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Abstract—A nonlocal total variation (NLTV) scheme for image
debluring has already been proposed in the literature. The goal
of the present article is to study this scheme in the context of
image denoising. We establish that its performance is comparable
to non-local means and better than the classical total variation
denoising approach. However, we show that the nonlocal total
variation scheme is essentially a neighborhood filter and therefore
a local one. In order to obtain a truly nonlocal scheme and
so as to use redundancy in the whole image, we propose a
new energy functional that includes a Fourier term. We call
this new scheme spatial-frequency domain nonlocal total variation
(SFNLTV). Experiments show that SFNLTV outperforms in most
cases non-local means and NLTV algorithms, both in term of
Euclidean criteria (PSNR) and visually.

Index Terms—Gaussian noise, denoising, total variation, non-
local variation, variational models, non-local means, Fourier
transform.

I. INTRODUCTION

In this work, we consider recovering images degraded

by additive Gaussian noise. There is a large literature for

removing such noise. See for example the approaches based

on wavelet transformations [1], [2], the total variational (ROF)

model [3], neighborhood filters (such as Yaroslavsky filter [4]

and bilateral filter [5], [6]), non-local means [7] and its variant

[8] and combinations of them [9], [10], [11]. We focus on

nonlocal operators [9], [12], [13], [14], which combine the

idea of variational models and patch-based methods in non-

local means (NL-means).

In this paper, we first study the nonlocal total variation

(NLTV) model introduced in [13], [14]. We establish a relation

between NLTV and neighborhood filters which shows that

NLTV is essentially a local denoising scheme and is therefore

unable to use redundancies in the whole image to further

decrease the noise variance. We experimentaly find that in

the case of image denoising, NLTV improves the classical

ROF [3] and is as good as NL-means [7] for non-textured

images. In order to get a truly nonlocal denoising scheme and

to better recover oscillating patterns such as microtextures,

we propose a new variational model by adding to NLTV a

term based on the Fourier transform. We call this new scheme

spatial-frequency domain nonlocal total variation (SFNLTV).

Our SFNLTV improves NLTV both visually and in terms of

PSNR. In addition, the choice of parameters is less sensitive

to images and therefore, we use the same choice of parameters

for all tested images.

II. RELATED WORKS

As usual, a digital image is denoted by a M×N matrix u =
{u(i) : i ∈ I}, where I = {0, 1, ..., M−1}×{0, 1, ..., N −1},

and 0 ≤ u(i) ≤ 255. The additive Gaussian noise model is:

V(i) = U(i) + η(i),

where U and V are the original and noisy images respectively,

and η is the Gaussian noise: η(i) are independent and identi-

cally distributed Gaussian random variables with mean 0 and

standard deviation σ > 0. A denoised image is denoted as V̄ .

For simplicity, we assume symmetric boundary conditions in

this paper.

A. Total Variation Model

In [3], Rudin, Osher and Fatemi (ROF) introduced the

total variation (TV) as a regularizing functional for image

denoising. The denoised image V̄ is the minimizer of the

following functional:

E(u) := λ
∑

i∈I

‖∇u(i)‖ +
1

2

∑

i∈I

(u(i) − V(i))2, (1)

where ∇u(i) = (u(i1 + 1, i2) − u(i1, i2), u(i1, i2 + 1) −
u(i1, i2)) is the gradient of u at point i = (i1, i2), ‖‖
is the Euclidean norm, and λ is the Lagrange multiplier.
∑

i∈I ‖∇u(i)‖ is called the total variation of u.

B. Non-Local Means

For i ∈ I and d an odd integer, let Ni(d) = {j ∈ I :
‖j − i‖∞ ≤ (d − 1)/2} be the window with center i and

size d× d, simply written as Ni. Similarly, denote Ui(D) the

window with center i and size D × D, simply written as Ui.

The denoised image by NL-means [7] is given by

V̄(i) =

∑

j∈Ui(D) w(i, j)V(j)
∑

j∈Ui(D) w(i, j)

with

w(i, j) = e−||V(Ni)−V(Nj)||
2

a/(2σ2

r), (2)

where σr > 0 is a control parameter,

||V(Ni) − V(Nj)||
2
a =

∑

k∈Ni(d) a(i, k)|V(k) − V(T (k))|2
∑

k∈Ni(d) a(i, k)
,

(3)



T = Tij being the translation mapping of Ni onto Nj : T (k) =

k − i + j, k ∈ Ni, and a(i, k) = e−‖i−k‖2/2a2

(a = (d− 1)/4
is a good choice).

C. Nonlocal Total Variation Model

In [13], [14] the authors considered a nonlocal total variation

functional that replaces the total variation one in ROF (1):

E(u) := λJ(u) +
1

2

∑

i∈I

(u(i) − V(i))2, (4)

where

J(u) =
∑

i∈I

√

∑

j∈I

(u(i) − u(j))2w(i, j) (5)

is called the nonlocal total variation of u. The variational

model (4) is denoted as NLTV. We consider w(i, j) used in

[14], where w(i, j) is taken as the one used in NL-means (3)

without normalization,

w(i, j) =

{

e−||V(Ni)−V(Nj)||
2

a/(2σ2

r) if j ∈ Ui(D)
0 else

.

(6)

The weight w(i, j) is used to estimate the similarity between

two pixels i and j. When the two pixels i and j are similar,

w(i, j) is large, which makes the recovered values V̄(i) and

V̄(j) close. Note that for i = (i1, i2), if we use

w(i, j) =

{

1 if j ∈ {(i1 + 1, i2), (i1, i2 + 1)}
0 else

,

then (4) reduces to (1). Thus NLTV is more general and more

adaptive to image content than ROF.

For any fixed i, |∇wu(i)| :=
√

∑

j∈I(u(i) − u(j))2w(i, j)

is a convex functional of u. Therefore J(u) is convex. Since

the fidelity term is strictly convex, so is the energy function

E(u). Thus we can use the gradient descent method to find

the minimizer. Write

W (i, j) =
w(i, j)

|∇wu(i)|
+

w(j, i)

|∇wu(j)|
.

The gradient of E(u) is ∇uE(u) = {∇uE(u)(i)}i∈I , with

∇uE(u)(i) = λ
∑

y∈I

(u(i)−u(j))W (i, j)+(u(i)−V(i)). (7)

Notice that by (6), the summation of y ∈ I in (7) can be

replaced by y ∈ U0
i = Ui\{i}.

III. RELATION WITH NEIGHBORHOOD FILTERS

We consider the gradient descent algorithm

uk+1(i) = uk(i) − tk∇uE(uk)(i), k = 0, 1, 2, · · · (8)

with u0 = V , tk > 0 such that E(uk+1) < E(uk).
By (8) and (7), we have

uk+1(i) =
∑

j∈Ui

uk(j)W k(i, j) + tkV(i), (9)

where

W k(i, j) =

{

tkλW (i, j) if i �= j
1 − tk − tkλ

∑

j∈U0

i
W k(i, j) if i = j.

(10)

Note that
∑

j∈Ui

W k(i, j) + tk = 1.

Let Ui = Ui(D). We can easily obtain that uk(i) is the

weighted average of its neighbors V(j), j ∈ Ui(Dk−k+1). In

our experiments, we find that after 15 iterations, the iterative

process for all of our tested image approximately converges

(See Section IV for the tested images). Thus and despite

the name “nonlocal”, NLTV should be considered as a local

neighborhood filter.

IV. SIMULATIONS

We use the Peak Signal-to-Noise Ratio (PSNR) to measure

the quality of restored images:

PSNR (V̄) = 10 log10

2552MN
∑

i∈I(V̄(i) − U(i))2
.

Recall that U and V̄ are the original image and the restored

one respectively. The larger the value of PSNR, the better the

restored image. In our experiments we mainly use (512×512)

images, Lena, Barbara, Bridge, Boats and (256×256) images,

Peppers, House, Cameraman. They are all available online1.

In the experiments, we consider the case σ = 20.

A. Choices of Parameters for NLTV Model

We search for the optimal choice of parameters for each

image in terms of PSNR value with σr = 20 fixed and other

parameters varying in some ranges. We find that except the

Bridge image, one can use the same choice of parameters

D = 3, d = 9, λ = 15. The PSNR value of each image is

close to the best one (that we have tested) with a difference

less than 0.1. So the optimal parameters are not sensitive to

general images. Since the Bridge image has many irregular

fine details, the optimal parameters are a little different:

D = 3, d = 15, λ = 11. Let us give some remarks about

the choices of the parameters.

• Note that our choice for D is 3, the smallest square

window. When D increases, restored images look smoother

globally and many fine details disappear, while in the areas

where there are great changes of gray values, there is more

noise left. Though some regular textures are a little better

recovered and the staircase artifact is less obvious for larger

D, the global quality is deteriorated. See the denoised images

with D = 3 and 19 in Fig.1. Thus the proposed choice D = 21
in [14] in the context of image deconvolution is not a good

choice for image denoising. As our choice D is small, the

denoising process is fast.

1Lena, Peppers, Boats and House:
http://decsai.ugr.es/∼javier/denoise/test images/index.htm
Bridge: www.math.cuhk.edu.hk/∼rchan/paper/dcx/
Barbara, Cameraman: www.dcs.qmul.ac.uk/∼phao/CIP/Images/.



Original Noisy

Denoised: D=3 Denoised: D=19

Fig. 1. Denoised image with NLTV for Lena (upper right part).

• The influence of d is less obvious than D. In fact, as the

patch size d increases, all the nonzero weights w(i, j) tend to

be identical, thus NLTV is close to ROF, if D = 3.

• With other parameters fixed, the optimal choice of λ
depends on the nonlocal variation (thus depends on the other

parameters d, D, h) and the noise level.

B. Comparisons with ROF Model and NL-means

We now compare NLTV with ROF and NL-means. The

PSNR values are shown in Table I and the denoised images are

shown in Fig.2. For NL-means, we use D = 5, d = 3, σr = 24
for the Bridge image, and D = 11, d = 7, σr = 18 for other

images. From the comparisons, we can see that:

• in terms of PSNR, NLTV is better than ROF for all the

images, and is similar to NL-means except the Barbara image;

• NLTV is better than NL-means for isolated pixels (for

which there is few similar patches). In fact, by (9) and (10),

when i is an isolated point, there are no or few similar points in

its neighbors, so
∑

j∈U0

i
W (i, j) is small. Thus the recovered

value is close to the noisy one. Compared to ROF, the denoised

images with NLTV have less staircase artifacts, and have less

noise left.

V. IMPROVEMENTS OF NLTV MODEL

A. Spatial-Frequency Domain Nonlocal Total Variation Model

In order to better recover oscillating patterns in images such

as microtextures, and to get a truly nonlocal denoising scheme,

we propose to add in NLTV a term based on the Fourier

transform. Denote û the Fourier transform of u. Let

J1(u) =
∑

i∈I

|∇w1
u(i)|, and J2(u) =

∑

ω∈I

|∇w2
û(ω)|,

TABLE I
PSNR VALUES FOR DIFFERENT IMAGES WITH NLTV, NL-MEANS (NL),
ROF, AND SFNLTV (SF). THE VALUES MARKED WITH * ARE OBTAINED

BY OPTIMAL PARAMETERS FOR THE CORRESPONDING IMAGES. FOR ROF,
WE USE THE OPTIMAL PARAMETER FOR EACH IMAGE. IN THE FIRST ROW,

THE IMAGES ARE NAMED BY THEIR FIRST THREE OR FOUR LETTERS.

Image Lena Bar Pep Boat Bri Hou Cam

NLTV 31.56 28.46 30.21 29.49 26.81* 31.74 29.45
NL 31.56 29.68 30.18 29.32 26.81* 31.92 29.35

ROF* 31.12 27.10 29.56 29.20 26.68 31.31 28.82
SF 31.77 29.19 30.29 29.89 26.92 32.14 29.64

Original Noisy

ROF: PSNR=31.12 NLTV: PSNR=31.56

NL-means: PSNR=31.56 SFNLTV: PSNR=31.77

Fig. 2. Zoom in the left area of the Lena’s hat. In order to enhance visual
artifacts, the same sharpen filter has been applied to all displayed images.

with

|∇w1
u(i)| =

√

∑

j∈I

(u(i) − u(j))2w1(i, j), (11)

and

|∇w2
û(ω)| =

√

∑

ξ∈I

|û(ω) − û(ξ)|2w2(ω, ξ), (12)

where w1(i, j) is taken as (6) in NLTV, and w2(ω, ξ) is taken

as (6) with V̂ , df , Df , σrf replacing V , d, D, σr respectively.



We consider the following energy functional called spatial-

frequency domain nonlocal total variation (SFNLTV) model:

E(u) := λJ1(u) + µJ2(u) +
1

2

∑

i∈I

(u(i) − V(i))2. (13)

Because Fourier transform is linear, the functional in (13) is

also strictly convex. So we can also use the gradient descent

method (9) to minimize it.

Similar to (7),

∇uJ1(u)(i) =
∑

j∈I

(u(i)− u(j))

(

w1(i, j)

|∇w1
u(i)|

+
w1(j, i)

|∇w1
u(j)|

)

.

(14)

We will formally prove that ∇uJ2(u)(i) = ℜf(i), with

f̂(w) =
∑

ξ∈I

(û(ω)− û(ξ))

(

w2(ω, ξ)

|∇w2
û(ω)|

+
w2(ξ, ω)

|∇w2
û(ξ)|

)

(15)

in the following, where ℜ denotes the real part of a complex

number. Firstly,

d

dt
J2(u + tv)|t=0 (16)

=
∑

ω∈I

∑

ξ∈I

[(û(ω) − û(ξ))(¯̂v(ω) − ¯̂v(ξ))

+(v̂(ω) − v̂(ξ))(¯̂u(ω) − ¯̂u(ξ))w2(ω, ξ)
1

|∇w2
û(ω)|

].

By exchanging ω and ξ and changing the order of summation,

we obtain
∑

ω∈I

∑

ξ∈I

(û(ω) − û(ξ))(¯̂v(ω) − ¯̂v(ξ))w2(ω, ξ)
1

|∇w2
û(ω)|

=
∑

ω∈I

1

2
f̂(ω)v̂(ω). (17)

Then by (16) and (17), we get

d

dt
J2(u + tv)|t=0

=
∑

ω∈I

1

2
f̂(ω)v̂(ω) +

∑

ω∈I

1

2
f̂(ω)v̂(ω)

=
∑

i∈I

1

2
f(i)v(i) +

∑

i∈I

1

2
f̄(i)v(i)

=
∑

i∈I

ℜf(i)v(i).

Thus, it follows that ∇uJ2(u)(i) = ℜf(i).

B. Simulations and Conclusions

Note that we have now eight parameters λ, d, D, σr, µ, df ,

Df , σrf . We use the same choices of parameters in w1(i, j)
as w(i, j) in NLTV for general natural images, i.e. d = 9,

D = 3, σr = 20, and test the other parameters. We find that

λ = 11, µ = 2, df = 9, Df = 5, σrf = 16 is a good

choice for all our testing images. With this choice, SFNLTV

is better than NLTV for all the images. Therefore, despite

SFNLTV needs more parameters than NLTV, the choice of

parameters for SFNLTV is less sensitive to images. We show

PSNR values in Table I. SFNLTV is the best for almost all

tested images. Carefully comparing the denoised images, we

can see that SFNLTV is better than NLTV for fine details, but

a little noisier in homogeneous regions (see Fig.2).

Let P denote the matrix composed of the basis of R
MN or

C
MN . Recall that the hard and soft thresholding methods [1]

can be considered as the solutions [15] of

V̄ = arg min
u

{‖u − V‖2 + T 2‖PT u‖0}, (18)

and

V̄ = arg min
u

{‖u − V‖2 + 2T‖PT u‖1}, (19)

where T is the threshold. Therefore J2(u) is a variant of

the l0 or l1 norm in the thresholding methods (18) and (19)

if we use the Fourier basis as P . Thus minimizing in both

spatial and frequency domain may improve the performance of

energy minimization algorithms. We declare that such mixed

approaches are very promising.
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