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Abstract

Heterogeneous knowledge sources that model speech only

at certain time frames are difficult to incorporate into speech

recognition, given standard multimodal fusion techniques. In

this work, we present a new framework for the integration of

this sporadic knowledge into standard HMM-based ASR. In a

first step, each knowledge source is mapped onto a logarithmic

score by using a sigmoid transfer function. Theses scores are

then combined with the standard acoustic models by weighted

linear combination. Speech recognition experiments with broad

phonetic knowledge sources on a broadcast news transcription

task show improved recognition results, given knowledge that

provides complementary information for the ASR system.

Index Terms: multimodal fusion, landmark-driven ASR, event-

based speech recognition

1. Introduction

Multimedia data in the form of broadcasts, podcasts as well

as audio-visual content present difficult challenges for state-of-

the art hidden Markov model (HMM) based automatic speech

recognition (ASR), since ASR systems are still sensitive to-

wards unseen speaking styles and changes in acoustic condi-

tions. To improve acoustic modeling of HMM-based ASR,

many studies advocate the incorporation of complementary

knowledge sources into standard ASR to achieve improved

recognition accuracy or robustness. Examples of such com-

plementary knowledge sources are phonetic models, that aim at

exploiting different features and modeling techniques motivated

by phonological studies, to build reliable and sometimes highly

specialized detectors for phonetic classes [1, 2, 3, 4]. Another

example is audio-visual ASR, where, if available, the visual

modality is added to the existing acoustic information, to ben-

efit from the fact that acoustically similar speech classes might

correspond to very different visual counterparts (visemes), that

are reliable to detect [5]. While it has often been argued that

it is desirable for each knowledge source to rely on individ-

ual features and modeling techniques, the common architecture

of state-of-the-art ASR has become a bottleneck for seamlessly

integrating heterogeneous knowledge into speech recognition.

Consequently, external knowledge sources often rely on rather

homogeneous standard modeling techniques, like frame-based

Gaussian mixture models, that are integrated with conventional

feature or decision fusion techniques inside the given architec-

ture of HMM-based ASR.

In this paper, we present a new framework for integrating

heterogeneous sporadic knowledge sources into HMM-based

ASR, with the term sporadic referring to the fact that each

knowledge is only defined at certain time frames, often referred

to as events (e.g., [1, 6]) or landmarks (e.g., [7, 8]). Indeed,

many acoustic or visual cues for phonetic events or visemes are

naturally modeled as a sequence of discrete events, rather than

continous values, which makes their integration into ASR very

difficult, given common multimodal fusion techniques. In our

framework, integration of theses knowledge sources into stan-

dard HMM-based ASR is performed in two steps: First, we

map each knowledge source onto a logarithmic score, using a

sigmoid transfer function. This allows the integration of knowl-

edge sources of different scaling, that appear asynchronously

and do model arbitrary phonemic classes. In a second step,

the obtained scores are combined with the acoustic scores of

standard HMM-based ASR using weighted linear combination.

These modified acoustic scores are integrated into the Viterbi

decoding of the first pass of a large vocabulary ASR system.

In audio-visual ASR, continuous visual knowledge is of-

ten integrated into ASR via feature-fusion, i.e., concatenating

audio and visual features to train refined acoustic models [9].

This approach is also used for the integration of a burst onset

landmark detector in [2]. Decision fusion at the frame level us-

ing GMMs and HMMs by weighted linear combination of log-

likelihood scores is used for integration of phonetic information

in [10] and for visual information in [11]. Phonetic knowledge

is also integrated into ASR during the rescoring step of multi-

pass ASR [3, 7]. Landmark-based phonetic models have been

used inside alternative probabilistic ASR frameworks [12] and

in [1] statistical-post processing of sporadic phonetic landmarks

resulted in improved detection accuracy.

In the following section we will present our framework in

detail, before presenting speech recognition experiments using

broad phonetic knowledge sources. The paper will conclude

with an outlook on future work.

2. Integration of sporadic knowledge into
ASR

Given a speech utterance with t frames, we consider a sporadic

knowledge source k to be a function xk(t), with xk(t) being de-

fined only for nk frames Txk
= {t1, . . . , tnk

}. Each source is

the result of an external system specialized in detecting a given

set of phonemes Sk, which is a subset of the complete set of

phonemes (including non-speech symbols) P , with Sk ⊂ P . To

integrate this knowledge into triphone-based ASR systems, the

phonemes in Sk have to be mapped to the corresponding states

Ik, which is equally a subset of the complete search space I
(see Figure 2). While the range of xk(t) is arbitrary for each

source k, for example one source could provide a probability

from 0 to 1, while another source might correspond to a score in

the range from −∞ to +∞ or −∞ to 0, we assume a clear cor-

relation between xk(t) and Sk. Assuming positive correlation,

low values for xk(t) are supposed to signal poor confidence in
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the presence of Sk at t, while high values have a very low error

rate, with a more or less sharp transition in-between.

To illustrate such external knowledge sources, we use the

example of integrating phonetic landmark detectors into HMM-

based ASR. Landmark detection usually consists of two steps

(see for example [13]). First, the system detects potential lo-

cations for speech events (landmarks), before acoustic cues in

vicinity of these landmarks are evaluated to estimate the proba-

bility of one or several phonetic classes for each landmark. For

example, vowels can be detected by local maxima in the first

formant frequency and evaluation of additional features around

this landmark can specify the type of vowel. An additional de-

tector might provide landmarks signaling the presence of plo-

sives, by detecting abrupt changes in the signal and studying

several cues, like voice onset time or energy of the burst around

this point (see for example [14]). It is obvious, while the detec-

tion of vowels and plosives can be highly specialized for each

phonetic class, both classes are only defined at very specific

locations Txk
. Furthermore the landmarks for vowels and plo-

sives will be attached with a confidence estimate xk(t) that can-

not be compared with each other, since each class uses different

classification algorithms and features.

With x(t) not being defined for most t, sporadic knowledge

can avoid to model parts of speech with high uncertainty about

the acoustic content, which is a major advantage compared to

HMM-based acoustic modeling. While heterogeneity, i.e., the

fact that the ranges of each xk(t) are very different from each

other, could be overcome by normalization, the sporadic nature

of knowledge sources makes common fusion at the feature or

decision level not feasible any more, since k knowledge sources

cannot be mapped onto a k-dimensional vector at each frame t
(see Figure 3).

In the following, we present a general framework for the in-

tegration of k knowledge sources into the Viterbi decoding of a

HMM-based ASR system. Given k sources xk(t), two steps are

necessary from raw knowledge to knowledge-driven ASR. First,

we map each source xk onto a log-likelihood score log sk, given

a sigmoid transfer function, which parameters are estimated us-

ing cross-entropy as the objective function. In the second step,

these knowledge sources are integrated into the ASR system us-

ing a weighted linear combination of the obtained scores log sk
and the acoustic scores of the ASR system.

2.1. Weighted linear combination of k knowledge sources

Given k knowledge sources, our goal is to modify the acoustic

score s(i, t) for state i ∈ I at frame t according to weighted lin-

ear combination of the log-likelihoods of k knowledge sources

log sk(i, t) and the unweighted log-likelihood of the acoustic

model log sasr(i, t), given the weights wk:

log s(i, t) = log sasr(i, t) +
X

k

wk log sk(i, t) (1)

With log sk(i, t) ≥ 0 and wk ≥ 0, each source k enhances

states i ∈ Ik that are associated with the phonemes in set Sk

(see Figure 2). Evidently, log sk(i, t) = 0 for all states i /∈ Ik

and for all frames t for which the source k is not defined with

t /∈ Txk
. All states i ∈ Ik share the same likelihood-score

log sk(i, t), to which we will refer to as log sk(t).

The next section describes how to map xk(t) onto log sk(t)
for each source, before we discuss determining wk.

log sk(t)

xk(t)

xk

t

log sk

t

Figure 1: Mapping a sporadic knowledge source xk(t) onto

log sk(t).

2.2. Mapping of detection functions onto knowledge scores

Intuitively, log sk(t) should maximize the scores added to the

correct path, i.e., the scores added to frames t where the correct

phoneme actually is a member of Sk, but minimize the error

it will introduce into the system by enhancing the wrong path.

Therefore, our mapping function should result in log sk(t) = 0
for low values of xk(t), but grow according to the confidence

that higher values of xk will correctly indicate Sk. This desired

behavior can be obtained by a sigmoid function with:

log sk (t) =
γk

1 + exp (−αk · xk (t) + βk)
, ∀t ∈ Txk

(2)

αk determines the steepness of the slope of the sigmoid, βk

shifts the sigmoid to its optimal working point and γk is a scal-

ing factor. For example, if a knowledge source k provides a very

reliable knowledge above a certain score βk, γk will be a high

value reflecting the confidence in the correctness of log sk(t)
and a high αk changes the transfer function from a smooth tran-

sition to a step-function-like behavior. Equation 2 maps noisy,

unreliable values onto values very close to zero and rounding

those values to a limited precision results in log sk(t) = 0.

Since log sk(t) = 0 for all t /∈ Txk
, log sk(t) is effectively a

sparse vector and we refer to its non-zero frames as Tsk .

To find the optimal αk, βk and γk, we maximize the cross-

entropy cce(t) between log sk(t) and the correct solution yk(t)
at each frame:

cce (t) = yk(t)
log pk(t)

Nk,1

+ (1− yk(t))
log (1− pk(t))

Nk,0

(3)

yk(t) is a binary vector with yk(t) = 1 if Sk is correct at frame t
and yk(t) = 0 if not. yk(t) is derived from the forced alignment

of the correct utterance using our baseline ASR system. pk(t)
reflects the probability that knowledge source k is present at

frame t. Since some knowledge sources might have a skewed

distribution, we normalize pk(t) by the number of frames Nk,1

that are in Txk
for which yk(t) = 1 and respectively Nk,0 for

which yk(t) = 0.
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log s(i, t) = log sasr(i, t) +
∑

k wk log sk(i, t)

i

t

Figure 2: Integration of knowledge into the speech decoding.

Arrows correspond to the transition probabilities, while the

nodes represent the acoustic scores log s(i, t). The modified

computation of log s(i, t) is displayed for one node highlighted

in grey.

Given the log-likelihood scores of two complementary

classes sk and sk, we use the softmax function to estimate pk(t)
according to:

pk (t) =
exp (log sk (t))

exp (log sk (t)) + exp (log sk (t))
(4)

As a consequence of the facts that all knowledge sources might

model only a subset of P and sporadic knowledge results in

asynchronous landmarks, there is no score log sk(t) estimating

the absence of knowledge source k at frame t. Consequently,

this anti-score log sk(t) always equals 0:

log sk(t) = 0, ∀t (5)

The final optimization problem consists in finding the parame-

ters αk, βk and γk that maximize cce(t) for all frames of the

training data:

Fce,k(αk, βk, γk;xk, yk) =
X

t∈Txk

cce(t) (6)

2.3. Estimation of the combination weights

While the optimized knowledge sources log sk(t) might

achieve low error rates according to Equation 6, it has yet to

be determined if this source represents complementary knowl-

edge to the acoustic models of the ASR system. Therefore, we

use discriminative training to determine the weight wk for each

source k, that adjusts the contribution of source k to the overall

acoustic score according to Equation 1.

Estimating the weights wk of a linear combination of log-

likelihoods is a well studied problem and several discrimination

criteria have been proposed in the literature [15, 11, 10]. In this

paper we use the frame-based maximum mutual information

(MMI) between correct alignment and n competing hypothesis

according to:

cmmi(t) = log s(u(t), t))− log
X

n

exp (log s (ûn(t))) (7)

u(t) is the state sequence obtained by force aligning the cor-

rect solution of an utterance, while ûn(t) corresponds to the

alignment of the n-th hypothesis contained in the n-best out-

put of the ASR system. By maximizing the MMI, the correct

hypothesis will become more likely, while at the same time the

competing hypothesis that do not correspond to the correct path

at frame t will become less likely. In this work, we use only the

best hypothesis as a competing alternative to the correct path,

so that n = 1, which turns the MMI criterion into corrective

training (see [15]). The optimization problem consists then in

finding the weights wk that maximize cmmi(t) over all frames

in T =
T

k
Tsk :

Fmmi(w;u, û, log s) =
X

t∈T

cmmi(t) (8)

3. Experiments

The corpus used in the experiments corresponds to radio broad-

cast news in the French language from the ESTER2 campaign

[16]. The ESTER2 dataset contains broadcast shows with

speech in studio environments (RFI), but also difficult tasks

like debates (Inter) or speech with strong accents (radio TVME

and radio Africa 1). Since we need the correct hypothesis to

generate the correct state sequences u(t) and the aligned n-

best recognition hypothesis ûn(t), we discard every sentence

containing out-of-vocabulary words during training and testing.

During testing, this allows us to assure that finding the correct

path by modifying the acoustic scores during the decoding is not

prevented by missing vocabulary. Additionally, we discard all

telephone speech from the dataset. The estimation of the param-

eters αk, βk, γk and wk are conducted on the ESTER2 develop-

ment set, using only broadcasts shorter than 20 minutes, while

final speech recognition experiments are conducted on the full

ESTER2 test set. The speech recognizer used in this paper is a

two-pass system, trained on the ESTER1 and ESTER2 training

data. The first pass uses word-internal triphones with 32 Gaus-

sians per state and a trigram language model. The second pass

relies on 4-grams and cross-word triphone models. In this pa-

per, we integrate knowledge only in the first pass of our ASR

system to generate improved word graphs for rescoring.

3.1. Phonetic knowledge sources and baseline ASR system

In the experiments, we use broad phonetic classes (BPCs) as

knowledge sources, obtained from the Gaussian mixture mod-

els of a Mel-frequency cepstral coefficients based monophone

GMM classifier. We derive 6 detection functions xk(t) for the

BPCs vowels, nasals, approximants, fricatives, plosives and a

non-speech class. Each BPC at frame t is first scored with the

maximum score among all phonemes of this BPC, before we

perform normalization at each frame t by taking the logarithmic

sum of exponentials for each source k to obtain 6 continuous de-

tection functions. After smoothing we convert these 6 functions

into k = 6 sporadic knowledge sources xk(t) by simple pick-

ing the local maxima for each detection function (see Figure 3).

Since the monophone models were trained on the same training

data like our acoustic models, it is unlikely that they actually

will provide complementary information to the ASR system. To

experiment with more informative knowledge sources, we addi-

tionally create oracle knowledge by adding a bias to the correct

BPC at each frame t before performing normalization. We refer

to this knowledge sources as BPC-oracle-bias, with bias be-

ing the scalar added to the correct BPC. While this knowledge

does not represent homogeneous knowledge in the sense that

it incorporates different modeling and training frameworks, we

discuss the influence of multiplicative and additive scaling of

39

Proceedings of the First Workshop on Speech, Language and Audio in Multimedia (SLAM), Marseille, France, August 22-23, 2013.



knowledge WER [dev] WER [test]

baseline 28.0 31.8

BPC-0 28.0 31.8

BPC-oracle-2 27.7 31.6

BPC-oracle-3 27.4 31.3

BPC-oracle-4 26.8 31.0

Table 1: Word error rates of 4 different broad phonetic knowl-

edge sources and the baseline ASR system on the ESTER2 de-

velopment and test set.

each xk(t) in section 3.5.

3.2. Optimization

Given k knowledge sources xk(t), we have to optimize two ob-

jective functions to obtain the parameters αk, βk and γk for

each knowledge source individually and the weights wk jointly.

We use L-BFGS-B minimization implemented in pythons scipy

library for both objective functions, with the constraints αk > 0
and γk ≥ 0 for Equation 6 and wk ≥ 0 for Equation 8. The

gradients of the objective functions are in both cases calculated

using the symbolic differentiation implemented in the Theano

package [17].

For both objective functions, we could achieve fast conver-

gence by carefully choosing initial values for both optimization

problems. The scaling factor αk should be proportional to the

variance of xk(t), while the median of xk(t) is a good starting

point for βk. For Equation 8, we started with the same value wk

for all knowledge sources k, by choosing the uniform weight

which maximized Equation 8. This lead to Equation 6 need-

ing about 20 iterations to converge, while Equation 8 converged

already after very few iterations. Though we maximized the

weights wk globally, instead of using gradient descent, we did

not observe problems concerning convergence or overfitting.

3.3. Speech Recognition Experiments

After optimizing the mapping from xk(t) to log sk(t) for all

sources k and estimating the weights wk on the development

set, speech recognition experiments were performed for BPC-0,

BPC-oracle-2, BPC-oracle-3 and BPC-oracle-4. Table 1 shows

the word-error-rates (WER) on the ESTER2 development and

test-set along with the WER of the baseline. As expected, BPC-

0 did not provide any new information for the ASR system and

obtained wk = 0 for all BPCs except for the non-speech class.

Consequently this led to no improvement in WER. For the or-

acle BPCs, the WER decreases with increasing the bias of the

knowledge source. For all cases, the improvement on the devel-

opment set is higher than on the test set, as often observed in

discriminative training.

3.4. Evaluation of knowledge sources

Table 2 displays two criteria evaluating the quality of xk(t) and

log sk(t) for the BPCs of three different experiments. AUC
(area under the curve) is a performance measurement derived

from the ROC curve (receiver operator characteristic) and equal

to the probability that a classifier will rank a randomly selected

true BPC higher than a randomly selected false BPC. We use

the AUC to give an indication of the quality of the raw knowl-

edge source xk(t). Additionally, for every knowledge source k,

we calculate a misclassification cost (MI), related to the mutual

information criterion MMI in Equation 7, by calculating the av-

w
av

0

##

0

vo
w

0

na
s

0

ap
p

0

pl
o

0

fr

0

sc
or

e
t

log sk

 

 

## vow nas app plo fr

Figure 3: Spectrogram of the French word Bonjour, uttered at

the beginning of a broadcast show, followed by six sporadic

broad phonetic knowledge sources xk(t) (BPC-oracle2) includ-

ing non-speech (##) and the obtained log likelihoods log sk(t)
at the bottom. All xk(t) are normalized, so that 0 represents the

maximum value. The correct sequence of BPCs is marked in

grey.

erage score added at each frame Tsk , with weighting every cor-

rect frame by 1 and every incorrect frame by −1. This results in

a negative value if a knowledge source introduces more errors

into the decoding than it enhances the correct path.

MI(k, T ) =
1

|T |

X

t∈T

(2yk(t)− 1) log sk(t) (9)

|T | corresponds to the cardinality of the frames T used to cal-

culate MI(k, T ). Both measures are shown on all available

frames Txk
for AUC and Tsk for MI . Additionally, they are

calculated only on those frames T ∗
k where the correct BPC of

the true alignment u(t) differs from the BPC in ûn(t).
Since the acoustic score of the standard ASR system is not

modified (see Equation 1), we expect an improvement of the

WER only if a knowledge source is able to correctly enhance

most of the frames that are not already correctly aligned in the

best recognition hypothesis. Indeed, it can be seen that BPC-

0, while performing relatively well on all frames T , has a be-

low random AUC, with AUC < 0.5, for all BPCs except si-

lence for T ∗. For those BPCs MI is negative, which means

these knowledge sources make it less likely for the decoder to

find the correct path at frames T ∗. Consequently, discrimina-

tive training resulted in wk = 0 for all BPCs except silence, to

prevent the ASR system from degrading. In general, evaluating

the errors of a knowledge source without taking the output of

the speech recognizer into account might be misleading. Only
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BPCs T ## vow nas plo fri app

AUC
Tk 0.84 0.90 0.95 0.93 0.96 0.83

BPC T ∗
k

0.41 0.43 0.37 0.35 0.34 0.46

0
MI

Tk 0.9 0.6 2.1 1.7 2.5 0.8
T ∗
k

0 -0.1 -0.5 -0.5 -0.8 -0.1

BPC
AUC

Tk 0.94 0.96 0.98 0.98 0.99 0.93
oracle T ∗

k
0.67 0.63 0.59 0.61 0.53 0.70

2
MI

Tk 1.9 1.0 3.3 3.0 3.1 1.9
T ∗
k

0.7 0.4 0.5 0.6 -0.2 0.6

BPC
AUC

Tk 0.98 0.99 0.99 0.99 0.99 0.98
oracle T ∗

k
0.87 0.81 0.80 0.83 0.73 0.88

4
MI

Tk 3.0 1.7 4.6 4.2 3.6 3.2
T ∗
k

1.9 1.3 2.1 2.1 0.8 2.0

Table 2: AUC for xk(t) and MI for log sk(t) given differ-

ent knowledge sources and their broad phonetic classes silence

and non-speech (##), vowels, nasals, plosives, fricatives and ap-

proximants. Tk corresponds either to Txk
for AUC or Tsk for

MI .

when knowledge sources xk(t) achieve above random AUC
on T ∗, MI tends to turn positive and the source contributes

to improving the WER, as it is the case for BPC-oracle-2 and

BPC-oracle-4.

3.5. Heterogeneous knowledge

The previous broad phonetic knowledge sources were obtained

using homogeneous monophone GMM classifier and thus did

not represent a collection of heterogeneous knowledge sources.

Assuming heterogeneous knowledge will change xk(t) into

x′
k(t) by multiplicative and additive scaling with x′

k(t) =
akxk(t) + bk, it is evident that given our proposed sigmoid

transfer function, this scaling can be reversed by estimating

the corresponding αk and βk. To avoid the problem of find-

ing an individual initialization for αk and βk to optimize ob-

jective function 6 for each knowledge source, we recommend

to perform a simple normalization, for example mean and vari-

ance normalization for each knowledge source xk(t). All of

our experiments showed, that given proper initialization for αk

and βk, log sk(t) and consequently MI(k, T ) was similar for

different multiplicative and additive scaling factors.

One advantage of our presented framework is the fact that

it is able to deal with selected knowledge sources, that may not

cover the complete set of phonemes P . This allows to design

individual detectors for each phonemic group Sk, without forc-

ing to model the whole set P . Table 3 shows the same speech

recognition experiments as in section 3.3, but with the reduced

set of BPCs vowels, nasals and plosives. It can be seen that the

WER increases compared to using the complete range of BPCs

and the overall impact of the provided knowledge sources is

reduced. This is expected, since the broader the external knowl-

edge sources become, the less impact they will have onto the

speech decoding, even if a knowledge source inserts only few

errors into the decoding.

4. Future Work

Our presented framework showed promising results given dif-

ferent kinds of broad phonetic knowledge sources. Before con-

cluding the paper we want to point out several directions for

future research.

Knowledge sources: Our experiments showed, while the

integration of rather broad speech landmarks into HMM-based

ASR improves the recognition, these landmarks need to be ac-

knowledge WER [dev] WER [test]

baseline 28.0 31.8

BPC-oracle-2 (vow-nas-pl) 27.6 31.8

BPC-oracle-3 (vow-nas-pl) 27.5 31.7

BPC-oracle-4 (vow-nas-pl) 27.3 31.5

Table 3: Word error rates of 3 different broad phonetic knowl-

edge sources, using only the BPCs vowels, nasals and plosives

each time.

curate to be effective. Obviously, efforts have to be made to

research on existing and new knowledge sources that provide

sufficiently accurate landmarks. Furthermore, it is desirable to

experiment with additional feature systems like distinctive fea-

tures, or visual features like visemes.

Objective functions: While the sigmoid transfer function

in connection with the cross-entropy criterion in Equation 6, as

well as the MMI criterion for discriminative training provided

good results, one might consider additional transfer functions

and training criteria.

State dependent weights and context dependency: One

disadvantage of the presented approach is the fact, that it does

not include state or phoneme-dependent weights wi,k for Equa-

tion 1. Enhancing states that are not in Ik for a knowledge

source k might help to reduce the error introduced into the de-

coding, since this might take into account common phonetic

confusions, like it is the case for vowels and approximants.

Additionally, the speech recognition system could be modified

to accommodate for a weight wasr that scales log sasr(i, t) in

Equation 1 to improve the discriminative training criterion.

Given phonetic landmarks, as employed in this paper, the

probability of a speech class Sk at t depends on the context, i.e.,

its preceding and subsequent landmarks. To address this context

dependency, landmarks xk(t) could be rescored by additional

models, that are trained on landmark sequences, like it has been

proposed in [1].

Integration into multi-pass ASR: In the current imple-

mentation we only implemented knowledge-driven ASR in the

first pass of our speech recognizer. To fully benefit from hetero-

geneous knowledge sources, integration into rescoring steps of

multi-pass ASR systems is desirable.

5. Conclusions

The presented framework focused on the integration of het-

erogeneous and sporadic knowledge sources into HMM-based

ASR. It allows the use of individual training and detection algo-

rithms for each knowledge source, that can be developed inde-

pendently from each other. Furthermore, it accounts for event

or landmark based models of speech and does not require the

re-training of existing acoustic models. We used a transfer func-

tion to map each knowledge source onto a logarithmic score, be-

fore the obtained values were combined with the acoustic scores

by weighted linear combination.

While the knowledge sources that improved the WER in

this paper corresponded to oracle knowledge, we conclude from

our experiments that landmarks which achieve an above ran-

dom detection performance on frames where the ASR-system

aligns the wrong path are likely to improve the recognition per-

formance of HMM-based ASR systems.
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