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Abstract: This paper looks at the problem of system identification from non-uniformly sampled
input-output data. It describes how refined instrumental variable estimators can be derived
to directly identify the parameters of continuous-time output error and Box-Jenkins transfer
function models from irregularly sampled data. Monte Carlo simulation analysis is used to
illustrate the properties of the proposed estimation schemes.
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1. INTRODUCTION

Most physical phenomenons are described by continuous-
time (CT) models. Despite this fact, the theory of sys-
tem identification has been developed over many decades
mainly based on discrete-time (DT) models estimated
from sampled data. Sampling provides the link between
CT systems and DT models. When the sampling period
is constant and the underlying CT system is linear and
time-invariant, the parameters of the DT model can be
estimated directly. However, when the sampling is non-
uniform (time-variable), the DT model becomes time-
varying and in this case, the estimation of DT model
parameters becomes more difficult. In this non-uniform
sampling situation, it is then more convenient to model
the system in CT since the associated parameters remain
invariant with respect to the varying sampling period.
This is one major advantage of direct CT model iden-
tification over DT model identification [H. Garnier and
L. Wang (Eds.), 2008]. There are many factors giving rise
to non-uniformly sampling, such as manual measurements,
faults of machine, losses in data transmission, and other
cases where the measurement is not under the control of
experimenter so that equidistantly sampling is practically
impossible.

CT model identification from non-uniformly sampled data
has been recently considered from several different per-
spectives. For example, in Tsang and Billings [1995], the
traditional state-variable filter approach was combined
with the orthogonal least-squares to handle the non-
uniformly sampled data. More recently, in Goodwin and
Cea [2011], a minimum distortion filtering approach is
developed while in Larsson et al. [2007], different derivative
approximations were considered to identify CT ARX type
of models.

This paper looks at two other traditional model structures
and focuses more specifically on the use of optimal instru-
mental variable (IV) methods. One particularly successful
implementation of the optimal IV is known as the refined
IV method [Young and Jakeman, 1980]. Some recent devel-
opments have been recently suggested to handle to SISO
and MISO CT transfer function model identification from
uniformly sampled data [Garnier et al., 2007, Young et al.,
2008]. The aim of this paper is to extend this method to
handle non-uniformly sampled data.

First, we develop a refined IV estimator for CT output
error (COE) models. As it will be recalled the proposed
implementation of the optimal IV solution involves an
adaptive procedure of optimal CT prefilters which have
to be implemented in a digital way. However, in this non-
uniformly sampling situation, special care is required to
implement the CT filtering operations. Since only the
(irregularly) sampled versions of the CT signals are avail-
able, the output of the CT filters can only be computed
by using numerical integration methods or discrete-time
approximations of these CT filters.

In the second part of the paper, we consider the iden-
tification problem of CT Box-Jenkins (BJ) models. This
case is not as easy to handle. Indeed, when the sampling
is constant, an optimal IV procedure has been recently
suggested for identifying hybrid CT BJ models where the
model of the dynamic system is estimated in CT form,
while the associated additive noise model is estimated
as a DT ARMA process [Young et al., 2008]. However
in presence of non-uniformly sampled data, this hybrid
representation cannot anymore be used easily (the noise
model would be time-varying) and therefore full CT mo-
dels for both plant and noise process is required. This
means that estimation methods to CT AR (CAR) or CT
ARMA (CARMA) process have to be included in the IV-
based estimation schemes. In [Larsson and Soéderstrom,



2002], the authors provided a method to identify CAR
process from irregularly sampled data. Here we restrict the
study to the case of a CAR noise model and will use the
method suggested in [Larsson and Séderstrém, 2002]. The
resulting model can therefore be considered as a simplified
CT BJ model.

This paper is organized in the following way. We first
define the parameter estimation problem in Section 2.
In Section 3, the optimal IV solution for the general
model structure is recalled. Then the optimal IV for
OE model identification method including CT filtering
implementation aspects is presented in Section 4. The
optimal IV solution for identifying CT BJ models based on
CAR process estimation is detailed in Section 5. Then, in
Section 6, simulation examples are presented to illustrate
the properties of the proposed methods.

2. PROBLEM STATEMENT

For simplicity of presentation, the formulation and solu-
tion of the CT estimation problem will be restricted to
the case of a linear, single-input, single-output system. It
is assumed that the input u(t) and the noise-free output
x(t) are related by the following constant coefficient, dif-
ferential equation,

x("a)(t) + aj’x("fl)(t) N azax(t) =
beu () + -+ b2 u(t) (1)
where x(V)(t) denotes the ith time derivative of the

continuous-time signal x(t). Equation (1) can also be writ-
ten in the following compact transfer function (TF) form,

z(t) = Go(p)u(t) = ——u(t 2

(t) (p)u(t) Ao(p)() (2)
with

Bo(p) =bip™™ +b7p™ "+ b, (2a)

Ao(p) =p™ +afp™ '+ +al, ng>mny, (2b)

_ d'z(1).

where p is the differential operator, i.e., p'x(t) = FTE
B,(p) and A,(p) are assumed to be coprime; and the
system is asymptotically stable. It is assumed that the
input signal {u(t),t; < t < tx} is applied to the system
and this gives rise to an output signal {z(t),t1 <t < ty}.

It is further assumed that the deterministic output x(¢)
is corrupted by an additive, coloured measurement noise
&(t), so that the complete equation for the data-generating
system, denoted by S, can be written in the form,

S y(t) = Go(p)ult) + Ho(p)eo(t) 3)
or, in the alternative decomposed form that is more
appropriate in the present context

(t) = Go(p)u(t)
S &(t) = Ho(p)eo(t) (4)

y(t) = =(t) +£(t)
where H,(p) is assumed to be stable and invertible stable,
while e,(t) is a zero-mean, stationary continuous-time
white noise process of intensity 030, which is assumed to
be uncorrelated with the input u(t). Note that e,(¢) is a
mathematical abstraction and y(¢) results from the sum of

a deterministic and a stochastic term.

Of course, in practical situations, the input and output
signals u(t) and y(t) will be sampled in discrete time
and denoted by wu(tx) and y(tx). Several papers have
discussed the sampling issues of stochastic CT systems
(see. e.g. Wahlberg et al. [1993], Ljung and Wills [2010]).
For COE models, since &(t) is a CT white noise, it has
infinite variance and cannot be measured directly. The
output y(t) is thus sampled using the integrated method
where a low-pass filter is applied before the sampling.
The commonly used prefilter consists of an integrator
between sampling times (see Ljung and Wills [2010]). Tt
is furthermore assumed that u(tx) and y(tx) are available
at irregular time-instants, obtained at a varying sampling
interval denoted as

hi =tp1 — t (5)
It will be also assumed that the sequence of sampling
intervals {hy } is a realization of a white stationary random
process with an associated probability density function
p.(h) and ~

h<hp,<h (6)

where A > 0, and h is a finite upper bound. The objective
is then to estimate the parameters of the differential
equation, based on the non-uniformly sampled input and
output data ZV = {u(tk);y(tk)}fj:l.

3. OPTIMAL IV ESTIMATORS

In this section we recall the main conditions for obtaining
optimal (consistent and minimum variance) IV parameter
estimate. Consider the general class of IV estimators

N
R 1 o
p=sol, = > Cote) [ () — f (t)p] =0 (7)
k=1
where the parameter vector p includes the dynamic plant
model parameters stacked columnwise as ,

p= [al Ce G, bg -+ bnb]T c R"atnetl (8)
and ¢;(tx) € R™ ™+ is the prefiltered instrumental
vector where

Cr(tr) = L(p)C(tr) (9)

while the output y(t;) and regression vector ¢p(tx) are also
prefiltered by the same filter L(p) with

7 (th) = [~y D (te) -+ = y(t) w0 (b))

(10)

It has been shown that a minimum variance estimator

is achieved under the following conditions [Young and

Jakeman, 1980] (see also [S6derstrom and Stoica, 1983]):

¢ () = L (p)p(tx) )

11
Lopt p) =

» = oA

where @(tx) is the noise-free version of the regression
vector (ty) defined as

Plte) = [~at (1) - '

—x(ty) ul™ (ty) - ulty)]
(12)

The following comments can be made from the IV optimal
conditions

(1) Filtering operation is a distinguishing feature of opti-
mal IV solution. This is an interesting feature for the
identification problem considered here as the filtering



will provide a very convenient way of generating the
prefiltered derivatives of the input and output vari-
ables as required for CT model estimation.

(2) The IV optimality is noise-model dependent and so
the way we parametrize the model will influence the
implemented solution of the optimal estimates.

(3) The optimal IV estimate is achieved when the instru-
ment variable is equal to the filtered noise-free version
of the regression vector.

(4) One particularly successful implementation of the
optimal IV is known as the refined IV method where
an adaptive procedure blends the separate algorithms
for the estimation of the system and noise model
parameters using a bootstrap approach. This refined
IV method uses an iterative procedure, in which, at
each iteration, the auxiliary model is used to generate
the instrumental variables and prefilter based on the
parameters obtained at the previous iteration. In
the next two sections, such refined IV methods are
derived to estimate the parameters of CT OE and BJ
models from irregularly sampled data.

4. SRIVC METHOD FOR COE MODELS

When H,(p) = 1, the model set to be estimated takes the
form of a COE model structure, as denoted by Mo,

2(t) = G(p, pult)
Meoe {y<t> = 2(t) + eat)

where p is defined in (8), e.(t) is a CT white noise of

intensity Ugc .

(13)

In this COE model setting where the measurement noise is
assumed to be white, the refined IV parameter estimates
(usually termed as simplified refined IV and abbreviated
by SRIVC) are obtained, at iteration j, from:

[ZC]@ (tr, )] (s 7 )]

[Z<f<tk,f)”>y}"“<tk,fﬂ1)] (14)
k=1
with
Cf(tkap ) ( p] )Sgo(tkapjil)
‘-Pf(tlmp '): Lp,»’ V)epl(tr)
y(ﬂa)( L ) 1(p P 1) ('"a)(tk) (15)

P =

and where @(tg, p' ') is an estimate of the noise-free
regression vector defined in (12) where the unobserved
noise-free output is replaced by an estimate obtained from
an auxiliary model based on the parameters estimated at
the previous iteration

i(te, 1) = Glp, P Multy)

4.1 Implementation of the CT filtering

(16)

The SRIVC method for COE models has been proven to be
successful in a number of practical cases when the data are
regularly sampled [Young and Garnier, 2006]. It is worth
noticing that the computation of the SRIVC parameter

estimates at iteration j given in (14) requires the value
of prefiltered signals at the irregular time-instants ty,
k =10,---,N in both regression and instrument vectors,
expressed below under their developed forms

@F (b, ) ==y V(e ) o =yt 7Y
uf™ (b, oY) s up(te, PN (17)

CFlte 1) =2V (e ) o —ap (e
A (e Y (Y] (18)

This implementation issue is well-known in CT model
identification and different methods based on the use of
numerical integration methods or DT approximations of
the CT filters are usually chosen in the case of regularly
sampled data. Here we suggest to employ the fourth-order
Runge-Kutta method. This technique is reasonably simple
and robust and is a good general candidate for numerical
solution of differential equations when combined with an
intelligent adaptive step-size routine.

5. RIVC METHOD FOR CT BJ MODELS

Consider now the case when the model set to be estimated
takes the form of a CT BJ model structure. The structure
S is assumed to have no common factors in the plant (G,)
and noise (H,) components, so that these models can be
parameterised independently. More formally, there exists
the following decomposition of the parameter vector 8 for
the BJ model,

0= (p" n') e Rt (19)
such that the model equations can be written as
x(t) = G(p, p)ult)
M § &(t) = H(p, m)ec(t) (20)
y(tr) = x(te) + §(tr)

where the noise model H (p,n) takes the more general form
of a CARMA model given as
Clp,m) _ cop™ +--+cp-_1p+1
H(p, TI) D(p, 7’) dop™d + -+ dnd—lp +1 (21)
where it is assumed that n, > ng. As a CAR model often
produces a good approximation of a full CARMA noise
model, while being much more simple to estimate, we will
consider a CAR model for the noise in the derivation of
the optimal IV solution for CT BJ models. A CAR model
is given by
1

H(p,m) = =
.m) D(p,m)  dop™ + -+ +dp,1p+1
where the associated noise model parameters are stacked
columnwise in the parameter vector,

n=Ido - dp,_1]" €R™ (23)

Alternatively, the model (20) can be written in the follow-
ing vector terms

(22)

2 (1) = $T(1)p

Mi; S &(t) = &7 () + ec(t) (24)
y(te) = x(tr) + &§(tx)
where @7 (t) is given in (12) and
() = [~ )~V (25)



It must be stressed here that the identification problem is
much more complicated in this CT BJ model identification
setting. The refined IV bootstrap procedure requires now,
at each iteration, the concurrent estimation of the CAR
noise model which is discussed in section 5.2.

5.1 RIVC algorithm

The complete refined IV (RIVC) algorithm is summarized
below.

Step 1. Initialization: Apply the SRIVC algorithm to
compute an initial estimate of the plant model parame-
ter vector p°.

Step 2. Iterative IV estimation with prefilters:
for j =1: convergence
(1) If the estimated plant model is unstable, reflect the

unstable zeros of the estimated fl(p, ') polyno-
mial into the stable region of the complex plane®.
Generate the IV series Z(¢x) from the system ‘aux-

iliary model’:
A AJ— B(p7 i)jil)
Ete, ') = — 2 u(ty)
A(p, ™)

with the polynomials based on the estimated pa-
rameter vector p’ ~! obtained at the previous itera-
tion of the algorithm;

(2) Obtain the latest estimate 7’ of the CAR noise
model parameters based on the estimated noise
sequence

E(t) = y(ty) — &(ts, 0’1 (26)
using any consistent CAR estimation algorithm (see
section 5.2).

(3) Prefilter the input u(t), output y(tx) and estimated
noise-free output (g, 4 ~1) signals by the filter

o
L. o™ i) = T

Alp, ")
with the polynomials based on the estimated pa-
rameter vector foj ~! obtained at the previous itera-
tion of the algorithm and 7’ obtained in Step (2)

(4) Based on these prefiltered data, compute the esti-

mate f)j of the plant model parameter vector from

N —1
P = [Zcfak,pﬂ-l,ff)so?f(tk,pﬂ-l,fﬂ]
k=1

N
lZcfuk,iﬂ%ﬁj)y;””)(tk,ﬁf%ﬁj)] (27)
k=1

where € (b 97~ i), @ (14 ' ) axe given in

(17) and (18) but where a dependency to the CAR

noise model parameter estimates 7’ is made clear.
end

5.2 Estimation of CAR noise model
The problem of estimating CAR models from discrete-

time data, where the data are observed irregularly in time,
has been studied for more than two decades (see e.g.

1 This is not essential to the functioning of the algorithm: it allows
for rarely occurring situations, normally with very poor data.

[S. Bigi, 1994]). One traditional approach is considered
here. Its basic idea is to use linear approximations of the
differentiation operator to reconstruct the time-derivatives
of the noise from the measured sampled data. Then a
linear regression model can be built up and then solved
by simple least-squares or IV-based schemes [Larsson and
Soderstrom, 2002]. One solution of this type is briefly
recalled and used here. Substituting the ith order differen-
tiation operator p’ by a discrete approximation D! leads
to

PF(te) = DU f(tk) = Br(i ) f(then)  (28)
pn=0

To make approximation (28) concrete, it is natural that
B (i, ) satisfies the following condition

il v=1
0 v=0,.,i—1

where the solution of S (¢, 1) can be found out as [Larsson
and Séderstrom, 2002]

> Brli, 1) (trsy — tr)” =

pn=0

(29)

7!
o (thtp — thrs)
SFEW
Consequently, from the second equation in (24), at iter-

ation j of the bootstrap RIVC algorithm, a new linear
regression model equation can be reformulated as

7M:Oa"'7i (30)

) =& (tem’ +e(ty) (31)
where
d(tp) = [-D"E(ty) -+ — D'E(ty)]" (32)
with
E(tr) = y(te) — 2(ty) (33)

where the arguments p’~* and #’ "' have been dropped
from the different variables above to ease of notations.

An IV method is then used to estimate 7. The instrument
is built up from a simple delayed version of the noise model
output as

P(te) = [E(tr-1) -+ = E(ten—)]T  (34)
From N sampled observations, the CAR model parameters
can be estimated, at iteration j, from

. N ~ ~T . - N ~ N
i = l P(t) @ (te i’ ) B(te)é(tr) (35
k=1 k=1
6. NUMERICAL EXAMPLES
6.1 Identification of COE models
Consider the following TF model:
5
)= ————ut
W= e ra? (36)

y(t) = z(t) + ec(t)
The system has a rise time of about 2 sec. A basic choice for
the uniform sampling period recommended for DT model
identification would be between 0.2 < T, < 0.5 sec. Twice
this upper value will be considered in the following as the
upper bound for the irregular sampling period.



y(t) is sampled using the integrated method presented in
[Ljung and Wills, 2010], section 2.
1 tr+6 1 tr+0

y(tr) = = y(t)dt = =
() 5 ), (t) 5 ),

= zq(t) + ea(tr) (37)
The input signal w(t) is assumed to be zero-order-hold

during the sampling period, here for any ¢, < t < tg11,
u(t) satisfies that

u(t) = sin(0.714ty) + sin(1.428t) + sin(2.142t;) (38)

Moreover, the integral time § in (37) is chosen as 0.001,
and eq(ty) is a DT white noise with variance of o7 /4.

1 tr+0
x(t)dt + <

e.(t)dt
5] e

4
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Fig. 1. A portion of the irregularly sampled data set when
h =1s.

The sampling interval is uniformly distributed over an
interval

Phy.(x) ~ U(h, h) (39)
The Signal-to-Noise Ratio (SNR) in (37) is set to 10 dB
(here z4(tr) and eq(tx) in (37) are termed as signal and
noise respectively), this can be realised by adjusting the
intensity of e.(t). The number of data is set to N = 1000.
Monte Carlo simulations (MCS) of 200 realizations are
performed, with h fixed to 0.01s, while h varies from 0.01
to 1s. When h = h = 0.01s the sampling is uniform. The
more h increases, the more the sampling deviates from
a uniform sampling. Figure 6.1 shows a portion of the
observed input-output signals when the upper bound h
of the sampling period is equal to 1s.

The iterative algorithm is stopped when

Gi+1 _ gi
—|| <107® (40)
9
o0
where || - ||oo is co-norm operator. This condition is also

used in the identification of CT BJ models.

The SRIVC parameter estimates are presented in Figure 2.
Furthermore, the results remain very accurate for all h
over the large considered range where from Figure 2, it
may be noticed that the mean and standard deviation of
the estimates are almost identical over the range of h.

Table 6.1 lists the average number of iterations where it
can be noted that the SRIVC converges quite quiclky for
the different values of h. The SRIVC algorithm is therefore
a very useful and computationally efficient estimator in
this non-uniformly samples situation where the additive

5.5
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Fig. 2. SRIVC parameter estimates when hy, is uniformly
distributed. Mean value of the estimates (*). The
standard deviation of the estimates are shown by the
vertical lines.

h 001 | 0.05| 01|02 |04 |06 |08 1
Niter 3.7 3.8 40 | 42 | 46 | 54 | 64 | 74
Table 1. Average number of iterations for con-
vergence

noise is purely white (i.e. H,(p) = 1.0). This algorithm is
optimal under these conditions and it functions even if the
sampling period varies over a quite large range.

6.2 Identification of CT BJ models

Consider now the following continuous-time BJ model
given by:

5
w0 = g rat?
£t = mec(t) (41)
y(tr) = x(te) +&(tk)

The system is stimulated by the multiline given in (42) and
observed at N = 10,000 time-instants. The sampling pe-
riod hy is uniformly distributed over the interval (0.01, h),
where now h increases gradually from 0.01 to 0.1 with the
step size 0.01. The noise-free system output is simulated
by the Runge-Kutta method.

u(t) = sin(0.714¢) + sin(1.428¢t) + sin(2.142t).  (42)
In order to generate the CAR noise, we have the following

derivation. The second equation in (20) can be written into
a state-space model

dz(t)

= Az(t) + Be.(t)
§(t) = Cz(t)

Solving the differential equation, we can obtain a DT state-
space model (see e.g. [Wahlberg et al., 1993, Ljung and
Wills, 2010])
{2(tk + hi) = Frz(tr) + w(ty)
(k) = Cz(tx)

" eAle, (g + by — t)dt

(43)

(44)

where Fj, = e w(ty) =

w(ty) is independent DT white and has the following
covariance matrix



hi
E {w(ti)wT(tj)} = / eAtagceATtdt i 5 (45)
0
where 0; ; is Kronecker’s delta function.

(44) is used to generate the CAR noise in this paper, which
has the same second order properties as the continuous-
time one.

Monte Carlo simulations with 100 runs are performed for
a SNR set to 10 dB. The RIVC parameter estimates of
the plant model are presented in Figure 3, while the noise
model parameter estimates are displayed in Figure 4. From
these two figures, we can see that both the plant model and
the noise model are well estimated.

Another interesting phenomenon is that when ZL increases,
the standard deviation reduces slightly. When h increases,
the time span of the data also increases, that is to say, the
sampled data contains more information about the system.
This leads to a reduction in parameter estimate variance.
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Fig. 3. RIVC Parameter estimates of the plant model when
hyj is uniformly distributed. The vertical lines stand
for deviation of the estimates. (*) stands for the mean
estimates.
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Fig. 4. RIVC parameter estimates of the noise model when
hy is uniformly distributed. The vertical lines stand
for deviation of the estimates. (x) stands for the mean
estimates.

7. CONCLUSION

The identification problem of continuous-time output error
and Box-Jenkins models from non-uniformly sampled data

has been investigated in this paper. Refined instrumental
variable-based methods have been developed. Special at-
tention has been paid to the numerical implementation
of the continuous-time filtering operations involved in the
adaptive procedure. For the BJ model identification, a
CAR model identification scheme based on differential
operator approximation has been used. The performances
of the proposed schemes have been investigated by means
of simulation examples. Further research is needed to im-
prove the quality of the BJ model when the sampling time
variations are coarse.
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