, ϕ)) and
(n−(θ, ϕ), n′−(θ, ϕ)) are respectively associated with two
different electric fields �E+(θ, ϕ) and �E−(θ, ϕ) in the con-
sidered direction of propagation (θ, ϕ). Under the weak
absorption or fluorescence approximation, i.e. n′±(θ, ϕ) �
n±(θ, ϕ), which corresponds to n′/n of the order of 10−4,
the unit vectors of the two electric fields only depend on the



real part of the optical index [20, 21], and they are defined
by the following relation according to Eq. (11):

e±
i (θ, ϕ) = n±(θ, ϕ)2(

n±(θ, ϕ)2 − n2
i

)ui (θ, ϕ)[�u(θ, ϕ).�e±(θ, ϕ)]

(12)
where n2

i = εrii stands for the square of principal refractive
indices with i = x, y or z. These two polarization eigenmodes
unit vectors define the neutral lines associated with the
direction of propagation that is considered [8]. They are
orthogonal one to each other only in the principal planes
xy, xz and yz of the dielectric frame where they are called the
“ordinary” and “extraordinary” electric fields vectors. This
specific denomination is not relevant outside the principal
planes of biaxial crystals where the denomination (+) and
(-) has to be used [21].

3.2. Angular distribution of the real part of the
optical index

The angular distribution of the real part of the optical index
n±(θ, ϕ) can be obtained from the numerical resolution of
the real part of Eq. (11) as well as from the analytical reso-
lution of the lossless Fresnel equation [22] in the dielectric
frame (x, y, z) leading to the well-known double-layer index
surface:

n±(θ, ϕ) =
[

2

−B ∓ (B2 − 4C)1/2

]1/2

(13)

with B = −u2
x (b + c) − u2

y(a + c) − u2
z (a + b), C =

u2
x bc + u2

yac + u2
z ab; a = ε−1

rxx
= n−2

x , b = ε−1
ryy

= n−2
y

and c = ε−1
rzz

= n−2
z . Equation (13) is not only valid for

monoclinic crystals but also for any other biaxial crystal
belonging to the orthorhombic and triclinic point groups.

The section of the index surface in each of the principal
planes xy, yz and xz is given below in terms of ordinary
refractive index no

uv(θ, ϕ) and extraordinary refractive in-
dex ne

uv(θ, ϕ), where uv stands for the planes xy, yz or xz
[12]:

ne
xy(ϕ) = nz and no

xy(ϕ) =
(

cos2(ϕ)

n2
y

+ sin2(ϕ)

n2
x

)−1/2

no
yz(θ ) = nx and ne

yz(θ ) =
(

cos2(θ )

n2
y

+ sin2(θ )

n2
z

)−1/2

no
xz(θ ) = ny and ne

xz(θ ) =
(

cos2(θ )

n2
x

+ sin2(θ )

n2
z

)−1/2

(14)

Equations (14) show that the ordinary section of the
index surface is a circle in the yz and xz planes while
it is an ellipse in the xy plane. It is the reverse situa-
tion for the extraordinary section. The xz principal plane

is of specific interest because it contains four directions
corresponding by pairs to two axes along which the or-
dinary and extraordinary refractive indices have the same
magnitude. These so-called "optical axes of wave normal"
(OA) define the umbilici of the index surface making an
angle Vz = asin[(n−2

x − n−2
y )1/2(n−2

x − n−2
z )−1/2] with the

z-axis [12, 23]. The angle Vz obviously depends on the
circular frequency. In this particular plane when −Vz <

θ < Vz and π − Vz < θ < π + Vz , then (�eo
xz(θ ), no

xz(θ ))
and (�ee

xz(θ ), ne
xz(θ )) correspond to (�e+

xz(θ ), n+
xz(θ )) and

(�e−
xz(θ ), n−

xz(θ )) respectively, while at other angles the corre-
spondence between (o, e) and (+, -) is the reverse; it means
that there is a discontinuity of the direction of polarization
of π /2 from either side of each optical axis of wave normal
[24]. In the xy plane, (�ee

xy(ϕ), ne
xy(ϕ)) and (�eo

xy(ϕ), no
xy(ϕ))

correspond to (�e+
xy(ϕ), n+

xy(ϕ)) and (�e−
xy(ϕ), n−

xy(ϕ)) respec-
tively. In the yz plane, (�eo

yz(θ ), no
yz(θ )) and (�ee

yz(θ ), ne
yz(θ ))

correspond to (�e−
yz(θ ), n−

yz(θ )) and (�e+
yz(θ ), n+

yz(θ )) respec-
tively. Note that �eo

xz(θ ), �eo
xy(ϕ) and �eo

yz(θ ) are all contained
in the xy plane and thus are perpendicular with the opti-
cal axes, the extraordinary unit electric field vectors �ee

xz(θ ),
�ee

xy(ϕ) and �ee
yz(θ ) being perpendicular with the correspond-

ing ordinary ones.
The sections of the index surface in the three principal

planes of the dielectric frame and the corresponding electric
field vectors configurations are drawn in Fig. 1(a). Figure
1(b) gives the index surface plotted over one fourth of the
space. It is important to notice that in the general case of
monoclinic crystals the dielectric axes are not necessarily
pinned to a crystallographic plane according to the fact that
the dielectric frame is not fully linked to the crystallographic
frame and that the dielectric principal plane xz may not co-
incide to one of the principal planes of the crystallographic
frame. Note that outside the principal planes the two eigen-
modes of polarization are not orthogonal according to Eq.
(12).

3.3. Angular distribution of the imaginary part of
the optical index

We can keep the denomination of “ordinary” and “extraor-
dinary” for the imaginary optical index corresponding to
propagations in the principal planes of the dielectric frame,
which are then written n

′o(θ, φ) and n
′e(θ, φ) respectively.

In these planes, the analytical calculations under the weak
absorption or fluorescence approximations, that is to say by

neglecting any square power terms of ε′
r when expressing

the condition of nullity of the determinant of Eq. (11), lead
to the following expressions:

n′e
xy(ϕ) = ε′

rzz

2nz
and n′o

xy(ϕ) = no
xy(ϕ)3

×
[

ε′
ryy

cos2(ϕ)

2n4
y

+ ε′
rxx

sin2(ϕ)

2n4
x

−
ε′

rxy
sin(ϕ) cos(ϕ)

n2
x n2

y

]



Figure 1 (online color at: www.lpr-journal.org) Index surface of a
biaxial crystal (orthorhombic, monoclinic or triclinic). (a) Section
in the three principal planes where the indices (o) and (e) denote
the ordinary and extraordinary refractive indices respectively; OA
is the optical axis of internal conical refraction in the considered
octant of the space; the double arrows stand for the ordinary and
extraordinary electric fields directions. (b) Schematic view from
inside where the deformation of the two layers of the index surface
around its umbilici clearly appears.

n′o
yz(θ ) = ε′

rxx

2nx
and n′e

yz(θ ) = ne
yz(θ )3

×
[

ε′
ryy

cos2(θ )

2n4
y

+ ε′
rzz

sin2(θ )

2n4
z

−
ε′

ryz
sin(θ ) cos(θ )

n2
yn2

z

]

n′o
xz(θ ) =

ε′
ryy

2ny
and n′e

xz(θ ) = ne
xz(θ )3

×
[

ε′
rxx

cos2(θ )

2n4
x

+ ε′
rzz

sin2(θ )

2n4
z

− ε′
rxz

sin(θ ) cos(θ )

n2
x n2

z

]

(15)

Equations (15) provide the more general expressions
including the three possible relationships between the sym-
metry elements and the dielectric frame, where the x-, y- or
z-axes can be perpendicular to the mirror m or parallel to
the two-fold axis 2. Then ε′

rxy
= ε′

rxz
= 0 in the case of the

x-axis; ε′
rxy

= ε′
ryz

= 0 in the case of the y-axis; ε′
ryz

= ε′
rxz

=
0 in the case of the z-axis.

The calculation of the sections of the imaginary index
surface in the three principal planes of the dielectric frame
from Eq. (15) allows us to clearly establish the comparison
between the real and imaginary index surfaces. In both
cases the ordinary angular distributions in the xz and yz
planes, and the extraordinary distribution in the xy plane,
are described by a circle. But there are several main strong
differences: firstly the extraordinary sections in the xz and
yz planes, and the ordinary section of the xy plane, are not
ellipsoids but exhibit a bi-lobar shape; secondly there are
umbilici not only in the xz plane, but also out of this plane,
as further detailed in section 5; and finally the small and big
axes of the bi-lobar patterns in the different principal planes
are not the axes of the dielectric frame but the imaginary
ones defined in section 2.2. In the case where the y-axis
is perpendicular to the mirror m or parallel to the two-fold
axis 2, then the y’-axis corresponds to the y-axis, while the
x’- and z’-axes are tilted from the x- and z-axes respectively
by the angle θε′

r
expressed as:

θε′
r
= atan⎡

⎢⎢⎢⎣ ε′
rxz

1

2

(
ε′

rzz
− ε′

rxx

) +
[

1

2

(
ε′

rzz
− ε′

rxx

)2 + (
ε′

rxz

)2
]1/2

⎤
⎥⎥⎥⎦
(16)

For the two other conventions of relative orientation of
the symmetry elements and the dielectric frame, ε′

rxz
, ε′

rzz
,

and ε′
rxx

in Eq. (16) have to be replaced term-to-term by ε′
ryz

,
ε′

rzz
, and ε′

ryy
when x-axis (along the x’-axis) is perpendicular

to the mirror m or parallel to the two-fold axis 2, and by ε′
rxy

,
ε′

rxx
and ε′

ryy
when z-axis (along the z’-axis) is perpendicular

to the mirror m or parallel to the two-fold axis 2. Note that
θε′

r
may vary as a function of the circular frequency or any

dispersion parameter of the imaginary part of the relative
dielectric permittivity.

Figure 2 give the angular distribution of the imaginary
optical index in the xz and yz planes and in one fourth of
the space respectively in the case of a monoclinic crystal
where the y-axis is perpendicular to the mirror m or parallel
to the two-fold axis 2. The full analytical resolution of the
absorption double-layer surface for monoclinic crystals has
been done even without referring to the weak absorption
hypothesis, which is complementary to the present review
presentation [10, 11].

3.4. Symmetry analysis

In a similar approach to that of Neumann principle and
Curie laws [1, 25, 26], the symmetry group of the angular
distribution of the dielectric permittivity, G

ε̂r
, is given by

the intersection of the symmetry groups of the real and



Figure 2 (online color at: www.lpr-journal.org) Imaginary index surface of a monoclinic crystal where the y-axis is perpendicular to
the mirror m or parallel to the two-fold axis 2; the superscripts (+) and (–) refer to the eigen polarization modes �e+ and �e− respectively.
(a) Section in the principal plane xz of the dielectric frame (x, y, z); the index surface at the center is drawn for reminding; n+ and n−

denote the external and internal layers of the index surface respectively and n′+ and n′− are the corresponding imaginary layers; OA
denotes the optical axes of internal conical refraction; (x′, y′, z′) is the principal frame of the imaginary index surface. (b) Schematic
view from the y-axis in one fourth of the space. (c) Section in the principal plane yz; the index surface section is reminded at the center
of the graph. (d) Schematic view from the x axis in one fourth of the space.

imaginary parts, Gεr
and G

ε′
r

respectively, i.e.:

G
ε̂r

=
(

Gεr
∩ G

ε′
r

)
(17)

Each principal plane of each eigen frame acts as a sym-
metry mirror plane, so that the real and imaginary angular
distributions should independently belong to the follow-
ing orthorhombic point group: Gεr

= mx mymz and G
ε′

r
=

mx ′my′mz′ where the notation mq stands for the mirror sym-
metry related to the principal plane perpendicular to the
given principal axis q in the related principal frame. Then
according to Eq. (17), G

ε̂r
= {mx mymz} ∩ {mx ′my′mz′ } =

my=y′ , which is a monoclinic point group and highlights
the fact that the dielectric and imaginary frames only share
the axes y = y′ when one considers the case of a monoclinic
crystal where the y-axis is perpendicular to the mirror m or
parallel to the two-fold axis 2. The same comments can be
applied to the two other possibilities of relative orientation
between the crystallographic symmetry operators and the
dielectric frame.

In the weak absorption or fluorescence approximation,

the imaginary part ε′
r is much weaker than its real coun-

terpart εr so that the refractive index distributions are not

affected by ε′
r but are almost exclusively driven by εr . As

a consequence, the symmetry group related to n±(θ, ϕ) is
directly Gεr

= mx mymz in the dielectric frame. As shown
in Eq. (15), the imaginary angular distribution depends on

both the imaginary part ε′
r and real part εr , so that its sym-

metry group is G
ε′

r
= my=y′ in the case where the y-axis is

perpendicular to the mirror m or parallel the two-fold axis
2. However, note that the pattern in Fig. 2(b) seems to have
the x′y′ and y′z′ planes acting as mirror symmetry planes,
which is contradictory to the symmetry group G

ε′
r
= my=y′

that is found according to the group theory. In fact, the rel-
ative anisotropy of the real part defined as (εrzz

− εrxx
)ε−1

ryy

is typically of the order of 10%, while it is rather 100%
for the imaginary contribution (ε′

rzz
− ε′

rxx
)(ε′

ryy
)−1 [13–15].

Thus there is more than one order of magnitude between
the relative anisotropies of the real and imaginary contri-
butions. It implies that in Eq. (15), the relative anisotropy



n′e
xz(θ ) is almost insensible to that of the refractive index

contribution, especially the ne
xz(θ )3 term. In such a situ-

ation, the symmetry group of εr can be approximated to
the identity symmetry group, that is to say the symmetry
group of the sphere, i.e. Gεr

∼= Gsphere. That means that the
apparent symmetry group of the imaginary optical surface
appears to be Gεr

= Gsphere ∩ G
ε′

r
= G

ε′
r
= mx ′my′mz′ , as

observed in Fig. 2(b).

4. Measurement of real and imaginary
optical index angular distributions

4.1. Dielectric frame orientation and principal
refractive indices

As already discussed in section 3.2, the crystallographic
and dielectric frames of a monoclinic crystal have only
one axis in common: for example b (along the 2 axis)
and y in BiB3O6 (crystal class 2) [9], b (perpendicular to
the mirror plane m), and y in YCa4O(BO3)3 [YCOB] or
Nd3+:YCa4O(BO3)3 [Nd:YCOB] (crystal class m) [27,28]
and Sn2P2S6 (crystal class m) [29]; b (along the 2 axis) and
x in KLu(WO4)2 (crystal class 2/m) [30], and b (perpendic-
ular to the mirror plane m) and x in BaGa4Se7 (crystal class
m) [31]. Thus there is a degree of freedom in any mono-
clinic crystal where the dielectric frame may rotate around
the common axis as a function of any dispersive parameter
of the refractice index as the wavelength for example. The
measurement of the angular range of this rotation has been
determined in Sn2P2S6 from the recording of transmission
between two crossed polarizers trough slabs with their in-
put and output faces perpendicular to the incident beam and
to the b-axis simultaneously: a rotation of 9.6◦ was found
when the wavelength varies from 0.6328 μm to 2 μm [29].
Up to 4◦ between 0.4 μm and 1 μm was reported for BiB3O6
by determining refractive indices from the measurement of
the deviation angle in polarized light of a collinear light
beam passing through prisms with their input faces normal
to the incident light beam and to a crystallographic axis
simultaneously. Then the rotation angle of the dielectric
frame is calculated by considering the obtained values of
refractive indices [9]. At the opposite, there is not such a
rotation in the case of YCa4O(BO3)3, Nd3+:YCa4O(BO3)3
and KLu(WO4)2 [27–29].

The orientation of the dielectric frame can be also eas-
ily determined by measuring the orientation of the neutral
lines, i.e. �e+ and �e− defined in section 3.1, associated with a
light propagation along the common axis between the crys-
tallographic and dielectric frame [9]: a slab of the studied
crystal is placed between two cross polarizers, these two
directions corresponding to the two orientations for which
a total exctinction occurs. Below is described a method that
is self-constent for the measurement of both the real and
imaginary parts of the dielectric permittivity. This tech-
nique is based on a single sample shaped as a millimet-
ric sphere polished to optical quality (see Fig. 3(a)). The

spherical geometry is very interesting because it allows the
light to propagate in any direction of the sample parallely
to a diameter by keeping normal incidence. This method
had been initially developped in the framework of non-
linear optics for the measurement of the phase-matching
directions [32]. The sphere is stuck on a goniometric head
under orientation using an X-rays automatic diffractometer.
The measurement of the dielectric frame requires to stick
the sphere along the common axis between the crystallo-
graphic and dielectric frames, and to propagate the light
perpendicularly to this axis. An X-rays automatic diffrac-
tometer is coupled with a He-Ne laser beam focused in
the sphere. Then from X-rays orientation it is possible to
mark out the position of crystallographic axes, and if the
common axis is y the laser beam enables the observation
of the four hollow cones corresponding by pairs to the two
optical axes of internal conical refraction [23]. The posi-
tion of the principal axes of the dielectric frame are then
easily and accurately determined since they are symmetri-
cal in comparison with the OA of the dielectric frame as
shown in Fig. 3(b) in the case of Nd:YCOB [28]. By cou-
pling the sphere to a tunable laser source, it was shown in
the case of Nd:YCOB that the relative orientation between
the crystallographic and dielectric frames does not vary as
a function of wavelength over the transparency range of
the crystal within the accuracy of the experiments [28].
The classical method implemented to determine the three
main refractive indices of biaxial crystals is based on the
minimum deviation technique in two equilateral oriented
prisms, a polarized tunable light allowing this measure-
ment to be performed as a function of wavelength [33].
However for monoclinic crystals, due to the rotation of the
dielectric frame, prims are usually cut with their input face
normal to the incident light beam and to a crystallographic
axis. Then one prism is cut with its input face perpendic-
ular to the common axis between the crystallographic and
dielectric frames, which leads to the magnitudes of two
of the three principal refractive indices. The magnitude of
the third index then requires the cutting of a second prism
with its input face perpendicular to an other crystallograhic
axis. In this case, the refractive index that is determined
from the deviation angle measurement can be a principal
value. It can also be a combination of two of them, accord-
ing to the orientation of the index surface in the crystallo-
graphic frame. In that case the interpolation of the data using
Eqs. (13) or (14) is required taking into account the angle
between the dielectric frame and the crystallographic frame
[9,29]. The reader may also refer to classical reviews where
detailed descriptions of different strategies including prism
methods for the refractive index measurement of mono-
clinic crystals can be found [10]. Note that the accuracy of
measurements directly depends on the size of the prisms,
which is not specific to monoclinic crystals. Because it
is difficult to cut a prism with plane surfaces when only
millimeter sizes of materials are available, the accessible
accuracy is of about 10−3; it can reach 10−4 for centimeter
sizes. Other methods are based on Fresnel reflexion coeffi-
cients measurements, and Pulfrich or Abbe refractometers



Figure 3 (online color at: www.lpr-journal.org) (a) Polished
sphere of a Nd:YCOB crystal with a diameter of 7.44 mm. (b)
Observation at the exit of the Nd:YCOB sphere of the four
patterns of internal conical refraction using a HeNe beam at
632.8 nm that enables to determine the angles between the crys-
tallographic frame (a, b, c) and the dielectric frame (x, y, z): (a, z)
= 24.4 ± 0.5◦ and (c, x) = 13.4 ± 0.5◦, with (a, c) = 101.0 ±0.2◦.

with the same limitation as for the prism technique regard-
ing the problem of possible dispersion of the orientation
of the dielectric frame as a function of wavelength [34].
Contrary to all the above mentionned methods, the sphere
method allows the three refractive indices to be easily mea-
sured as a function of the wavelength with an accuracy
ranging between 10−3 and 10−4. This technique relies on
the measurement at each wavelength of the magnitude of
the magnified spatial walk-off angle at the exit of the sphere
as a function of the direction of propagation [35]. There is
another possibility if the crystal exhibits nonlinear opti-
cal properties by simultaneously fitting the phase-matching
curves measured at different wavelengths [30].

Figure 4 (online color at: www.lpr-journal.org) (a) Crystal sphere
placed at the center of a Kappa goniometer. (b) Experimental
setup for the direct measurement of the angular distribution of
absorption or fluorescence of a crystal cut as a sphere; the arrows
and dot circles denote the directions of the light polarization.

4.2. Absorption and fluorescence angular
distributions and associated principal frames

Classically the spectra of absorption and fluorescence are
recorded using polarized light propagating in slabs oriented
along the principal axes of the dielectric frame and inserted
in a spectrometer [36]. But as mentioned in section 3, the
dielectric frame (x, y, z) does not correspond to the frame
(x′, y′, z′) of the imaginary part of the relative dielectric
permittivity in general, so that the classical method does
not lead to the principal values of the studied property
in monoclinic crystals. It is why the sphere method has
been proposed, the goal being to be able to perform direct
measurements of the absorption and fluorescence spectra
angular distributions with the crystallographic orientation
of the studied crystal as the only prerequisite [13–15]. The
demonstration of this technique for such a purpose was done
for the study of Nd:YCOB. The oriented 7.44-mm-diameter
Nd:YCOB sphere was placed at the center of an automatic
Kappa circle as shown in Fig. 4(a), the three rotations φ, к,
� providing access of the full space with a precision better
than 1 minute of Arc. The sphere was irradiated by a beam
emitted by an optical parametric oscillator (OPO) tunable
between 0.410 μm and 2.124 μm with a 10 Hz repetition
rate and a pulse duration of 5 ns. The experimental setup is
depicted in Fig. 4(b).

The absorption coefficient of Nd:YCOB was deter-
mined from the measurement of the transmission T (θ, ϕ)
along each direction of propagation (θ, ϕ) inside the sphere
corresponding to the ratio between the input laser power
measured using the reference detector 1 and the output
power from the sphere measured by detector 2 [13]. A filter



placed at the exit of the sphere allowed any possible fluores-
cence emission to be cut-off. The incident light was focused
in the sphere by lens L1 so that it propagated under a paral-
lel beam configuration inside the sphere [37]. A half-wave
plate LH enabled to successively select the two polarization
eigen-modes of the considered direction of propagation.
The corresponding absorption coefficient angular distribu-
tions taking into account Fresnel losses TF (θ, ϕ) at the
entrance and exit of the sphere were then determined from
the following formula:

α(θ, ϕ) = −L−1 Ln[T (θ, ϕ).TF (θ, ϕ)−1] (18)

When dealing with fluorescence, a filter placed at the
exit of the sphere cut the residual input beam and the power
of fluorescence was recorded using detector 2 for the two
polarization eigen-modes followed by the correction by
Fresnel transmission relative to the exit of the sphere and
the normalization by the incident pump power detected by
detector 1. Figure 5(a) gives the angular distribution in the
xz plane of the dielectric frame of the ordinary (o) and ex-
traordinary (e) components of polarization of the absorption
coefficient, αo(θ ) and αe(θ ) respectively, at 0.812 μm mea-
sured in a Nd:YCOB sphere. Figure 5(b) shows the angular
distribution in the xz plane of the same Nd:YCOB sphere
of the power emitted by fluorescence at 1.061 μm in the
ordinary and extraordinary polarizations, Po(θ ) and Pe(θ )
respectively; it has been normalized to the ordinary com-
ponent of the fluorescence that is emitted along the z-axis,
i.e. Po(θ = 0).

Figure 5(a) shows that αo(θ ) remains constant as a func-
tion of the direction of propagation θ while αe(θ ) exhibits
a bi-lobar angular distribution, which is in a very good ac-
cordance with the behaviour of the calculated patterns of
Fig. 2(a) in the xz plane. Furthermore, Fig. 5(a) clearly
indicates that the big and small axes of the extraordinary
angular distribution, labelled as x ′

abs and z′
abs , do not cor-

respond to the axes x and z of the dielectric frame that are
the symmetry axes of the extraordinary pattern of the index
surface as shown in Fig. 1(a). There are also four direc-
tions along which the (o) and (e) absorption coefficients
are equal. The same type of angular distribution was found
for the fluorescence at 1.061 μm as shown in Fig. 5(b): the
angular distribution of the ordinary component is described
by a circle and that of the extraordinary one is a bi-lobar
pattern. As for absorption, it was necessary to define spe-
cific principal axes for the extraordinary layer, i.e. x ′

f luo and
z′

f luo, that are different than x and z; but note that they are
also different than x ′

abs and z′
abs . The absorption and fluores-

cence experimental data were fitted using Eqs. (15) where
the absorption coefficient and the normalized fluorescence
power are related to the imaginary index n′ by Eq. (10),
the fitting parameters being ε′

rxx
, ε′

ryy
, ε′

rzz
and ε′

rxz
= ε′

rzx
ac-

cording to Eq. (15). The corresponding fitting adjustments
shown in Fig. 5(a) and (b) reveal the very good agreement
between the model and the experiment. By inserting in
Eq. (16) the fitting parameters that were previously found,
it was possible to determine the tilt angle between the

Figure 5 (online color at: www.lpr-journal.org) (a) Angular distri-
bution of the absorption coefficient measured in the xz plane of
a 7.44-mm-diameter Nd:YCOB sphere at 812 nm corresponding
to the electronic transition of Nd3+ from the fundamental energy
level 4I9/2 to 4F5/2 + 2H9/2. Concentric circles stand for absorp-
tion and it is in 2, 4 and 6 cm–1. (b) Angular distribution of the
power of fluorescence at 1.061 μm, corresponding to the elec-
tronic transition of Nd3+ from 4F3/2 to 4I11/2, normalized to the
power of ordinary component of the fluorescence that is emitted
along the z-axis when the Nd:YCOB sphere is pumped with the
ordinary polarization component at 0.812 μm in the xz plane of
the dielectric frame. The dots correspond to the measurement
and the continuous lines to the fit according to Eq. (15). The blue
color is for the ordinary (o) polarization of the light while the red
is used for the extraordinary (e) polarization.



absorption frame (x ′
abs ,y′

abs , z′
abs) and the dielectric frame

(x, y, z), i.e. θabs = 31.1 ± 0.7◦ at 0.812 microns, and θfluo

= -6.4 ± 0.9◦ at 1.061 microns between the fluorescence
frame (x′

fluo, y′
fluo, z′

fluo) and the dielectric frame (x, y, z)
[12]. The diagonalization of the matrix of absorption or flu-
orescence whose coefficients are the fitting parameters ε′

rxx
,

ε′
ryy

, ε′
rzz

and ε′
rxz

= ε′
rzx

expressed in the dielectric frame
leads to the determination of the magnitudes of the three
principal coefficients of the imaginary dielectric permittiv-
ity ε′

rx ′x ′ , ε′
ry′ y′ , ε′

rz′ z′ in the relevant imaginary frames. From
these values, it is then easy to calculate the corresponding
values of the absorption or fluorescence coefficients in their
specific frames. In the case of the absorption for example,
it gives: α1 = 2.1 ± 0.8 cm−1, α2 = 3.5 ± 0.4 cm−1 and α3

= 6.2 ± 0.8 cm−1 at 0.812 microns, where the indices 1, 2
and 3 refer to x ′

abs , y′
abs and z′

abs respectively. These values
are significantly different than those that would come from
measurements performed along the axes of the dielectric
frame, i.e.: α1 = 3.2 ± 0.4 cm−1, α2 = 3.5 ± 0.4 cm−1

and α3 = 5.1 ± 0.6 cm−1, where the indices 1, 2 and 3
correspond in that case to the dielectric axes x, y and z
respectively [13]. As a significant consequence for mon-
oclinic crystals, it will be necessary to reconsider all the
values tabulated in Handbooks, since they had been sys-
tematically measured in the dielectric frame instead of the
absorption or fluorescence frames. Such a revision is of
prime importance for the optimal exploitation of the mon-
oclinic potentialities and thus for the design of any optical
device based on these crystals.

Note that it is possible to determine the absorption and
fluorescence emission angular distributions in polarized
light even if a sphere of the studied crystal is not available.
Actually a slab can work since it is sufficient to perform
the measurement in only two directions of propagation con-
sidering the four associated polarization eigen modes: one
direction can be the common axis between the crystallo-
graphic and dielectric frames, the second one being taken
in the perpendicular plane, but out of the dielectric axes.
Another alternative is to use three directions of propagation
in the plane perpendicular to the common axis, as it was
done for the Nd:LCB crystal [38]. The non-diagonal ele-
ment requires at least one measurement out of the dielectric
axes in the plane perpendicular to the common axis, and this
measurement has to be performed as far as possible from
both the dielectric axes for metrology precision issues.

It is expected that the orientation of the principal frame
of absorption or fluorescence varies as a function of the
transition that is considered. This feature has been verified
by the measurement of the angular distribution of the ab-
sorption coefficient in polarized light in the xz plane of the
Nd:YCOB sphere corresponding to seven electronic tran-
sitions from the fundamental energy level 4I9/2 that were
selected from the transmission spectra shown in Fig. 6 [15].

As an example for comparison with Fig. 5(a) corre-
sponding to the transition 4I9/2 → (4F5/2 + 2H9/2) at 812
nm, Fig. 7 gives the angular distribution of the absorption
coefficient relative to the electronic transition 4I9/2 → (2G7/2
+ 4G5/2) at 595 nm. This direct comparison well establishes

Figure 6 (online color at: www.lpr-journal.org) Transmission
spectra of a Nd:YCOB slab cut along the z-axis of the dielec-
tric frame, the light being polarized along the x-axis (red line)
and the y-axis (blue line). The arrows indicate seven electronic
transitions of the Nd3+ ion selected for the study for the angular
distribution of the absorption coefficient from the 4I9/2 fundamen-
tal energy level to (2I11/2 + 4D5/2) at 355 nm (1), 2K13/2 at 534 nm
(2), (2G7/2 + 4G5/2) at 595 nm (3), 4F9/2 at 686 nm (4), 4F7/2 at
742 nm (5), (4F5/2 + 2H9/2) at 812 nm (6), and to 4F3/2 at 887 nm
(7).

that the angle between the absorption frame and the dielec-
tric frame strongly depends on the electronic transition,
knowing that the dielectric frame orientation of Nd:YCOB
does not depend on wavelength: θabs = 31◦ at 0.812 μm,
and θabs = – 20◦ at 0.595 μm.

Table 1 gives the angle θabs for the seven transitions that
were considered, and it shows that the wavelength depen-
dence of θabs is completely hieratic and does not follow a
dispersion law.

The description of this phenomenon will require a mi-
croscopic quantum model taking into account the symmetry
of the wave functions of the involved energy levels as well
as the symmetry of the ions host crystallographic sites. It is
an exciting challenge for further theoretical studies.

5. Absorption and fluorescence angular
singularities and polarization specificities

5.1. Influence of the beam divergence in the
vicinity of the optical axes

The refractive index surface is known to exhibit punctual
discontinuities at the four umbilici directions, correlated
to the π /2 polarization steps of the polarization vectors
�e±(θ, ϕ) [18,23,24]. As illustrated in Fig. 1, the index sur-
face is characterized at the umbilici by first-order punctual
discontinuities where the first-order angular derivative is
no more defined. Absorption and fluorescence efficiencies
are affected by the refractive index, as seen in Eq. (15).
The refractive index angular distribution generally imposes
to absorption and fluorescence a smooth and slowly-varying



Figure 7 (online color at: www.lpr-journal.org) Angular distribu-
tion of the absorption coefficient measured in the xz plane of a
7.44-mm-diameter Nd:YCOB sphere at 595 nm corresponding to
the electronic transition 4I9/2 → (2G7/2 + 4G5/2) of Nd3+. The dots
correspond to the measurement and the continuous lines to the
fit. The blue color is for the ordinary (o) polarization of the light
while the red is used for the extraordinary (e) polarization.

Table 1 Measured rotation angle θabs between the dielectric
frame (x, y, z) and the absorption frame (x ′

abs, y ′
abs, z ′

abs) cor-
responding to seven electronic transitions of Nd:YCOB from the
fundamental energy level 4I9/2.

Wavelength (nm) Excited energy level θ abs

355 2I11/2 + 4D5/2 −12 ± 2◦

534 2K13/2 −28 ± 5◦

595 2G7/2 + 4G5/2 −20 ± 2◦

686 4F9/2 −30 ± 5◦

742 4F7/2 −23 ± 2◦

812 4F5/2 + 2H9/2 +31 ± 2◦

887 4F3/2 −5 ± 2◦

angular dependence. However it can lead to strong angular
distortions while considering propagation directions close
enough to the umbilici directions as depicted in Fig. 5 where
it is shown that the phenomenon is particularly significant in
the case of fluorescence measurements in Nd:YCOB. Ac-
tually along these directions, the polarization-orientation
discontinuities provide punctual step discontinuities asso-
ciated with the jump from an imaginary layer to the other
one, leading to zero-order discontinuities. For measure-
ments of absorption and fluorescence, light beams exhibit
a non-zero angular divergence, even if it is a residual one.
Therefore, when the propagation is close enough to the
umbilici directions, experimental results in polarized light
correspond to polarization-projected and angular-averaged

Figure 8 (online color at: www.lpr-journal.org) Angular distribu-
tion of the fluorescence corresponding to the transition 4F3/2 →
4I11/2 transition at 1061 nm in the xz plane of Nd:YCOB for the or-
dinary (blue) and extraordinary (red) polarizations. The dots cor-
respond to the experimental data [13] and the continuous lines to
the fit according to Eq. (19) [17].

measurements along the (θ, ϕ) propagation direction. They
are spanning over the (�θ,�ϕ) angular integration, for the
selected polarization projection along the �p direction that
is the orientation of the selected polarization through the
polarized detection system for fluorescence collection. In
the case of spontaneous fluorescence emission, where the
“natural” divergence is strong especially due to the collec-
tion setup, the fluorescence coefficient ξ (θ, ϕ; �θ,�ϕ; λ)
corresponding to the collected emission is thus given by the
following expression according to Eq. (10) [17]:

ξ (θ, ϕ; �θ,�ϕ; λ)(2ω)−1c = n′
exp(θ, ϕ; �θ,�ϕ; λ)

=

∫ ∫
�θ,�ϕ

n
′+(θ ′, ϕ′; λ)[�e+(θ ′, ϕ′). �p]2 sin(θ ′) dθ ′dϕ′

∫ ∫
�θ,�ϕ

sin(θ ′) dθ ′dϕ′

+

∫ ∫
�θ,�ϕ

n
′−(θ ′, ϕ′; λ)[�e−(θ ′, ϕ′). �p]2 sin(θ ′) dθ ′dϕ′

∫ ∫
�θ,�ϕ

sin(θ ′) dθ ′dϕ′

(19)

Using Eq. (19) instead of Eq. (15) for the fit of the ex-
perimental data of fluorescence related to the 4F3/2 → 4I11/2
electronic transition in Nd:YCOB at 1061 nm provides a
much better agreement in the vicinity of the optical axes,
as shown in Fig. 8 compared with Fig. 5(b).

The model adjustment considered the angular inte-
gration over �θ = 3◦ and �ϕ = 7◦, which is in good



Figure 9 (online color at: www.lpr-journal.org) Calculated angular distribution of the fluorescence corresponding to the transition
4F3/2 → 4I11/2 at 1061 nm in Nd:YCOB. (a) and (b) correspond to the fluorescence layers associated with the external and internal
layers of the index surface, respectively; (c) or (d) are the combinations of (a) and (b).

agreement with the experimental collection resolution of 7◦.
The (�θ,�ϕ) asymmetry can be related to the anisotropy
asymmetry with the (θ, ϕ) angular coordinates, as well as
to the experimental pumping asymmetry with an astigmatic
incident beam [17].

Figure 9 gives the fluorescence full angular distributions
calculated from the fitting parameters corresponding to the
angular distribution measured in the xz plane of Nd:YCOB.
These theoretical considerations bring significant conse-
quences from a metrological point of view. One should per-
form experiments by considering beams with a divergence
as small as possible for both absorption and fluorescence
processes. The angular resolution of the collection setup,
especially for spontaneous fluorescence emission, should
be limited to prevent largely biased measurements result-
ing from undesired angular averaging. As seen in Fig. 8,
experimental measurements along the umbilici directions
would have led up to a 20% overestimation of the fluores-
cence cross-section corresponding to the ordinary polariza-
tion. Measurements should thus be performed far enough
from these topological singularities, or with appropriate di-
vergences, in order to ensure that the collected solid angle
does not integrate strongly angular-varying directions.

Note that monoclinic non centro-symmetric crystals
(point group m or 2) can also show optical activity, partic-
ularly in cases where the gyration tensor has a significant
component for directions of optical axes of wave normal.

Therefore in such cases, theoretical predictions that would
only take into consideration the absorption, could deviate
significantly from the experimental results in the vicinity
of the optical axes, as it is the case for the real part of the
index surface [39].

5.2. Directions of polarization insensitivity

As shown in Figs. 2(a) and (5), the imaginary layers
intersect themselves in the xz principal plane. Such di-
rections do not correspond to any discontinuity since
they differ from the umbilici directions of the index sur-
face. These directions thus correspond to polarization-
independent directions for absorption or fluorescence:
the magnitude of the considered property does not de-
pend on the direction of polarization of light leading
to an isotropic behavior. Moreover, such polarization-
independent directions expand out of this principal
plane, leading to the existence of a continuum of di-
rections that verify n′+(θ, ϕ) = n′−(θ, ϕ) as shown in
Fig. 2(b). Note that this feature is not specific to mono-
clinic crystals, but it exists for any other biaxial crystal
class [16]. It was partially experimentally reported for the
first time by studying the 4I9/2 → (4F5/2 + 2H9/2) absorption
transition at 812 nm in Nd:YCOB as shown in Fig. 10 [14],
and its full experimental report remains challenging [16].



Figure 10 (online color at: www.lpr-journal.org) Angular distribution of the absorption coefficients α+(θ, ϕ) (blue) and α−(θ, ϕ) (red) in
the dielectric frame (x, y, z) as a function of θ at ϕ = 20◦ (a), at ϕ = 40◦ (b), at ϕ = 60◦ (c) and at ϕ = 90◦ (d), angles relative to the
two polarization modes (+) and (-) at 812 nm in Nd:YCOB. The dots correspond to the measurements and the continuous lines to the
calculation. The concentric circles stand for the polar scale in 2, 4 and 6 cm−1.

These polarization-insensitive directions correspond to
the boundaries of specific angular zones that undergo layer
inversion. Such layer-inversion zones correspond to spher-
ical angles where the imaginary index surface undergoes
the following unexpected relation of order n′+(θ, ϕ) <

n′−(θ, ϕ) while the refractive index surface undergoes
n+(θ, ϕ) > n−(θ, ϕ) by definition. Elsewhere, optical prop-
erties are associated with the following relations of or-
der: n′+(θ, ϕ) > n′−(θ, ϕ), while n+(θ, ϕ) > n−(θ, ϕ). The
consideration of these layer-inversion zones indicates that
the strongest or weakest magnitude of the imaginary index
is not systematically associated to the external, or inter-
nal refractive index layer. In other words, depending of
the considered direction of propagation in the crystal, the
experimental selection of the relevant polarization mode
in order to optimize a given optical property is absolutely
not trivial. Such optimization requires a great care from
the experimental and theoretical points of view. Finally,
the polarization-independent directions might further be
considered for unpolarized beam, as well as to potentially
minimize the mechanical stress related to thermal load [40].

6. Further open research fields on
monoclinic crystal optics

6.1. Lasers

The preliminary characterization step for monoclinic laser
crystals is the determination of the orientation of the di-
electric frame [9,27,41], as well as those of the absorption
and emission frames at each involved wavelength and tem-
perature [13–15]. In the case of single-doped crystals, the
absorption and fluorescence measurements need to be sep-
arately performed in each related eigen frame, taking into
account the potential influence of the doping on the crys-
tal matrix properties [28, 30]. Monoclinic crystals require
extra-care when calculating a fluorescence lifetime with
the Judd-Ofelt method by using the Füchtbauer-Ladenburg
equation [30], and when exploiting the McCumber ex-
pression [42]. Additionally, the commonly-used reciprocity
method should be considered in polarized light for four
distinct absorption measurements that are necessary for the



determination of the four unknown tensor elements of the
imaginary part of the relative dielectric permittivity [43].
However, when the calculated fluorescence properties are
expressed in the frame where absorption properties had
been previously measured, it is then required to convert
these values in the fluorescence frame in order to obtain
the principal emission cross-sections. In the case of multi-
doped crystals, the spectroscopy of each optically active ion
should be considered, both in absorption and emission. In
the usual case of energy transfers, as it is the case between
Yb3+ and Eu3+ for infrared laser telecom applications at
1.5 μm [44–46], the determination of the overall behaviour
requires to study both angular distributions of the Yb3+
absorption and the Eu3+ emission, the net transfer process
being statistically angulary averaged. Energy transfer re-
lated to charge transfer absorption and possible subsequent
charge transfer emission should also be considered in the
angular distribution approach in polarized light [47].

Figures of merit are often proposed to compare laser
crystal candidates [48]. Such descriptions of laser poten-
tiality should be displayed in polarized response, i.e. in the
eigen modes (+) and (-), under optimal orientation. This
orientation has to lead to the best compromise between
the absorption and stimulated emission efficiencies taking
into account the corresponding angular distribution. Scal-
ing the output power of high-power laser systems, as diode-
pumped solid state lasers for example, requires taking into
account the thermal lens and thermally-induced radial bire-
fringence. These thermo-optics effects, which strongly vary
under non-lasing as well as lasing operation [49], generally
tend to degrade high-power laser operation leading to front
phase distortions, astigmatism and up to crystal cracking
due to extreme temperature gradients [9,45,49,50]. As for
the real and imaginary parts of the dielectric permittivity,
the anisotropies of the thermal expansion and thermal con-
ductivity are described by second-rank polar symmetrical
tensors, with four independent elements when written in
the dielectric frame. The related principal frames, i.e. the
expansion frame and the conductivity frame, also share a
common axis, letting these frames free to rotate around this
axis [8, 30, 45]. For optimal high-power lasing emission,
the compromise for crystal orientation needs to balance
both thermal expansion and conductivity with absorption
and emission properties, these properties showing gener-
ally principal values in distinct directions. Such optimiza-
tion can also include tailored pump transverse profiles and
polarizations [9]. In particular, there are distinct directions
where the optical path appears to be insensitive to tempera-
ture changes [50]. In this framework, thin-disk geometries
offer a very interesting configuration to cope and prevent
thermal effects for high-power laser devices. As for bulk
devices, angular distributions require to properly define the
optimal crystal orientation. In the case of composite mate-
rials with a doped laser layer deposed on a non-doped sub-
strate, an additional constraint to the optimal orientation re-
lies of the minimization of the lattice mismatch between the
two materials as reported in Tm:KLu(WO4)2/KLu(WO4)2
[2], showing that mechanical constraints have to be con-

sidered in addition to optical properties as refractive index
differences [31], or epitaxial growth rates for the oriented
active layers [51]. In the femtosecond regime, there are
additional constraints, since ultrashort pulses are sustained
by a large spectrum [52, 53], which implies a large range
of orientations of the different optical frames. The optimal
“time bandwidth” product should be then explored out of
the typical directions of propagation [30].

6.2. Laser and nonlinear frequency conversion
in the same crystal

The calculation of the phase-matching directions of non-
linear sum- and difference-frequency generations corre-
sponding to the different configurations of polarization [54]
requires the usual precaution to consider the index sur-
face at each involved wavelength in its associated dielec-
tric frame, especially in the case of monoclinic nonlinear
crystals where the dielectric frame may exhibit a signifi-
cant dispersion of orientation with wavelength [9]. When
dealing with self-frequency properties, i.e. in laser crys-
tals that have nonlinear frequency conversion properties
too, the definition of the optimal direction becomes more
complicated [4, 55–58]. Actually absorption, laser emis-
sion and nonlinear properties should be optimal in three
distinct frames, so that self-frequency conversion, as for
example the self-frequency doubling of the laser emission,
is no longer equivalent along the 8 phase-matching direc-
tions that are equivalent from the nonlinear point of view
in the dielectric frame [4, 13]. Moreover, the full evalua-
tion of the potentiality of a self-frequency material should
also consider excitation state absorption (ESA) at both the
laser and the frequency-doubled wavelengths, which might
show distinct excited state absorption frames since distinct
ESA transitions would be solicited. Note that the formal-
ism that we described above can be applied to ESA, which
needs to replace former attempts of angular distributions
[59]. Absorption and Raman spectra also show polariza-
tion and orientation dependence in monoclinic doped or
co-doped crystals [61–63]. The principal directions for Ra-
man emission are then also expected to be distinct to that
of laser emission. Recently, laser emission [63] and Raman
gain [64] have been independently reported in laser-written
waveguides in Yb:KGd(WO4)2. The next breakthrough for
such integrated telecom devices should thus come from the
simultaneous optimization of the laser emission and Raman
amplification. In the same framework, it is also important
to check the guiding efficiency as a function of the direction
of propagation from the confinement point of view: differ-
ent magnitudes of laser emission power were reported in
Yb:KGW and Yb:KYW [60], as well as distinct Raman
gains in KGdW [64]. In such wave-guided configurations,
the optimization of polarization-dependent angular distri-
butions of laser properties might also consider the compe-
tition between the guiding behavior and the off-axis energy
propagation due to spatial walk-off.



6.3. Scintillators

Scintillation offers large capabilities and applications,
spanning from neutron detection in medical imaging to
the foreseen detection of solar neutrinos in fundamental
physics. The determination of the potential of promis-
ing monoclinic crystals for scintillation detectors, as
example Pb2+:YCa4O(BO3)3 [5], Pr3+:Lu(SiO4)O [65],
Yb3+:LiY6O5(BO3)3 [47], or Ce3+:Lu(SiO4)O [66], in-
cludes various types of irradiations as α-rays, neutrons,
UV, or even γ -rays and X-rays irradiations [5, 47, 65], as
well as photoconductivity [66]. Such irradiations provide
the optical fluorescence-induced response in the spectral
domain as well as in the time domain. The knowledge of
the neutron absorption anisotropy is out of the scope of this
paper, since it is related to an interaction with the nucleus.
However, it looks reasonable to consider that X-ray absorp-
tion might be anisotropic, following angular trends similar
to those developed here. It is even clearer that UV irradia-
tion, often used in UV-to-visible charge transfer emission
to mimic particle irradiation [47], should provide angu-
lar distributions as described above, with distinct optimal
directions and eigen frames for both the charge transfer
excitation and the resulting charge transfer emission. Such
studies with oriented crystals or spheres in polarized light
should permit to successively determine the best condi-
tions for the scintillation excitation and for the subsequent
fluorescence emission. Evaluating the scintillation perfor-
mances with oriented crystals in polarized light should also
provide additional advantages. At first using the relevant
orientations leading to an enhancement of the process, it is
expected to be able to measure larger signals, which thus
would increase the signal-to-noise ratio and gives access
to better resolved scintillation parameters as kinetics be-
havior and lifetimes of fluorescent emitter levels [65]. Sec-
ondly, the inter-comparison of scintillation usually relies
on neutron-to-photons or photon-per-MeV-α estimations
with no mention about the studied crystal orientation nor
the typical solid angles considered for both irradiation and
collection. The reliability of such approach could be im-
proved by giving truly intrinsic scintillation efficiency per
material, so as to provide its best capabilities and to com-
pare materials between each other for equivalent estimation
conditions. Third, such studies should provide the resulting
optimal compromise for the crystal orientation along direc-
tions out of the dielectric axes, for each targeted application,
depending on whether only emission or both excitation and
emission processes should have anisotropic behavior.

6.4. Beyond the linear imaginary dielectric
response: multi-photon processes and
two-photon excited fluorescence

Nowadays, very high peak powers and intensities can be
reached with ultrafast lasers in the picosecond or femtosec-
ond regimes, so that multi-photon processes can happen
in crystals, even below optical damage threshold. Despite

the weak nonlinear cross-sections, multi-photon absorption
can occur by close-to-resonance enhancement of the non-
linear susceptibilities [67]. Such an enhancement especially
happens in two-photon absorption process when the second
harmonic of the fundamental wavelength tends to match the
energy gap either from the crystal matrix band gap or from
some discrete energy levels associated to laser active dop-
ing elements. Even if three-photon excited fluorescence had
been reported in a non-doped crystal for domestic lightning
issues [68], we focus hereafter on two-photon excited flu-
orescence that can show significant pump-polarization de-
pendence and anisotropy. Two-Photon processes are nonlin-
ear optical interactions that are governed by the third order
dielectric permittivity [69]. The corresponding anisotropy
is described by a four-rank polar tensor written as 3×27 ma-
trix so that it has no meaning to talk about a “two-photon
eigen frame” since neither its real nor imaginary parts can
be written in a diagonal way. However with a direct analogy
to the first order dielectric permittivity, it is expected that
some additional elements shall be non-zero in the imaginary
part with respect to those in the real part when expressed
in the dielectric frame. It is an open question to know what
elements shall switch on for monoclinic systems, depend-
ing on the considered point group. The demonstration of
these new elements is thus challenging from a fundamental
point of view, since they are necessary to properly describe
the still-unknown angular distributions in polarized light of
multi-photon absorption or emission processes. Such fun-
damental considerations should help for processing waveg-
uides under the technique of laser writing such as in BiBO
in order to achieve nonlinear frequency conversion [70], in
KGW for Raman-gain amplification [64] or in Yb-doped
KGW for laser emission [63]. Finally, it might also be con-
sidered in very high average power laser systems where
nonlinear absorption may bring non-negligible additional
laser material heating, to properly model and design the
removal of the total thermal load.

6.5. Anisotropy of photorefractive response in
monoclinic crystals

Another type of nonlinear optical wave mixing which is
very strongly affected by the low symmetry of the crystal
is based on photorefractive effect [6]. It occurs in crys-
tals lacking the symmetry center, where the refractive in-
dex might change because of spatial redistribution of the
light induced charge carriers and subsequent development
of the static space-charge field. The resulting refractive in-
dex variation depends on optical as also on electrical and
electrooptical properties, described, each, by its relevant
tensor. With the rare exceptions, all known photorefractives
belong to crystal systems with relatively high symmetry:
cubic (class 23 for sillenites and class 43m for most semi-
conductor photorefractives), trigonal (class 3m for lithium
niobate and lithium tantalate), tetragonal (class 4mm for
barium titanate). Some promising photorefractive crystals
belong however to crystal systems with lower symmetry,



orthorhombic (class mm2 for BaNaNb03 and KNbO3) and
monoclinic (class m for Sn2P2S6). The last material is espe-
cially attractive because it combines a quite high nonlinear
response with a short response time, and it is sensitive in the
red and near infrared spectrum range [71]. The optimization
of the beam coupling for this crystal is far from being trivial
because of the mentioned difficulties, typical for work with
low-symmetry materials. The optical frame in Sn2P2S6 does
not coincide with the conventional crystallographic frame
in which the

	

y-axis is normal to the mirror plane: note
that here we adopt the convention of the related reference
articles [71–73], where (

	

x,
	

y,
	

z) stands for the considered
crystallographic frame. The long axis of the index ellip-
soid for the red wavelength of the He-Ne laser makes an
angle +43o with respect to the crystallographic

	

x-axis at
room temperature. The low frequency dielectric suscepti-
bility surface is also tilted in the

	

x
	

y plane to ≈ +14o. The
angular dependences of the nonlinear coupling coefficients
for Sn2P2S6 have been calculated for three principal planes
	

x
	

y,
	

y
	

z and
	

x
	

z [72]. According to the results obtained, the
largest coupling coefficients in

	

x
	

y-plane were expected for
quite unusual orientations of the interacting waves, tilted
roughly to 20o with respect to the crystal

	

y-axis. The ex-
perimental measurements confirmed these expectations and
demonstrated the increasing by a factor 2 of the coupling
coefficient at optimized angle as compared with standard
beams orientation along the crystal

	

x-axis. The low symme-
try of Sn2P2S6 manifests itself also in photorefractive beam
fanning, which is a kind of frequency degenerate nonlinear
scattering. As distinct from the fanning in the

	

x-cut or
	

y-
cut BaTiO3 or LiNbO3, the fanning in Sn2P2S6 is obviously
spatially non uniform in polarization [73].

7. Conclusion

The considerations that are developed above show that mon-
oclinic crystals exhibit non trivial and original optical fea-
tures when compared with higher symmetry crystals, which
may explain the fact that they had not been considered of-
ten in the past despite real potentialities. However the mod-
elling and measurement methodologies that are reported
here should help to characterize at best such low symmetry
crystals and so help to promote and increase their use in
optical devices based on lasers or incoherent light.

These comments are a fortiori relevant for triclinic crys-
tals especially since they have the lowest symmetry, the two
corresponding crystal classes being 1 and 1. These crystals
belong also to the biaxial optical class and they will exhibit
the same main features as those of monoclinic crystals with
one more step of difficulty since there are no common
axes between the frames of the real and imaginary parts of
the dielectric permittivity and there are four more different
non-diagonal elements in the corresponding tensors when
expressed in the dielectric frame.

The next step in the modelling of the electro-magnetic
anisotropy of monoclinic as well as triclinic crystals will be

to develop the theory allowing these macroscopic properties 
to be linked with the microscopic ones in the framework 
of ab initio calculation. It will be then necessary to use 
a quantum model describing at best the potential energy 
of the valence electrons from the symmetry of the wave 
functions of the energy levels that are considered as well as 
the symmetry of the crystallographic sites that are involved. 
It is undoubtedly an exciting challenge.

Key words: Crystal optics, refractive indices, absorption, fluo-
rescence, monoclinic crystals.
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