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Abstract

This paper surveys new estimators of the density of a random effect in linear mixed-effects
models. Data are contaminated by random noise, and we do not observe directly the random
effect of interest. The density of the noise is suposed to be known, without assumption on its
regularity. However it can also be estimated. We first propose an adaptive nonparametric de-
convolution estimation based on a selection method set up in Goldenshluger and Lepski (2011).
Then we propose an estimator based on a simpler model selection deviced by contrast penalization.
For both of them, non-asymptotic L2-risk bounds are established implying estimation rates, much
better than the expected deconvolution ones. Finally the two data-driven strategies are evaluated
on simulations and compared with previous proposals.

Keywords. Deconvolution, linear mixed models, model selection, nonparametric estimation.

1 Introduction

In order to analyze repeated measures in time for individuals with the same behavior, we focus on
a linear mixed-effects model. The observation value at time tj with j ∈ {0, . . . , J} for individual
k, k ∈ {1, . . . , N}, denoted Yk,j , follows the model

Yk,j = αk + βktj + ǫk,j , (1)

where the coefficients αk and βk are the random effects of regression and depend on the subject
k. The times of observation tj are known and equidistant with a time step ∆: tj = j∆. The
random variables (ǫk,j)1≤k≤N,0≤j≤J are the measurement errors of zero mean. They are supposed
independent and identically distributed (i.i.d.) with common density fǫ. We suppose αk i.i.d.
with density fα and βk i.i.d. with density fβ . Moreover we assume that (ǫk,j)1≤k≤N,0≤j≤J and
(αk, βk)1≤k≤N are independent sequences.

Mixed models with random effects are often used, for example in pharmacokinetics. They
describe both individual behavior and variability between individuals. The distribution of random
effects is of special interest. It allows for example to describe the heterogeneity of the drug kinetics
in the population of individuals. Mixed models have been widely studied, often with parametric
strategies and Gaussian random effects and noise (see Pinheiro and Bates, 2000). However it is
not clear that this normality assumption of the random effects is truly satisfied in practice. The
aim of this paper is to produce nonparametric estimation of the density of the random effects from
the observations Yk,j .

Several papers consider this problem. Wu and Zhu (2010) relax the Gaussian assumption
proposing an orthogonality-based estimation of moments estimating the third and fourth moments
of the random effects and errors. Komárek and Lesaffre (2008) suppose that the random effects
are a mixture of Gaussian distributions, and estimate the weights of the mixture components using
a penalized approach. Papageorgiou and Hinde (2012) propose semi-parametric density models of
random effects. But it is the estimation of the complete random effects density which should be
appropriate. This is the framework of nonparametric estimation that is adopted in this paper.
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Complete nonparametric estimation of fβ and fα in model (1) has been little studied in the
literature. The main reference is Comte and Samson (2012) who set up a nonparametric estimation
with deconvolution ideas. Indeed, model (1) can be seen as a measurement error model. Decon-
volution methods are various and have been initiated by the kernel study of Fan (1991), followed
by adaptive strategies (Pensky and Vidakovic (1999), Comte et al. (2006), Delaigle and Gijbels
(2004)) and optimality of rates (Butucea and Tsybakov, 2007). Except the penalized contrast
estimator of Comte and Samson (2012), none of these previous estimators has been used in the
mixed model framework. However, for all these methods, the noise density is usually assumed to
be known with a certain regularity. The resulting rates are thus very specific and depend on the
regularity of the noise and of the function under estimation. For example the noise is supposed to
be ordinary smooth in Comte and Samson (2012).

This paper focuses on improving existing nonparametric strategies for the estimation of fβ . We
focus on fβ and we refer to Comte et al. (2006) for fα, noticing that for t0 = 0 model (1) writes
Yk,0 = αk + ǫk,0 which is a standard convolution equation. We first propose an estimator which
uses all the available observations. A Mean Integrated Squared Error (MISE) bound is computed
and it shows that a bias-variance compromise must be performed. The particularity here is the
selection model procedure: we adapt a method set up in Goldenshluger and Lepski (2011) for kernel
estimators. Then we establish a non-asymptotic oracle risk bound using Talagrand’s inequality. In
a second time, an other estimator is proposed, built using the last and the first time of observations.
If two times of observation are separated by a quite long time, enough information is available to
obtain a good estimation. As in the first case, risk bound leads us to propose a model selection
strategy. In that case a more classical and easy to implant strategy can be adopted, namely a
penalized criterion (Massart, 2007; Birgé and Massart, 1998).

What is new is that our two strategies take advantage of both nonparametric and deconvolution
ideas. With very mild assumption on the noise regularity (we only require that the characteristic
function of the noise is nonzero), the two estimators recover standard rates in density estimation
for fβ (Stone, 1980; Donoho et al., 1996) while deconvolution rates were expected. Precisely
logarithmic speed of convergence implied by deconvolution methods is avoided. Therefore our two
estimators have better rates. Furthermore we do not assume that the noise is ordinary smooth,
which was assumed in Comte and Samson (2012).

This paper is organized as follows. We proceed with the construction of the estimators in
Section 2.1 and 13. Bias-variance decompositions of the L2-risk are proved (Propositions 1, 5) and
lead us to propose adaptive strategies. The main results (Theorems 3, 7) prove that the resulting
estimators are adaptive. A short Section 3 provides a comparison of our estimators with Comte and
Samson (2012). Lastly, we illustrate the different methods by simulation experiments presented
in Section 4. We briefly discuss therein the case of unknown noise density (see Section 4.3 and
Section 6.8) which is also implemented for comparison. Proofs are gathered in Section 6.

2 Construction of two estimators, risk bounds and adaptive

results

Let us introduce some notations. For two functions f and g in L1(R)∩L2(R), the scalar product is
defined by < f, g >=

∫
R
f(x)g(x)dx and the associated norm is ‖f‖2 =

∫
R
|f(x)|2dx. The Fourier

transform of f is f∗(x) =
∫
R
eixuf(u)du for all x ∈ R. When f is the density of a random variable

X, f∗(u) = E[eiuX ] is called the characteristic function of X. Then the convolution product of f
and g for all x ∈ R, is f ⋆ g(x) =

∫
R
f(x − y)g(y)dy. Finally we remind the Plancherel-Parseval’s

formula: ∀f ∈ L1(R) ∩ L2(R), 2π‖f‖2 = ‖f∗‖2.

2.1 Estimator using all the observations: f̂

In this section we build an estimator of the density fβ using all the available observations. We
consider the normalized variables Zk,m defined by the difference between two observations, for all
k ∈ {1, . . . , N}, and for all m ∈ {1, . . . , J}

Zk,m :=
Yk,m − Yk,0

m∆
= βk +

ǫk,m − ǫk,0
m∆

=: βk +Wk,m. (2)

For a given m, the variables Wk,m, k ∈ {1, . . . , N}, are i.i.d. with density fWm
. Due to the

independence between the ǫk’s and the βk’s, the Zk,m are i.i.d. with density denoted by fZm , and
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definition (2) implies
fZm = fβ ⋆ fWm . (3)

The Fourier transform of (3) yields
f∗
Zm

= f∗
βf

∗
Wm

.

By independence of the ǫk,m we have for all u ∈ R

f∗
Wm

(u) = E[eiu(ǫk,m−ǫk,0)/m∆] = E[eiuǫk,m/m∆]E[e−iuǫk,0/m∆]

=
∣∣∣f∗

ǫ

( u

m∆

)∣∣∣
2

.

Let us consider the following assumptions:

(A1) fβ ∈ L2(R) and f∗
β ∈ L1(R)

(A2) fǫ is known and f∗
ǫ 6= 0.

(A1) is needed to compute the L2(R)-risk and apply the Fourier inversion: fβ(x) = 1/(2π)
∫
R
e−iuxf∗

β(u)du.
Assumption (A2) is true for most densities (Gaussian, exponential, Gamma, Laplace) but excludes
for example the uniform density. Under (A2), we obtain for all u ∈ R

f∗
β(u) =

f∗
Zm

(u)

|f∗
ǫ (

u
m∆ )|2 ,

and using the Fourier inversion, we deduce the following closed formula for fβ

∀x ∈ R, fβ(x) =
1

2π

∫

R

e−iux
f∗
Zm

(u)

|f∗
ǫ (

u
m∆ )|2 du . (4)

To propose an estimator of fβ , f
∗
Zm

is replaced by its empirical estimator

∀u ∈ R, f̂∗
Zm

(u) =
1

N

N∑

k=1

eiuZk,m . (5)

However, although formula (4) is well defined under (A1), the integrability of the ratio f̂Zm
/|f∗

ǫ |2
is not ensured, since f∗

ǫ tends to zero near infinity. Therefore, we do not only plug (5) in equation
(4) but we also introduce a cut-off which avoids integrability problems. We choose m∆ as a cut-off
where m is as before the time of observation subscript m. Finally the estimator is defined by:

f̂β,m(x) =
1

2π

∫ m∆

−m∆

e−iux
f̂∗
Zm

(u)

|f∗
ǫ (

u
m∆ )|2 du =

1

2π

∫ m∆

−m∆

e−iux 1

N

N∑

k=1

eiuZk,m

|f∗
ǫ (

u
m∆ )|2 du . (6)

This original choice of the cut-off impacts the risk bound and leads to unexpected better rates for
f̂β,m, as seen below. In the following, we first compute the MISE of f̂ .

2.2 Risk bound for the estimator f̂

We define the function fβ,m by the relation

fβ,m(x) =
1

2π

∫ m∆

−m∆

e−iuxf∗
β(u)du (7)

which amounts to E[f̂β,m] = fβ,m. Thus f̂β,m is an unbiased estimator of fβ,m.

The bias-variance decomposition is the first step to study the MISE. Then we bound the two
terms using Plancherel-Parseval’s theorem, and we get the following bound.

Proposition 1. Let assumptions (A1) and (A2) hold. Let estimator f̂β,m of fβ be given by (6).

Let us denote Fǫ :=
∫ 1

−1
(1/|f∗

ǫ (v)|4)dv. Then,

E[‖f̂β,m − fβ‖2] ≤
1

2π

∫

|u|≥m∆

|f∗
β(u)|2du+ Fǫ

m∆

2πN
. (8)
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The proofs are relegated to Section 6. The first term of the bound (8) is the integrated bias term
‖fβ,m − fβ‖2. It is due to the replacement of fβ as defined in (4) by fβ,m in (6). This term
is decreasing when m is increasing. The second term is the variance term which increases with
m and comes from the estimation of fβ,m by f̂β,m. It has the order m/N : it is the order we
would obtain in a direct density estimation context. This was unexpected here because we do not
observe β. This gain is due to the choice of the cut-off linked to the observation index. Besides

Fǫ =
∫ 1

−1
1/|f∗

ǫ (v)|4dv is a constant which depends on the model. Indeed, under (A2), and because
fǫ is a density thus its Fourier transform is continue, Fǫ is a known numerical constant. Finally
the bound (8) depends on the density of the noise only through a constant.

The next step is to select the cut-off m among the collection. It follows from Proposition 1 that
we have to perform a bias-variance compromise to minimize the MISE. When fβ is in the Sobolev
space with regularity parameter b, i.e. fβ belongs to the set Ab(L) defined by

Ab(L) = {f ∈ L1(R) ∩ L2(R),

∫

R

|f∗(x)|2(1 + x2)bdx ≤ L}

with b > 0, L > 0. In this particular case, the bias term satisfies:

‖fβ,m − fβ‖2 =
1

2π

∫

|u|≥m∆

|f∗
β(u)|2du ≤ L

2π
(m∆)−2b.

Consequently, the L2-risk of f̂β,m is bounded by,

E[‖f̂β,m − fβ‖2] ≤ C1(m∆)−2b + C2
m∆

N

with C1 = (L/(2π)) > 0, and C2 = Fǫ/(2π) > 0. Therefore, the optimal theoretical choice of m∆

is (m∆)opt = CbN
1

(2b+1) with

Cb = (2bC1/C2)
1/(2b+1). (9)

Then we can prove the following corollary of Proposition 1.

Corollary 2. Assume that the assumptions of Proposition 1 hold, that fβ ∈ Ab(L), and that

CbN
1

(2b+1) ≤ J∆, with Cb given by (9). Then if we choose mopt such that mopt∆ = (m∆)opt =
CbN

1/(2b+1), we have

E[‖f̂β,mopt
− fβ‖2] ≤ KN− 2b

2b+1

for a constant K depending on b, L and Fǫ.

The order of the risk is N−2b/(2b+1) for a large N , it is the nonparametric estimation rate
of convergence obtained when the observation are realizations of the variable of interest. We
refer to Lacour (2006) Table 1 for classical rates of convergence for nonparametric deconvolution.
Comparing with these rates, we observe that here we improve the speed of convergence. This
order is N−b/(2b+1) which is always larger than the parametric rate 1/

√
N , but can get close to it

when b increases. The condition CbN
1

(2b+1) ≤ J∆ requires that J is asymptotically large when N
grows, but the larger b the weaker the condition. Nevertheless, this choice is theoretical because
it depends on the regularity b of fβ which is unknown.

2.3 Adaptive selection of m and oracle risk bound for f̂

In this section we propose an adaptive selection of m which should outbalance the bias-variance
compromise. We aim at finding a procedure that does not depend on the regularity of the density
fβ , but only on the data. Suppose that m belongs to a finite set M, the theoretical optimal choice
for m is

mth = argmin
m∈M

{‖fβ,m − fβ‖2 + V (f̂β,m)} = argmin
m∈M

{−‖fβ,m‖2 + V (f̂β,m)},

where we use the Plancherel-Parseval Theorem, and V (f̂β,m) :=
∫
E[(f̂β,m(x)−E[f̂β,m(x)])2]dx =

E[‖f̂β,m − fβ,m‖2] ≤ Fǫm∆/(2πN). The two terms appearing in this decomposition are unknown
and thus replaced by estimators. The variance term is replaced by a penalty function proportional
to the variance bound:

pen(1)(m) = κ(1)Fǫ
m∆

N
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with m ∈ M := {1, . . . , N ∧J} where N ∧J = min(N, J) and κ(1) a numerical constant. From the
theoretical point of view κ(1) ≥ 24/π, but in practice, κ(1) is calibrated by intensive preliminary
simulation experiments (see Section 4). This choice of M implies m ≤ N and the penalty is
bounded.
The dependence in m which holds in several aspects, prevents us from using usual selection method
defined by penalized criterion. More precisely, Equation (6) depends on m in the bounds of the

integral, and in the integrative term, thus estimator f̂β,m can not be written as the minimizer of a
contrast (see Massart (2007)). This is why we use a more sophisticated method of selection due to
a recent work of Goldenshluger and Lepski (2011). The index m is adaptively chosen as the value
which minimizes the sum of two terms as follows

m̂(1) = argmin
m∈M

{Γ̂m + pen(1)(m)} (10)

with m ∈ M = {1, . . . , N ∧ J}

Γ̂m := max
1≤j≤N∧J

(
‖f̂β,m∧j − f̂β,j‖2 − pen(1)(j)

)
+

= max
m≤j≤N∧J

(
‖f̂β,m − f̂β,j‖2 − pen(1)(j)

)
+

(11)

where (x)+ = max(0, x). The contrast Γ̂m approximates the bias. The penalty term is subtracted
in (11) to offset the variance effect implied by the estimation of the bias term. The final estimator

f̂β,m̂(1) satisfies the following oracle inequality.

Theorem 3. Construct an estimator of fβ of the form (6), and choose m̂(1) according to (10).
Then, under assumptions (A1) and (A2), there exist two constants C and C ′ such that

E[‖f̂β,m̂(1) − fβ‖2] ≤ C inf
m∈M

(‖fβ,m − fβ‖2 + pen(1)(m)) +
C ′

N
. (12)

The constant C is numerical as soon as κ(1) is fixed, and C ′ depends on Fǫ, ∆, ‖fβ‖.

We prove this result with the same kind of tools as Comte et al. (2013) for a continuous time

model. Theorem 3 provides a non-asymptotic result and bound (12) shows that f̂β,m̂(1) realizes
automatically the bias-variance compromise. This estimator fulfills the objective: it does not
require any assumption on the regularity of fβ or fǫ. The bound we obtain depends on the density
fǫ only through the constant Fǫ. This is new in the mixed model framework. Again, note that the
variance is of order m/N which is better than a deconvolution order.

We establish the following asymptotic result in the particular case where fβ is in the Sobolev
space with regularity b.

Corollary 4. Assume that the assumptions of Theorem 3 hold, that fβ ∈ Ab(L), and that

CbN
1

(2b+1) ≤ J∆, with Cb given by (9). Then there exists a constant C > 0 such that

E[‖f̂β,m̂(1) − fβ‖2] ≤ CN− 2b
2b+1

Thus, if J is large enough compared to
√
N , the estimator reaches the best possible rate for a func-

tion with regularity b (Tsybakov (2004) shows that N−b/2b+1 is the optimal rate of convergence),
without requiring the knowledge of b. This speed is the one we obtain when we observe directly
the variable of interest. It is not the classical deconvolution speed which can be logarithmic in the
Gaussian case for example (see Comte and Samson, 2012), or N−b/(2b+2γ+1) if the noise is ordinary
smooth of order γ.

2.4 Estimator built using the last observation time f̂J

In order to simplify the previous estimator and its selection method, we propose a second estimator.
This estimator is based only on the variables defined by (2) for m = J , ∀k ∈ {1, . . . , N},

Zk,J =
Yk,J − Yk,0

J∆
= βk +

ǫk,J − ǫk,0
J∆

= βk +Wk,J .

5



The same arguments as before lead to, for any real-value x:

fβ(x) =
1

2π

∫

R

e−iux
f∗
ZJ

(u)

|f∗
ǫ (

u
J∆ )|2 du.

Then we replace f∗
ZJ

by its empirical estimator and we introduce for some m the cut-off m∆. The
second estimator is defined by the following equation:

f̂J
β,m(x) =

1

2π

∫ m∆

−m∆

e−iux 1

N

N∑

k=1

eiuZk,J

|f∗
ǫ (

u
J∆ )|2 du . (13)

We notice that m is only a cut-off here and no longer an observation time, then it does not need
to be an integer. This estimator can also be seen as the argument minimum of a contrast type
density. Indeed, for t ∈ Sm := {t ∈ L2, supp(t∗) = [−m∆,m∆]}, considering

γ(t) := ‖t‖2 − 2

N

N∑

k=1

1

2π

∫
t∗(−u)

eiuZk,J

|f∗
ǫ (

u
J∆ )|2 du

= ‖t‖2 − 2 < t, f̂J
β,m >= ‖t− f̂J

β,m‖2 − ‖f̂J
β,m‖2,

We have
f̂J
β,m = argmin

t∈Sm

γ(t).

This new estimator uses 2N observations like the previous estimator (6) when m is fixed. But

as seen before the adaptive procedure of f̂β,m uses all the JN observations while the adaptive

procedure for f̂J
β,m (see below) still uses only 2N observations. We have to check if this estimator

is competitive. In order to lead a theoretical study, we compute the MISE of f̂J
β,m. Definition (7)

still gives that f̂J
β,m is an unbiased estimator of fβ,m. The bias-variance decomposition of the risk

gives the following proposition.

Proposition 5. Let assumptions (A1) and (A2) hold. Let estimator f̂J
β,m of fβ be given by (13).

Then, we have,

E[‖f̂J
β,m − fβ‖2] ≤

1

2π

∫

|u|≥m∆

|f∗
β(u)|2du+

1

2πN

∫ m∆

−m∆

du

|f∗
ǫ (

u
J∆ )|4 . (14)

The same comments we made after Proposition 1 apply here. We notice that if the observation
time J∆ is large enough, as the Fourier transform of a density evaluated in 0 is equal to 1, the
variance term is under control. Under the condition m ≤ N ∧ J we can prove the following result.

Corollary 6. Let us denote Bǫ := sup
v∈[−1,1]

1
|f∗

ǫ (v)|4
. If m ≤ N ∧ J , then under assumptions (A1)

and (A2) one has

E[‖f̂J
β,m − fβ‖2] ≤

1

2π

∫

|u|≥m∆

|f∗
β(u)|2du+Bǫ

m∆

πN
. (15)

Assumption (A2) assures that Bǫ is finite. The dependence on the noise is contained in this

constant Bǫ. The estimator f̂J
β,m is well defined when m > J . Nevertheless, the variance in

inequality (14) can be large in this case, that is the reason why we impose m ≤ N ∧ J to obtain
the bound (15). This assumption yields a variance order m/N , which is the best one can expect.

In the following we propose a penalization procedure. With the assumption of Corollary 6,
the cut-off m is supposed to belong to the finite set M = {1, . . . , N ∧ J} which is the same as in
Section 2.3. The theoretical optimal choice of m is defined by

m
(2)
th = argmin

m∈M
{‖fβ,m − fβ‖2 + V (f̂J

β,m)} = argmin
m∈M

{−‖fβ,m‖2 + V (f̂J
β,m)}

where V (f̂J
β,m) := E[‖f̂J

β,m − fβ,m‖2] ≤ Bǫ
m∆
πN . As fβ is unknown, so are ‖fβ,m‖2 and V (f̂J

β,m).

Therefore the value m
(2)
th must be estimated, and we consider

m̂(2) = argmin
m∈M

{−‖f̂J
β,m‖2 + pen(2)(m)} = argmin

m∈M
{γ(f̂J

β,m) + pen(2)(m)} (16)
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with pen(2) a penalty function proportional to the variance term obtained in the bound (15):

pen(2)(m) = κ(2)Bǫ
∆m

N

where κ(2) is a numerical constant calibrated in Section 4. As before the penalty function is
bounded. In this case the data-driven choice of m uses less observations than the estimator defined
by (6): NJ observations are used in the first case, only 2N in the second. This method is more
natural to realize the bias-variance trade off than the one set up in Section 2.1. But we can not
set it up for the estimator f̂β,m in a theoretical point of view because of the dependence in m. It
is easier to compute and the oracle risk bound we obtain is as good as the last one (12). In order

to evaluate the order of the L2-risk of the final estimator f̂J
β,m̂(2) we establish the following oracle

inequality.

Theorem 7. Let assumption (A1) and (A2) hold. Construct an estimator of fβ of the form (13)
and choose m̂(2) according to (16). Then, there exist two constants C1 and C2 such that

E[‖f̂J
β,m̂(2) − fβ‖2 ≤ C2 inf

m∈M
(‖fβ,m − fβ‖2 + pen(2)(m)) +

C1

N
.

The constant C2 is a numerical constant as soon as κ(2) is fixed, and C1 depends on Bǫ, ∆, ‖fβ‖.
Similarly to Theorem 3, this oracle inequality is a non-asymptotic result and is true for all N .
The choice m̂(2) achieves automatically the bias penalty trade-off. It is worth stressing that the
penalization procedure used to compute f̂J

β,m̂(2) is simpler and faster than the selection method

used for f̂β,m̂(1) in Section 2.3. Thus, we shall check that its practical performances remain good
even if the number of observations used here is much more limited.

3 Comparisons with previous results

In this section, estimators f̂β,m and f̂J
β,m are compared with the estimator proposed in Comte and

Samson (2012). Their study is led in the same context. Thus we can compare the construction,
the penalty order and theoretical results. Let us introduce the estimator in Comte and Samson
(2012) denoted by f̃β,m, for any real-value x

f̃β,m(x) =
2

NJ

N∑

k=1

J/2∑

j=1

1

2π

∫ πm

−πm

e−iux eiuUk,j

|f∗
ǫ (

u
∆ )|2 du (17)

with for k ∈ {1, . . . , N}, j ∈ {1, . . . , J/2} the random variables defined as

Uk,j :=
Yk,2j − Yk,2j−1

∆
.

We first compare the construction. This estimator is computed by deconvolution method as the
two estimators presented in this paper. The main difference is the average over j appearing in
the definition (17). Through this manipulation, this estimator uses all the observations even for a
fixed m. The aim of the authors by averaging over j was to improve the variance. Then note that
the parameter ∆ appears (alone) in the denominator of the estimator. This forbids one to take a

∆ too small. For example if the noise is Gaussian 1/|f∗
ǫ (

u
∆ )|2 = eσ

2
ǫu

2/∆2

can become very large
as soon as ∆ < 1. Another remark is that the cut-off πm is independent of the observations as it
is the case for f̂J

β,m. In our work the cut-off is m∆. We choose ∆ instead of π in order to simplify
the calculation.

In a second time we compare the adaptive procedures. The cut-off πm is selected as the
minimizer of a penalized contrast, as it is the case for the estimator f̂J

β,m. The chosen penalty
is composed of two terms, when we have only one. The first term is m/N and the second term
is 1/(NJ) multiplied with an integrative term depending on m, for which assumptions on fǫ are
needed to determinate the order. On the contrary, for both of our estimators, the penalty functions
have the order m/N and are explicit. They are thus simpler. Finally an oracle theorem is obtained
in Comte and Samson (2012) assuming the noise is ordinary smooth. This assumption is strong
and needed to bound the variance term, and to obtain a MISE order. However, they obtain the
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optimal rate of convergence of deconvolution cases (in minimax sense Fan (1991)), which is rather
slow. In the present work we follow a different strategy aiming to reduce directly the effect of the
noise instead of reducing the variance order. Thanks to this approach, no assumption on the noise
regularity is needed to obtain Theorems 3, and 7. Furthermore, the obtained rates of convergence
are similar to those obtained in the case of density estimation with direct observations.

Furthermore, as already said, estimator f̃β,m given by equation (17) uses all the available obser-

vations while, the two new estimators f̂β,m (when m is fixed) and f̂J
β,m use only 2N observations

for their construction. However for the data-driven selection we need only 2N observations to
compute m̂(2) whereas we need NJ for m̂(1).

Nevertheless, we can define a field of design for each estimator. At first, note that it is possible
to compute f̂β,m when ∆ < 1, while this does not seem reasonable with f̃β,m. Then, estimator

f̂J
β,m given by (13) should benefit from a large total time of observations J∆. Thus, when J is

small we should prefer using f̂β,m to f̃β,m if all the observations are available. When J is large

and ∆ is small both f̂J
β,m and f̂β,m should be efficient. And when only the first and the last time

of observation are available we use f̂J
β,m. However if J is large and ∆ not to small we would prefer

f̃β,m.

4 Numerical illustration

4.1 Implementation

In this part we implement the three estimators f̂β,m, f̂J
β,m, and f̃β,m in order to compare their

performances on simulations. We try different scenarios: different designs for β, α, ǫ (ordinary
smooth and super smooth) and different values of the parameters J , ∆, N , to observe the behavior
of each estimator. First we consider the case of known noise density. We consider simulated data
according to model (1). For β we choose the distributions:

• Gaussian N (0, 1)

• mixed Gaussian with 0.3N (−1, 1/16) + 0.7N (1, 1/16)

• Gamma Γ(25, 1/25)× 5

• mixed Gamma (0.3Γ(2, 1/2) + 0.7Γ(20, 1/5))× (1/
√
3)

for α:

• Gaussian N (0, 1)

• Gamma Γ(25, 1/25)× 5

for ǫ:

• Gaussian N (0, σǫ
2) with σǫ = 1/4 and 1/2

• Laplace ǫ = σǫ × Y with Y standard Laplace distribution: fY (y) = (1/
√
2) exp(−

√
2|x|).

We choose the same distributions as in Comte and Samson (2012) in order to compare our
results to theirs. These densities are all associated with variance one. Each estimation calls for
Riemann Sums to compute the integrals. They appear in the estimators and in the quantities Fǫ,
Bǫ. We choose a thin discretization of the interval by taking 200 points.

Then we need to calibrate the penalty constants κ̃, κ(1), κ(2). We refer to Comte and Samson
(2012) for the formula of the penalty of estimator f̃ and we denote by κ̃ the associated constant.
Classically, the constants κ̃, κ(1), κ(2) are fixed thanks to preliminary simulation experiments.
Different cases of function fβ have been investigated with different parameter values, and a large
number of repetitions. Comparing the MISE obtained as functions of the constants κ̃, κ(1), κ(2)

yields to select values making a good compromise over all experiences.
Finally for f̂β,m we choose κ(1) = 1, for f̂J

β,m: κ(2) = 1, and for f̃β,m we choose κ̃ = 6.

In Section 4.3 we consider that the noise density is unknown, and the numerical results are
presented. These new estimators are established in Section 6.8.
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4.2 Numerical simulation results

All the designs discussed in Section 4.1 produce the same kind of results, thus we only present the
case β Gaussian and mixed Gaussian, with α, ǫ Gaussian.

First we investigate the results on graphs. Figures 1, 2, and 3, represent two cases: on the left
β is Gaussian, on the right β is mixed Gaussian. Figure 1 compares the estimator f̂β,m̂(1) (the bold

red line), and all the estimators of the collection f̂β,m (in coloured dashed lines), with the true
density of β. We can see that the performance of the selection procedure is visually satisfying. Fig-
ure 2 represents 10 final estimators f̂J

β,m̂(2) (green dotted lines) versus the true density of β. This

figure ensures the stability of the estimation procedure. Indeed the beam of estimators is really
narrow. Figures 3 and 4 compare the three estimators for different values of ∆. On Figure 3 we see
that estimators are really close to each other and close to the true density fβ . Figure 4 illustrates

the role of the parameter ∆. Indeed, due to its construction, estimator f̃β,m of Comte and Sam-
son (2012) defined by (17) is more sensitive than the others to a small ∆, which is clear on Figure 4.

During this study we also observe differences between estimators when σǫ increases, especially
in the case of a bimodal density fβ . This highlights the role of the noise variance. Estimator f̂J

is the most stable with respect to the variance effects.

Finally we compare empirical MISE (×100) of the three estimators. Results are presented in
Table 1 as a function of J,N and of the distribution of β. One can notice that the three estimators
are really close and seem very competitive. For example, estimator f̂β,m has the smallest MISE for
J = 6, 20 and β Gaussian with σǫ = 1/4. Besides, for J = 6 the two new estimators obtain smaller

MISE than the previous estimator f̃β,m. The influence of N is clear: the larger N the smaller the
MISE. The MISE are improved when N = 200, or 2000 whereas for N = 20 especially when β
is mixed Gaussian the MISE are high. Nevertheless, the role of J is less explicit on this table.
Indeed, when β is Gaussian, the MISE are smaller when J = 6 than when J = 100. However,
when β is mixed Gaussian, the result are a bit better when J increases. Besides, when J = 20 or
100, estimator f̂J

β,m̂ produces the best MISE except for N = 2000. More precisely the results are

better when J = N or if J is of order
√
N , as we noticed in the theoretical study of f̂β,m, than

when J > N .
At the end, in order to highlight the role of ∆ the cases ∆ = 0.5 and ∆ = 1 are surveyed

(Table 2). The estimator f̃β,m was expected to be the most sensitive to this change. Table 2 shows

that for ∆ = 0.5 and β Gaussian, f̂J
β,m outperforms, and when β is mixed Gaussian, f̂β,m has the

smallest MISE .
Then when ∆ = 1, if β is Gaussian the competition is between f̂J

β,m and f̂β,m, and if β is

mixed Gaussian f̂J
β,m has the smallest MISE (except when N = 2000). Nevertheless, for these

values of ∆, especially when β is mixed Gaussian, the results are not as good as before for the
three estimators. For f̂J

β,m and f̂β,m this may be the consequence of the reduction of the interval of
integration [−m∆,m∆] which becomes smaller than [−m,m] when ∆ < 1 and thus the estimation
may be affected.

4.3 Case of unknown noise density

We briefly consider the case of fǫ unknown. Several papers study the deconvolution method with
unknown noise density from a theoretical point of view: Neumann (1997), Comte and Lacour
(2011), Meister and Neumann (2010), Kappus and Mabon (2014). Here, we plug estimators of
unknown quantities using a transformation of the data adapted from Comte and Samson (2012).

We generalize f̂β,m and f̂J
β,m to unknown fǫ by computing new estimators

̂̂
fβ,m and

̂̂
fJ
β,m (see

Section 6.8 for details). The selection procedures presented in Section 2.3 and 13 are using the
constants Fǫ and Bǫ. These quantities are estimated using relation (30) established in Section
6.8, and we obtain final estimators by applying the previous set up adaptive selection procedure

with plugged estimated quantities. Of course, the new estimator
̂̂
fJ
β,m requires that intermediate

observations between the first and the last are available.

In Table 3, we compare empirical MISE of
̂̂
fβ,m,

̂̂
fJ
β,m and

˜̃
fβ,m built in Comte and Samson (2012),

as a function of J,N and the distribution of β. The same comments as for Table 1 apply here.
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Figure 1: The black bold line is the true density of β: Gaussian on the left, mixed Gaussian on the
right. The colored dashed lines are the proposed estimators f̂β,m, the red bold line is the selected

estimator f̂β,m̂(1) , with N = 500, J = 10, ∆ = 2, σǫ = 0.25

Figure 2: The black bold line is the true density of β: Gaussian on the left, mixed Gaussian on the
right. The green dotted lines: 10 estimators f̂J

β,m̂(2) with N = 500, J = 6, ∆ = 2, σǫ = 0.25

Figure 3: The black line is the true density of β: Gaussian on the left, mixed Gaussian on the right.
The green dashed line is f̃β,m̃, the red thin dotted line is f̂β,m̂(1) , the thick blue dotted line is f̂J

β,m̂(2) ,

N = 500, J = 6, ∆ = 2, σǫ = 0.25
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Figure 4: The black bold line is the true density of β: mixed Gaussian. The green dashed line is f̃β,m̃,

the red thin dotted line is f̂β,m̂(1) , the thick blue dotted line is f̂J
β,m̂(2) , N = 500, J = 6, σǫ = 0.5. On

the left ∆ = 1, on the right ∆ = 3

Table 1: Empirical MISE (×100) computed from 100 simulated data sets with α, ǫ Gaussian, and
∆ = 2 when fǫ is known

σǫ = 1/4 σǫ = 1/2
Estimator J distribution of β N = 20 N = 200 N = 20 N = 200 N = 2000

f̃β,m 6 Gaussian 5.08 0.47 6.78 0.55 0.04

f̂β,m 6 Gaussian 1.94 0.24 4.21 0.30 0.11

f̂J
β,m 6 Gaussian 2.27 0.29 2.88 0.32 0.03

f̃β,m 6 Mixed Gaussian 30.0 2.40 34.9 6.30 3.04

f̂β,m 6 Mixed Gaussian 30.6 3.51 29.9 4.41 0.37

f̂J
β,m 6 Mixed Gaussian 9.71 2.77 10.8 2.84 2.42

f̃β,m 20 Gaussian 3.71 0.43 4.26 5.74 0.04

f̂β,m 20 Gaussian 1.78 0.29 2.33 4.14 0.11

f̂J
β,m 20 Gaussian 2.44 0.44 2.54 2.76 0.03

f̃β,m 20 Mixed Gaussian 16.1 1.51 21.2 5.75 1.39

f̂β,m 20 Mixed Gaussian 28.8 3.97 29.4 4.10 0.35

f̂J
β,m 20 Mixed Gaussian 10.3 1.24 10.0 1.17 0.33

f̃β,m 100 Gaussian 3.83 0.36 12.9 0.35 0.53

f̂β,m 100 Gaussian 4.62 2.61 31.3 0.91 0.51

f̂J
β,m 100 Gaussian 2.73 0.27 9.97 0.30 2.22

f̃β,m 100 Mixed Gaussian 12.4 1.30 14.2 3.28 0.56

f̂β,m 100 Mixed Gaussian 29.0 3.67 31.0 4.10 0.40

f̂J
β,m 100 Mixed Gaussian 10.1 1.20 10.7 1.24 0.36

11



Table 2: Empirical MISE (×100) computed from 100 simulated data sets with α, ǫ Gaussian, when
fǫ is known, J = 6

σǫ = 1/4 σǫ = 1/2
Estimator distribution of β ∆ N = 20 N = 200 N = 20 N = 200 N = 2000

f̃β,m Gaussian 0.5 4.60 0.48 6.48 4.11 0.61

f̂β,m Gaussian 0.5 3.62 0.34 7.27 0.86 0.10

f̂J
β,m Gaussian 0.5 2.61 0.24 2.46 0.30 0.10

f̃β,m Mixed Gaussian 0.5 36.5 15.4 29.6 35.6 35.5

f̂β,m Mixed Gaussian 0.5 29.8 37.1 29.8 4.03 0.50

f̂J
β,m Mixed Gaussian 0.5 35.6 32.6 35.9 32.8 32.75

f̃β,m Gaussian 1 5.10 0.52 5.88 0.53 0.06

f̂β,m Gaussian 1 3.83 0.24 4.07 0.24 0.10

f̂J
β,m Gaussian 1 2.65 0.31 2.75 0.31 0.03

f̃β,m Mixed Gaussian 1 31.9 6.76 38.7 23.9 14.1

f̂β,m Mixed Gaussian 1 37.6 6.81 37.6 6.96 2.24

f̂J
β,m Mixed Gaussian 1 9.80 6.80 10.97 6.89 6.48

But we notice, more precisely, that
̂̂
fβ,m has the smallest MISE most of the time when J = 6, 20

and β is Gaussian except for N = 2000, and it is
̂̂
fJ
β,m when β mixed Gaussian.

Similar plots than before were obtained in this case (not shown).

5 Concluding remarks

In summary, in this work we introduce two advanced estimators f̂β,m and f̂J
β,m which are completely

data driven. We obtained convincing theoretical results, validated by numerical study. In particular
the original selection method set up in Section 2.1 leads to an adaptive estimator f̂β,m̂. Furthermore
it satisfies an oracle inequality which shows that it realizes automatically the bias-penalty trade-off
for all N and all regularity of fβ , fǫ. The second estimator f̂J

β,m seems simpler, nevertheless it
produces really good theoretical results and also on simulations, in Section 4.2. It also has the
advantage of using only the first and the last time of observation by opposition with f̂β,m.
The numerical study confirms the theoretical study: we can define a field of designs N , J for each
estimator. In particular, when J is small and all the observations are available we will prefer f̂β,m.
But when J∆ is large, and/or when only the first and the last observations are available, we will

prefer f̂J
β,m.

We may wonder if the estimation of fα could be improved. Moreover as no independence
assumption is set between α and β, the joint distribution of the couple may be estimated over
anisotropic regularity spaces. These two questions will be studied in forgoing works.
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6 Proofs

6.1 Talagrand’s inequality

The following result follows from the Talagrand concentration inequality given in Klein and Rio
(2005) and arguments in Birgé and Massart (1998).
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Table 3: Empirical MISE (×100) computed from 100 simulated data sets with α, ǫ Gaussian, and
∆ = 2, with fǫ unknown and estimated

σǫ = 1/4 σǫ = 1/2
Estimator J distribution of β N = 20 N = 200 N = 20 N = 200 N = 2000
˜̃
fβ,m 6 Gaussian 6.37 0.66 6.37 0.54 0.04
̂̂
fβ,m 6 Gaussian 2.22 0.28 2.32 0.30 0.11
̂̂
fJ
β,m 6 Gaussian 3.14 0.31 3.53 0.29 0.04

˜̃
fβ,m 6 mixed Gaussian 25.7 2.75 35.5 6.61 3.78
̂̂
fβ,m 6 mixed Gaussian 30.4 3.98 29.8 3.60 0.38
̂̂
fJ
β,m 6 mixed Gaussian 10.3 1.23 10.3 1.36 0.17

˜̃
fβ,m 20 Gaussian 4.32 0.41 4.16 0.40 0.04
̂̂
fβ,m 20 Gaussian 1.93 0.25 2.09 0.26 0.11
̂̂
fJ
β,m 20 Gaussian 2.57 0.30 2.12 0.26 0.04

˜̃
fβ,m 20 mixed Gaussian 17.5 1.70 27.2 6.12 3.50
̂̂
fβ,m 20 mixed Gaussian 31.1 4.02 28.8 4.13 0.17
̂̂
fJ
β,m 20 mixed Gaussian 9.68 1.29 10.2 1.26 0.15

˜̃
fβ,m 100 Gaussian 3.62 0.38 3.27 0.41 0.38
̂̂
fβ,m 100 Gaussian 6.62 2.91 5.46 0.74 0.73
̂̂
fJ
β,m 100 Gaussian 2.136 0.32 2.314 0.33 0.28

˜̃
fβ,m 100 mixed Gaussian 13.4 1.16 23.3 5.95 3.50
̂̂
fβ,m 100 mixed Gaussian 27.3 3.51 30.2 4.00 0.23
̂̂
fJ
β,m 100 mixed Gaussian 10.6 1.10 10.7 1.26 0.14
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Proposition 8. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,N} a family of real independent random variables. One defines, for all f ∈ F ,

νN (f) =
1

N

N∑

i=1

(f(Xi)− E[f(Xi)]).

Supposing there are three positive constants M , H and v such that sup
f∈F

‖f‖∞ ≤ M ,

E[sup
f∈F

|νNf |] ≤ H, and sup
f∈F

1
N

∑N
i=1 Var(f(Xi)) ≤ v, then for all α > 0,

E

[(
sup
f∈F

|νN (f)|2 − 2(1 + 2α)H2

)

+

]
≤ 4

K1

(
v

N
exp

(
−K1α

NH2

v

)

+
49M2

K1C2(α)N2
exp

(
−
√
2K1C(α)

√
α

7

NH

M

))

with C(α) = (
√
1 + α− 1) ∧ 1, and K1 = 1

6 .

6.2 Proof of Proposition 1

The MISE of f̂β,m is defined by E[‖f̂β,m−fβ‖2] = ‖E[f̂β,m]−fβ‖2+E[‖f̂β,m−E[f̂β,m]‖2]. First, ac-

cording to the definition of fβ,m, f̂β,m is an unbiased estimator of fβ,m, thus the squared integrated

bias term is ‖E[f̂β,m]− fβ‖2 = ‖fβ,m − fβ‖2. But, for all x ∈ R:

fβ(x)− E(f̂β,m(x)) =
1

2π

∫

R

e−iux(f∗
β(u)− f∗

β,m(u))du =
1

2π

∫

|u|≥m∆

e−iuxf∗
β(u)du .

We obtain with Plancherel-Parserval’s theorem

‖fβ − fβ,m‖2 =
1

2π

∫

|u|≥m∆

|f∗
β(u)|2du .

We study now the term of variance V (f̂β,m) = ‖E[f̂β,m − E(f̂β,m)]‖2 = E[‖f̂β,m − fβ,m‖2]:

‖f̂β,m − fβ,m‖2 = ‖ 1

2π

∫ m∆

−m∆

e−iux
f̂∗
Zm

(u)− f∗
Zm

(u)

|f∗
ǫ (

u
m∆ )|2 du‖2= 1

2π

∫ m∆

−m∆

∣∣∣∣∣
f̂∗
Zm

(u)− f∗
Zm

(u)

|f∗
ǫ (

u
m∆ )|2

∣∣∣∣∣

2

du

=
1

2π

∫ m∆

−m∆

∣∣∣∣∣
1

N

N∑

k=1

eiuZk,m − E[eiuZk,m ]

|f∗
ǫ (

u
m∆ )|2

∣∣∣∣∣

2

du .

By noticing that the random variables in the last sum are i.i.d, we have

E[‖f̂β,m − fβ,m‖2] =
1

2π

∫ m∆

−m∆

Var

(
1

N

N∑

k=1

eiuZk,m

|f∗
ǫ (

u
m∆ )|2

)
du =

1

2π

∫ m∆

−m∆

1

N

Var(eiuZk,m)

|f∗
ǫ (

u
m∆ )|4 du

≤ 1

2πN

∫ m∆

−m∆

du

|f∗
ǫ (

u
m∆ )|4 = Fǫ

m∆

2πN
. �

6.3 Notations

We define
Sm = {t ∈ L2, supp(t∗) = [−m∆,m∆]}

Bm,m′ = {t ∈ Sm∨m′ , ‖t‖ = 1}
and for t ∈ Sm:

φj
t (x) =

1

2π

∫
t∗(−u)

eiux

|f∗
ǫ (

u
j∆ )|2 du. (18)
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Then we define the empirical contrast for an estimator f̂ of f , for t ∈ Sm

ν(t) =
1

2π
< t∗, (f̂m − fm)∗ > . (19)

In order to make the reading easier we suppress the subscript β, and the exponents (1) in the
following.

6.4 Proof of Theorem 3

Let us study the term ‖f̂m̂ − f‖2. For all m ∈ M,

‖f̂m̂ − f‖2 ≤
(
‖f̂m̂ − f̂m̂∧m‖+ ‖f̂m̂∧m − f̂m‖+ ‖f̂m − f‖

)2

≤ 3
(
‖f̂m̂ − f̂m̂∧m‖2 + ‖f̂m̂∧m − f̂m‖2 + ‖f̂m − f‖2

)
.

We are going to examine the three terms involved separately. For the first:

‖f̂m̂ − f̂m̂∧m‖2 = ‖f̂m̂ − f̂m‖21{m̂≥m}

= (‖f̂m̂ − f̂m‖2 − pen(m̂))1{m̂≥m} + pen(m̂)1{m̂≥m}

≤ Γ̂m + pen(m̂).

After,

‖f̂m̂∧m − f̂m‖2 = ‖f̂m̂ − f̂m‖21{m̂≤m}

= (‖f̂m̂ − f̂m‖2 − pen(m))1{m̂≤m} + pen(m)1{m̂≤m}

≤ Γ̂m̂ + pen(m),

what gives

‖f̂m̂ − f‖2 ≤ 3
(
Γ̂m̂ + pen(m) + Γ̂m + pen(m̂) + ‖f̂m − f‖2

)

≤ 6( pen(m) + Γ̂m) + 3‖f̂m − f‖2. (20)

Now we study Γ̂m. For j ≥ m, we have

‖f̂j − f̂m‖2 ≤ 3
(
‖f̂j − fj‖2 + ‖fj − fm‖2 + ‖fm − f̂m‖2

)
.

According to Plancherel-Parseval’s theorem

‖fj − fm‖2 =
1

2π
‖f∗

j − f∗
m‖2 =

1

2π

∫

m∆≤|u|≤j∆

|f∗(u)|2du

≤ 1

2π

∫

|u|≥m∆

|f∗(u)|2du = ‖f − fm‖2.

Besides

‖f̂m − f‖2 =
1

2π
‖f̂∗

m − f∗‖2 =
1

2π
‖(f̂∗

m − f∗
m) + (f∗

m − f∗)‖2

= ‖f̂m − fm‖2 + ‖fm − f‖2 .

Thus

‖f̂j − f̂m‖2 ≤ 3(‖f̂j − fj‖2 + ‖f̂m − f‖2).

Finally,

Γ̂m = max
m≤j≤N∧J

(
‖f̂m − f̂j‖2 − pen(j)

)
+

≤ max
m≤j≤N∧J

(
3‖f̂j − fj‖2 + 3‖f̂m − f‖2 − pen(j)

)
+

≤ 3 max
m≤j≤N∧J

(
‖f̂j − fj‖2 −

1

3
pen(j)

)

+

+ 3‖f̂m − f‖2 (21)

15



Finally, gathering (20) and (21) we obtain

‖f̂m̂ − f‖2 ≤ 6

(
3 max
m≤j≤N∧J

(
‖f̂j − fj‖2 −

1

3
pen(j)

)

+

+ 3‖f̂m − f‖2 + pen(m)

)
+ 3‖f̂m − f‖2

≤ 18 max
m≤j≤N∧J

(
‖f̂j − fj‖2 −

1

3
pen(j)

)

+

+ 21‖f̂m − f‖2 + 6pen(m).

The Proposition 1 implies for all m ∈ {1, . . . , N ∧ J},

E[‖f̂m̂ − f‖2] ≤ 18

J∑

j=m

E

[(
‖f̂j − fj‖2 − pen(j)/3

)
+

]
+ 21‖fm − f‖2 + 6 pen(m) +

21∆

2π
Fǫ

m

N

≤ 18

J∑

j=m

E

[(
‖f̂j − fj‖2 − pen(j)/3

)
+

]
+ 21‖fm − f‖2 + (6 +

21

2πκ
)pen(m) (22)

It remains to bound from above the term
∑N∧J

j=m E

[(
‖f̂j − fj‖2 − pen(j)/3

)
+

]
, this is the aim of

Lemma 9.

Lemma 9. There exists a constant C” such that for all m ∈ M,

N∧J∑

j=m

E

[(
‖f̂j − fj‖2 − pen(j)/3

)
+

]
≤ C”

N
.

Lemma 9 and inequality (22) imply that, for all m ∈ M

E[‖f̂m̂ − f‖2] ≤ 21‖fm − f‖2 + (6 +
21

2πκ
) pen(m) + 18

C”

N
.

Thus, in particular

E[‖f̂m̂ − f‖2] ≤ C inf
m∈M

(‖fm − f‖2 + pen(m)) +
C ′

N

with C and C ′ two constants. �

6.5 Proof of Lemma 9

Consider j ∈ M, and t ∈ Sj , define the empirical contrast:

ν(t) =
1

2π
< t∗, (f̂j − fj)

∗ >

=
1

2π

∫

R

t∗(−u)

(
1

N

N∑

k=1

eiuZk,j

|f∗
ǫ (

u
j∆ )|21[−j∆,j∆](u)− f∗

j (u)

)
du

=
1

2π

1

N

N∑

k=1

∫ j∆

−j∆

t∗(−u)
eiuZk,j − E[eiuZk,j ]

|f∗
ǫ (

u
j∆ )|2 du

=
1

N

N∑

k=1

φj
t (Zk,j)− E[φj

t (Zk,j)].

Let us define Aj = {t ∈ Sj , ‖t‖ = 1}, then ‖f̂j − fj‖2 = sup
t∈Aj

|ν(t)|2. We use Talagrand’s inequality
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(see Proposition 8) to prove the lemma. We study first the upper bound:

sup
t∈Aj

‖φj‖∞ ≤ sup
t∈Aj

1

2π

∫

R

|t∗(u)|1[−j∆,j∆](u)

|f∗
ǫ (

u
j∆ )|2 du

≤ sup
t∈Aj

1

2π

(∫

R

|t∗(u)|2du
)1/2

(∫ j∆

−j∆

1

|f∗
ǫ (

u
j∆ )|4 du

)1/2

≤ sup
t∈Aj

1√
2π

‖t‖
(∫ j∆

−j∆

du

|f∗
ǫ (

u
j∆ )|4

)1/2

≤ 1√
2π

(∫ j∆

−j∆

du

|f∗
ǫ (

u
j∆ )|4

)1/2

=

√
∆

2π

√
jFǫ := M. (23)

Then according to Proposition 1, for all j ∈ M

E[‖f̂j − fj‖2] ≤ Fǫ
j∆

2πN
,

thus

E[ sup
t∈Aj

|ν(t)|2] = E[‖f̂j − fj‖2] ≤ Fǫ
j∆

2πN
:= H2 . (24)

Finally we examine the term:

4π2Varφj
t (Zk,j)) ≤ 4π2E

(
φj
t (Zk,j)φj(Zk,j)

)

≤ E

[(∫ j∆

−j∆

t∗(−u)
eiuZk,j

|f∗
ǫ (

u
j∆ )|2 du

)(∫ j∆

−j∆

t∗(−v)
eivZk,j

|f∗
ǫ (

v
j∆ )|2 dv

)]

= E

[(∫ j∆

−j∆

t∗(−u)
eiuZk,j

|f∗
ǫ (

u
j∆ )|2 du

)(∫ j∆

−j∆

t∗(v)
e−ivZk,j

|f∗
ǫ (

v
j∆ )|2 dv

)]

= E

[∫ j∆

−j∆

∫ j∆

−j∆

t∗(−u)t∗(v)
ei(u−v)Zk,j

|f∗
ǫ (

u
j∆ )|2|f∗

ǫ (
v
j∆ )|2 dudv

]
.

Yet E(ei(u−v)Zk,j ) = f∗
Z(u− v) = f∗(u− v)|f∗

ǫ (
u−v
j∆ )|2, with Fubini’s Theorem, it implies

4π2Var(φj(Zk,j)) ≤
∫ j∆

−j∆

∫ j∆

−j∆

t∗(−u)t∗(v)
|f∗

ǫ (
u−v
j∆ )|2

|f∗
ǫ (

u
j∆ )|2|f∗

ǫ (
v
j∆ )|2 f

∗(u− v)dudv.

Under assumption (A2) we obtain:

sup
u,v∈[−j∆,j∆]

∣∣∣∣∣
f∗
ǫ (

u−v
j∆ )

f∗
ǫ (

u
j∆ )f∗

ǫ (
v
j∆ )

∣∣∣∣∣

2

= sup
x,y∈[−1,1]

∣∣∣∣
f∗
ǫ (x− y)

f∗
ǫ (x)f

∗
ǫ (y)

∣∣∣∣
2

≤ sup
x,y∈[−1,1]

∣∣∣∣
1

f∗
ǫ (x)f

∗
ǫ (y)

∣∣∣∣
2

≤ sup
x∈[−1,1]

∣∣∣∣
1

f∗
ǫ (x)

∣∣∣∣
4

:= C2 < +∞.

thus

4π2 sup
t∈Aj

1

N

N∑

k=1

Var(φj(Zj,k)) ≤ sup
t∈Aj

∫ j∆

−j∆

∫ j∆

−j∆

C2|t∗(−u)t∗(v)f∗(u− v)|dudv

≤
C.S

sup
t∈Aj

2πC2‖t‖2
(∫ j∆

−j∆

∫ j∆

−j∆

|f∗(u− v)|2dudv
)1/2

≤ 2πC2

(∫ 2j∆

−2j∆

∫ j∆

−j∆

|f∗(z)|2dudz
)1/2

≤ C24π
√
π∆‖f‖

√
j := 4π2v,
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with

v :=
C2‖f‖√

π

√
j∆. (25)

We achieve with the Talagrand’s theorem, gathering the bounds (23), (24), (25), for α = 1/2,

E

[(
‖f̂j − fj‖2 − 4H2

)
+

]
≤ 4

K1

(
C2‖f‖√

π

√
j∆

N
exp

(
−K1

4

Fǫ√
πC2‖f‖

√
j∆

)

+
49∆Fǫ

2πK1C2(1/2)

j

N2
exp

(
−K1C(1/2)

7
√
2

√
N

))

and

E

[(
‖f̂j − fj‖2 − 4H2

)
+

]
≤ C1C

2‖f‖
√
∆

√
j

N
exp

(
−C2

Fǫ

√
∆

C2‖f‖
√
j

)
+ C3Fǫ∆

j

N2
exp

(
−C4

√
N
)

where Ci are positive numerical constants. Then we sum this inequality if κ ≥ 24/π

J∑

j=m

E

(
‖f̂j − fj‖2 − pen(j)/3

)
+
≤ ∑J

j=m

(
C1C

2‖f‖
√
∆

√
j

N
exp

(
−C2

Fǫ

√
∆

C2‖f‖
√

j

)

+ C3Fǫ∆
j

N2
exp

(
−C4

√
N
))

We remark that 1 ≤ j ≤ N ∧ J implies:

N∧J∑

j=m

E

[(
‖f̂j − fj‖2 − pen(j)/3

)
+

]
≤ C1C

2‖f‖
√
∆

N

+∞∑

j=1

√
je

−
(
C2

Fǫ
√

∆

C2‖f‖

)√
j

+
C3Fǫ∆

N2

+∞∑

j=1

je−C4
√
j .

The sum
∑+∞

j=0 je
−C

√
j converges ∀C > 0, there exists a constant C” such as

18

N∧J∑

j=m

E

(
‖f̂j − fj‖2 − pen(j)/3

)
+

≤ C”

N
. �

6.6 Proof of Theorem 7

We also omit the subscript β, and the exponents (2) in the following.

For t ∈ Sm, and m ∈ M, we consider the contrast γ (independent on m)

γ(t) = ‖t‖2 − 2

N

N∑

k=1

1

2π

∫
t∗(−u)

eiuZk,J

|f∗
ǫ (

u
J∆ )|2 du

= ‖t‖2 − 2

N

N∑

k=1

φJ
t (Zk,J)

= ‖t‖2 − 2 < t, f̂J
m >= ‖t− f̂J

m‖2 − ‖f̂J
m‖2.

Obviously γ(f̂J
m) = −‖f̂J

m‖2. We define

ν(t) :=
1

2π
< t∗, (f̂J

m − fm)∗ >=
1

N

N∑

k=1

φJ
t (Zk,J)− E[φJ

t (Zk,J)]

then
(γ(t)− ‖t− f‖2)− (γ(s)− ‖s− f‖2) = −2ν(t− s) (26)
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Thanks to the definition (16) of m̂: γ(f̂J
m̂) + pen(m̂) ≤ γ(fm) + pen(m). Using the equation (26)

we obtain
‖f̂J

m̂ − f‖2 ≤ ‖fm − f‖2 + 2ν(f̂J
m̂ − fm) + pen(m)− pen(m̂).

Let us remark that

ν(f̂J
m̂ − fm) = ‖f̂J

m̂ − fm‖ν
(

f̂J
m̂ − fm

‖f̂J
m̂ − fm‖

)
.

This leads us to

‖f̂J
m̂ − f‖2 ≤ ‖fm − f‖2 + 2‖f̂J

m̂ − fm‖ν
(

f̂J
m̂ − fm

‖f̂J
m̂ − fm‖

)
+ pen(m)− pen(m̂)

≤ ‖fm − f‖2 + 2‖f̂J
m̂ − fm‖ sup

t∈Bm,m̂

ν(t) + pen(m)− pen(m̂)

≤ ‖fm − f‖2 + 1

4
‖f̂J

m̂ − fm‖2 + 4 sup
t∈Bm,m̂

ν2(t) + pen(m)− pen(m̂)

≤ 3‖fm − f‖2 + 8 sup
t∈Bm,m̂

ν2(t) + 2pen(m)− 2pen(m̂)

≤ 3‖fm − f‖2 + 4pen(m) + 8[ sup
t∈Bm,m̂

ν2(t)− p(m, m̂)]

≤ 3‖fm − f‖2 + 4pen(m) + 8
∑

m′∈M

(
sup

t∈Bm,m′
ν2(t)− p(m,m′)

)

+

with a function p such that ∀m,m′, 4p(m,m′) ≤ pen(m) + pen(m′).

Lemma 10. There exists a constant C > 0 such that

∑

m′∈M
E

[(
sup

t∈Bm,m′
ν2(t)− p(m,m′)

)

+

]
≤ C

N
.

We conclude that there exist two constants C1, C2 > 0 such that

E[‖f̂m̂ − f‖2] ≤ C1 inf
m∈M

{‖fm − fβ‖2 + pen(m)}+ C2

N
.

6.7 Proof of the Lemma 10

We remind that Bǫ = sup
v∈[−1,1]

1
|f∗

ǫ (v)|4
. For m ∈ M we consider t ∈ Sm. We use Talagrand’s

inequality to demonstrate Lemma 10 similarly to Lemma 9. We get:

M :=

√
∆Bǫm∗

π
, (27)

H :=

√
Bǫ∆m∗

πN
, (28)

and

v =
Bǫ

2‖f‖√
π

√
m∗∆. (29)

According to Talagrand’s inequality, for α = 1/2 there exist four numerical constants A1, A2, A3, A3

such that:

E

[(
sup

t∈Bm,m′
ν2(t)− 4H2

)

+

]
≤ A1 Bǫ

2
√
∆

√
m∗

N
exp

(
−A2

√
∆

2Bǫ‖f‖
√
m∗

)

+ A3∆Bǫ
m∗

N2
exp (−A4

√
N).
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Then we use that 1 ≤ m∗ ≤ N ∧ J , thus for κ ≥ 4/π we obtain there exists a constant C > 0 such
that

∑

m′∈M
E

[(
sup

t∈Bm,m′
ν2(t)− p(m,m′)

)

+

]
≤

+∞∑

m=1

A1Bǫ
2

√
m∆

N
exp

(
−A2

√
m∆

2Bǫ‖f‖

)

+

+∞∑

m=1

A3Bǫ
m∆

N2
exp (−A4

√
m)

≤ C

N

with p(m,m′) = 4Bǫ∆m∗

πN . �

6.8 Estimator with unknown noise density

We compute an estimator of the density fβ when fǫ is unknown, corresponding to (6). We use the
same idea as Comte and Samson (2012). However it is 1/|f∗

ǫ (
u

m∆ )|2 which has to be estimated and

not 1/
(
f∗
ǫ (

u
∆ )
)2
. This quantity is more reachable and the noise does not need to be symmetric for

the estimation. In this part we stand assumption (A2) for: (A2’) fǫ is unknown and f∗
ǫ 6= 0.

We consider the random variables

Ak := ∆(3Zk,3 − 2Zk,2 − Zk,1) = ǫk,3 − ǫk,2 − ǫk,1 + ǫk,0.

These new variables are i.i.d. with a density fA. Then we have

∀u ∈ R, f∗
A(u) = E[eiAu] = |f∗

ǫ (u)|4 = E[cos(Au)].

This leads to the unbiased empirical estimator of |f∗
ǫ |4:

|̂f∗
ǫ |4(u) =

1

N

N∑

k=1

cos(Aku).

Nevertheless, this function can reach zero and has to be inverted. We define a truncated estimator
following Comte and Lacour (2011) and we propose the estimator of |1/f∗

ǫ |2 following:

1

|̃f∗
ǫ |2(u)

=
1|̂f∗

ǫ |4(u)≥N−1/2

[|̂f∗
ǫ |4(u)]1/2

. (30)

The new estimator of fβ is

∀x ∈ R,
̂̂
fβ,m(x) =

1

2π

∫ m∆

−m∆

e−iux 1

N

N∑

k=1

eiuZk,m

|̃f∗
ǫ |2( u

m∆ )
du. (31)

Proposition 11. If m > 3, and denoting Kǫ := 5Fǫ + 68Gǫ, where Gǫ :=
∫ 1

−1
du

|f∗
ǫ (u)|8

, under

(A1)-(A2’) we have

E[‖ ̂̂fβ,m − fβ‖2] ≤ ‖fβ,m − fβ‖2 +Kǫ
m∆

πN
.

Proof
We denote

R(u) :=
1

|̃f∗
ǫ |2(u)

− 1

|f∗
ǫ (u)|2

which is the subject of the following lemma. This lemma is an extension of the Neumann’s Lemma
(Neumann (1997)), demonstrated in Comte and Samson (2012) with a symmetric noise. The proof
can be straightforwardly adapted and thus is omitted.

Lemma 12.

E



(

1

|̃f∗
ǫ |2(u)

− 1

|f∗
ǫ (u)|2

)2

 ≤ 2

|f∗
ǫ (u)|4

∧ 3N−1/2

|f∗
ǫ (u)|8

∧ 34N−1

|f∗
ǫ (u)|12

.
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We notice that R(u) and f̂∗
Zm

= 1/N
∑N

k=1 e
iuZk,m are independent as soon as m > 3. Let us

decompose the norm: ‖ ̂̂fβ,m − fβ‖2.

‖ ̂̂fβ,m − fβ‖2 = ‖ ̂̂fβ,m − fβ,m‖2 + ‖fβ,m − fβ‖2 ≤ 2‖ ̂̂fβ,m − f̂β,m‖2 + 2‖f̂β,m − fβ,m‖2 + ‖fβ,m − fβ‖2.

The first member of the right hand side is simplified by Plancherel-Parseval’s Theorem

‖ ̂̂fβ,m − f̂βm
‖2 =

∥∥∥∥∥
1

2π

∫ m∆

−m∆

e−iuxf̂∗
Zm

(u)R
( u

m∆

)
du

∥∥∥∥∥

2

=
1

2π

∫ m∆

−m∆

|f̂∗
Zm

(u)R
( u

m∆

)
|2du

≤ 1

π

∫ m∆

−m∆

|f̂∗
Zm

(u)− f∗
Zm

(u)|2|R
( u

m∆

)
|2du

+
1

π

∫ m∆

−m∆

|f∗
β(u)|2|f∗

ǫ

( u

m∆

)
|4|R

( u

m∆

)
|2du

note that

E

[
|f̂∗

Zm
(u)− f∗

Zm
(u)|2

]
= Var

(
f̂∗
Zm

(u)− f∗
Zm

(u)
)
= Var

(
1

N

N∑

k=1

eiuZk,m

)
≤ 1

N
.

Then, using Lemma 12, we obtain

E[‖ ̂̂fβ,m − f̂β,m‖2] ≤ 1

π

∫ m∆

−m∆

1

N
E[|R

( u

m∆

)
|2]du+

1

π

∫ m∆

−m∆

|f∗
β(u)|2

3N−1/2

|f∗
ǫ (

u
m∆ )|4 ∧ 34N−1

|f∗
ǫ (

u
m∆ )|8 du

≤ 2

πN

∫ m∆

−m∆

1

|f∗
ǫ (

u
m∆ )|4 du+

1

π

(
3√
N

∫ m∆

−m∆

|f∗
β(u)|2

|f∗
ǫ (

u
m∆ )|4 du

)
∧
(
34

N

∫ m∆

−m∆

|f∗
β(u)|2

|f∗
ǫ (

u
m∆ )|8 du

)

≤ 2m∆

πN
Fǫ + 34

m∆

πN
Gǫ.

Finally, using Proposition 1, it yields

E[‖ ̂̂fβ,m − fβ‖2] ≤ ‖fβ,m − fβ‖2 +
m∆

πN
Fǫ + 4

m∆

πN
Fǫ + 68

m∆

πN
Gǫ. �

The same construction can be used to propose a version of f̂J
β,m with estimated noise density.

Adopting the same arguments we consider then the new estimator of fβ

∀x ∈ R,
̂̂
fJ
β,m(x) =

1

2π

∫ ∆m

−∆m

e−iux 1

N

N∑

k=1

eiuZk,J

|̃f∗
ǫ |2( u

J∆ )
du. (32)

Using Corollary 6 and Lemma 12 we obtain the following risk bound.

Proposition 13. If 3 < m ≤ N ∧J , and denoting Dǫ := 4Bǫ+136Cǫ, where Cǫ := sup
u∈[−1,1]

1
|f∗

ǫ (u)|8
,

under (A1)-(A2’) we have

E[‖ ̂̂fβ,m − fβ‖2] ≤ ‖fβ,m − fβ‖2 +Dǫ
m∆

πN
.
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Meister, A. and Neumann, M. H. (2010). Deconvolution from non-standard error densities under
replicated measurements. Statist. Sinica 20, 1609–1636.

Neumann, M. (1997). On the effect of estimating the error density in nonparametric deconvolution.
J. Nonparametr. Statist. 7, 307–330.

Papageorgiou, G. and Hinde, J. (2012). Multivariate generalized linear mixed models with semi-
nonparametric and smooth nonparametric random effects densities. Stat. Comput. 22, 79–92.

Pensky, M. and Vidakovic, B. (1999). Adaptative wavelet estimator for nonparametric density
deconvolution. Ann. Statist. 27, 2033–2053.

Pinheiro, J. and Bates, D. (2000). Mixed-effect models in S and Splus. Springer-Verlag, New York.

Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8,
1348–1360.
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