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ROBUST NUMERICAL COUPLING OF PRESSURE AND
PRESSURELESS GAS DYNAMICS EQUATIONS FOR EULERIAN

SPRAY DNS AND LES∗

M. BOILEAU† , C. CHALONS‡ , AND M. MASSOT†

Abstract. Large eddy simulation (LES) and direct numerical simulation (DNS) of polydisperse
evaporating sprays with Eulerian models are very promising tools for high performance computing
of combustion applications since they are able to predict the turbulent dispersion and evaporation.
However, the spray system of conservation equations has a convective part which is similar either
to gas dynamics Euler equations with a real gas type state law or to the pressureless gas dynamics
(PGD), depending on the local flow regime and droplet Stokes number; so they usually involve
singularities due to model closure assumptions and require dedicated numerical schemes. The present
contribution introduces a new generation of numerical methods based on relaxation schemes which are
able to treat both PGD and general gas dynamics as well as to cope in a robust manner with vacuum
zones and natural singularities of the resulting system of conservation equations. The approach
relies on the coupling between a relaxed model for PGD and a relaxed model for gas dynamics using
an energy threshold. The proposed hybrid relaxation scheme and algorithms are validated through
comparisons with analytical solutions and other numerical strategies on one-dimensional (1D) and
two-dimensional (2D) configurations. They exhibit a very robust behavior and are a very promising
candidate for more complex applications since they provide solutions to key numerical issues of the
actual Eulerian spray DNS and LES models. Though the energy is considered here as isotropic, the
method can be extended to nonequilibrium gas dynamics to describe the spray dynamics with higher
accuracy.
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1. Introduction. Many industrial devices involve turbulent combustion of a
liquid fuel. The transportation sector, rocket, aircraft, or car engines are almost ex-
clusively based on storage and injection of a liquid phase, which is sprayed into a com-
bustion chamber. It is of primary importance to understand and control the physical
process as a whole, from the injection into the chamber up to the combustion phenom-
ena. Numerical simulation is now a standard industrial tool to optimize the turbulent
combustion process in such devices [11]. Thanks to large eddy simulation (LES), un-
steady phenomena such as jet ignition [20] and combustion instabilities [34, 33] can
now be accurately predicted in simplified configurations where purely gaseous flames
are encountered. Nevertheless, the liquid fuel injection needs special attention in or-
der to properly predict the combustion regimes. It consists in two parts. The first
is related to the atomization process near the injector and requires dedicated models
and methods. The second part is related to the spray dynamics once the liquid has
reached the structure of a polydisperse cloud of droplets; some promising advances
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have been performed in the field of spray combustion in real devices [3, 4, 40, 39].
However, the reliable prediction of such complex two-phase reacting flows requires
further work in the modeling of the triple spray/turbulence/combustion interaction.
In particular, the description of the turbulent spray dispersion remains a challenging
issue. Spray models have a common basis at the mesoscopic level under the form
of a number density function (NDF) satisfying a Boltzmann-type equation, the so-
called Williams equation [41]. The internal variables characterizing one droplet are
the size, the velocity, and the temperature, so that the total phase space is usually
high-dimensional. Such a transport equation describes the evolution of the NDF of
the spray due to convection, heating, evaporation, and drag force from the gaseous
phase and droplet-droplet interactions. Different strategies can be used to solve the
dispersed phase dynamics. A first choice is to approximate the NDF by a sample of
discrete numerical parcels of particles through a Lagrangian–Monte Carlo approach
(see [28]). It is called the direct simulation Monte Carlo method (DSMC) in [2] and
is generally considered to be the most accurate for solving the Williams equation; it
is especially suited for direct numerical simulation (DNS) since it does not introduce
any numerical diffusion, the particle trajectories being exactly solved. This approach
has been widely used and has been shown to be efficient in numerous cases. Its main
drawback is the delicate coupling between the Lagrangian description of the dispersed
phase and the Eulerian description of the gaseous phase. Moreover, from a computa-
tional point of view, a Lagrangian solver is difficult to efficiently parallelize using the
domain decomposition for the gas solver. This is particularly true in massively paral-
lel calculations where only a few parallel blocks may contain most of the Lagrangian
particles and need dedicated algorithms as in [14]. Finally, unsteady computations
of polydisperse sprays require a large number of parcels in each Eulerian cell, lead-
ing to large memory needs and high CPU costs. As a consequence, as long as it is
able to describe the essential feature of polydispersity, an Eulerian formulation for
the dispersed phase is more attractive for massively parallel simulations of industrial
configurations, even if in both Eulerian and Lagrangian approaches the grid of the
gaseous carrier phase will impose a length scale below which smaller scales are not
resolved.

Based on [16] and [22], a multidimensional Eulerian multifluid solver capable of
describing the polydispersity of a spray in size and the associated size-conditioned
dynamics has been developed in [10]. This approach relies on the derivation of a
semikinetic model from the Williams equation using a moment method for velocity
conditioned by droplet size while keeping the continuous size distribution function.
The key issue is in the velocity moment closure for which two strategies exist. The
first, based on the quadrature method (see [18] and references therein), has been
developed to capture strongly nonequilibrium velocity distributions and will not be
treated in the present contribution. The second, adopted in the present paper, is
based on equilibrium velocity distributions either with zero dispersion around the
mean in the framework of DNS such as in [10, 13] and references therein or with
nonzero dispersion in the framework of ensemble averages and modeling nonresolved
scales such as in [24, 26, 40].

In the context of spray dynamics, a zero pressure assumption means that the
probability density function (PDF) of particle velocity is a Dirac in the velocity space,
i.e., that no dispersion in the local instantaneous particle velocity is considered. For
this assumption to be true, the relaxation time of particles must not exceed the
timescale of the fluid turbulence. Otherwise, the effect of trajectory crossing due to
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higher-inertia particles induces a random-uncorrelated component of particle motion
that must be taken into account; such trajectory crossings are usually described with
difficulty by Eulerian models, whereas Lagrangian approaches naturally capture them.
In [35] and [19] the authors proposed a formalism that accounts for this random-
uncorrelated motion in the context of DNS. This approach has been extended for
LES in [27] and [31, 32]. The authors used a spatial filtering of Kaufmann’s system
of Eulerian conservation equations and proposed a model for the resulting particulate
subgrid stresses. Another way to use the LES concept for the spray equations is to
apply the spatial filtering directly to the Williams equation for the PDF of particle
velocity (see [29] and [43]). The resulting kinetic equation for the filtered PDF has the
same form as the statistical PDF equation initially derived by [30] in the context of
Reynolds-averaged Navier–Stokes (RANS) and used in [26]. Whatever the approach
for turbulence modeling (DNS, LES, or RANS) and the level of corresponding filtering
(on the kinetic equation or on the moment equations at the semikinetic level), the local
velocity dispersion of particles introduces stress, and more specifically a pressure-like
term, in the spray conservation equations. Finally, the Eulerian equations for inertial
particles dynamics are similar to the gas dynamics equations. In particular, they
include a real gas type state law which can eventually degenerate in some parts of the
flow to a zero pressure term leading to the peculiar pressureless gas dynamics (PGD).
Let us emphasize that the size distribution function is then discretized using a finite
volume approach in the size phase space that yields conservation equations for mass
and momentum (and eventually other properties such as enthalpy) of droplets in fixed
size intervals which have the same mathematical structure. In the present paper, we
will consider a monodisperse spray so that the semikinetic model is sufficient, keeping
in mind that all the developed tools can be easily extended to polydispersity in the
framework of the multifluid method [10, 40].

The main difficulty of the resulting system of conservation equations is related
to transport in physical space, that is, the convective part of the system, which is
either hyperbolic or weakly hyperbolic, and thus leads to singularity formation. In
the framework of the PGD system, the problem has been solved in [10] by using a
numerical strategy based on the kinetic scheme of Bouchut, Jin, and Li [6] (called the
BJL scheme in what follows) which leads to a second-order method in space and time
with very limited diffusion. This numerical scheme makes it possible to accurately
capture the delta-shocks in density and vacuum states which naturally emerge from
the weakly hyperbolic system. However, this strategy cannot be extended in a natural
manner to gas dynamics either with the perfect gas law or with real gas state laws.

Therefore, the numerical method we are looking for must have the ability (1) to
handle an Euler-type system of equations in regions of high Stokes number or in re-
gions where subgrid scales induce significant pressure effects, (2) to degenerate to the
PGD system in regions of Stokes number below the critical value for particular tra-
jectory crossing or in regions where the subgrid scales do not play any role in particle
velocity dispersion, and (3) to treat exact vacuum regions for both pressureless and
full gas dynamics systems in various regions of the flow. Moreover, this method must
feature the same properties of robustness with singularities and vacuum treatment as
the BJL kinetic scheme for PGD proposed in [10, 25]. Finally, since the pressure law
can bear some real gas effects, the numerical method has to handle such cases while
keeping a high level of accuracy as required by the DNS/LES approach.

In that context, the purpose of the present paper is to introduce a novel numerical
method based on relaxation schemes which has the ability to match all the previous
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requirements. Relaxation methods, introduced in [17], and further developed in [36]
and [9], have a common basis: they introduce auxiliary variables in the framework
of Godunov schemes in order to treat more easily the strong nonlinearity due to the
treatment of pressure and state law. They avoid using complex nonlinear Riemann
solvers or their approximated versions which can have a very high computational cost
with nonstandard pressure laws. The nonlinearity treatment is replaced by a splitting-
like strategy in the framework of a linear or linearly degenerate version of the transport
step along with a strong relaxation step related to a singular perturbation parameter.
A large literature on the subject has shown the impact of such seminal ideas [1, 5, 7, 8]
(among others).

In this contribution, we conduct three new steps: (1) Extending the work of [1],
we propose a scheme for PGD based on successive energy and pressure relaxation
which can deal with vacuum; (2) based on this new scheme, we introduce a hybrid
numerical method which can treat both regions with and without pressure and still
remain accurate and robust; and (3) we finally prove the potential of these schemes
by comparing them on several tough test-cases to standard approaches in both one-
dimensional (1D) and two-dimensional (2D) configurations. Since relaxation methods
are able to treat arbitrary state law, we only provide the schemes in the framework of
the ideal gas law; additionally we focus on the purely convective part of the system of
conservation laws and do not treat the potential stress tensors which can be handled
by standard schemes. The paper is organized as follows. The first section describes
how the Eulerian description of turbulent spray dynamics leads to a gas dynamics-
type system of conservation equations. The hybrid relaxation scheme is derived in
the second section. Finally, results for relevant test-cases, in one and two dimensions
and pressureless/pressure/hybrid configurations, are presented and discussed.

2. Eulerian modeling of turbulent spray dynamics.

2.1. Conservation equations on moments of the particle number den-
sity function. At the mesoscopic level, spray models have a common basis called the
kinetic model by analogy with kinetic theory of gases. The spray is described as a sta-
tistical cloud of point particles experiencing exchanges of mass, momentum, and heat
with the carrier phase. This kinetic model is described by a Boltzmann-type equation
(2.1) for the number density function (NDF) f of the spray, where f(t,x,u)dxdu de-
notes the probable number of particles at time t, in a volume of size dx around x, with
a velocity in a du-neighborhood of u. As mentioned in the introduction, other physi-
cal properties like the particle size and temperature can be introduced in the NDF for
a finer description of the spray in the framework of the multifluid model introduced
in [22] and for which references are to be found in [10]. For the sake of simplicity,
constant particle size (monodisperse spray) and temperature are considered here, and
so these variables will not appear in the equations.

The evolution of the spray NDF is given by the Williams transport equation [41],

(2.1) ∂tf + u · ∂xf + ∂u · (F f) = 0,

where F is the drag force due to the velocity difference with the gaseous phase and
given by the Stokes law,

(2.2) F(t,x,u) =
U(t,x) − u

τp
with τp =

ρld2

18µg
,

where U is the gas velocity at the particle location, τp is the particle relaxation time,
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µg is the gas viscosity, and ρl and d are the mass density and diameter of the particle,
respectively.

The first possibility is to write conservation equations for the zero- and first-order
moments with respect to the velocity variable at a given time t and position x:

n(t,x) =

∫
f(t,x)du,(2.3)

n(t,x)u(t,x) =

∫
uf(t,x)du,(2.4)

where n is the particle density and u is the particle mean velocity. At this stage, there
are two different ways of deriving the conservation equations for these two moments
according to the value of the particle Stokes number St, defined by St = τp/τK , where
τK is the Kolmogorov time microscale.

2.2. Pressureless gas system. For low Stokes numbers, particles have a low in-
ertia and do not experience any trajectory crossings. Accordingly, the velocity disper-
sion around the averaged velocity u(t,x, S) is assumed to be zero in each direction—
the spray is called monokinetic—and the NDF writes as

(2.5) f(t,x,u) = n(t,x)δ(u − u(t,x)).

Such an assumption leads to a closed system of conservation equations given by two
partial differential equations in the variables n(t,x) and u(t,x) which express the
conservation of the number density of droplets and their momentum, respectively:

{
∂tn+ ∂x · (nu) = 0,

∂t(nu) + ∂x · (nu⊗ u) = nF,
(2.6)

where the Stokes drag F is taken at u = u. Equation (2.6) is similar to the PGD
system with an additional velocity relaxation source term.

2.3. Gas dynamics system. As pointed out in the introduction, the mono-
kinetic assumption is not verified for larger Stokes numbers, i.e. for particle relax-
ation times greater than the Kolmogorov timescale, where the effects of particles
trajectory crossings require additional higher-order moment modeling. In particular,
these crossings are expected to reduce the particle segregation induced by inertia ef-
fects. A way to account for the uncorrelated motion of inertial particles is to use the
mesoscopic formalism proposed by [12], starting from the following decomposition:
u = u(t,x) + δu, where δu is called the random uncorrelated component of the par-
ticle velocity. Using this decomposition, one can introduce the particle uncorrelated
energy δθ which traduces a distribution of particle velocity at a given location of the
spray. This velocity distribution is generally the consequence of the turbulence of the
carrier flow, and the uncorrelated energy may be related to the turbulent energy [12].
System (2.6), obtained for a monokinetic spray, now becomes (see [19])

⎧
⎪⎪⎨

⎪⎪⎩

∂tn+ ∂x · (nu) = 0,

∂t(nu) + ∂x · (nu⊗ u+ P) = nF+ ∂xδτ,

∂t(nE) + ∂x · (nE u+ P u) = nF · u− 2 n
τp
δθ + Tδθ,

(2.7)
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where the total energy reads E = u ·u/2+ δθ, where the random uncorrelated energy
δθ is defined as half the trace of the random uncorrelated stress tensor and where P is
called the random uncorrelated pressure, which is linked to the random uncorrelated
energy through the following equation of state:

(2.8) P =
2

3
n δθ.

In system (2.7), δτ is the deviatoric part of the random uncorrelated motion tensor,
and it can be modeled by a viscosity assumption. Tδθ gathers the effect of the trans-
port of uncorrelated energy by the uncorrelated motion and the effect of the random
uncorrelated stress tensor.

These equations correspond to the case where the gas flow is entirely resolved
and no modeling of the gas turbulence is used (DNS approach). In the context of
statistical (RANS) filtering [10, 26, 30, 42] or LES filtering [27, 29, 31, 43], the pressure
law becomes more complicated than (2.8), involving contributions from turbulent or
subgrid motion, respectively. The modeled scales involve real gas effects through a
modification of the state law, as well as source terms of random uncorrelated energy
in the right-hand side (RHS) of system (2.7).

The simplified general form of the system of conservation equations finally con-
sidered in the following is then system (2.7) with δτ = 0 and the additional term
Tδθ = 0 but with a potential source term: 2n

τ δθ is replaced by 2n
τ (δθ − εt), where

εt is the energy source term due to subgrid turbulence agitation. From a numerical
point of view, we thus isolate the difficulties of solving system (2.7). These difficul-
ties require a numerical method for highly compressible flows. The additional source
terms and second-order derivatives usually do not lead to numerical difficulties and
can be treated through operator splitting, whereas the main difficulties arise from
the convective first-order part involving the pressure effects. Therefore, in the next
subsection, we will focus on the left-hand side (LHS) and will temporarily forget the
RHS in order to build the numerical schemes. In the following, we focus on the perfect
gas state law, but relaxation methods can be easily extended to any state law with
real gas effects usually encountered in LES. Finally, we also need to be able to treat
cases where the random uncorrelated energy can be zero and the previous system
degenerates toward the PGD.

3. A hybrid relaxation scheme for gas/pressureless gas dynamics prob-
lems. Our objective in this section is to describe a global numerical strategy in one
dimension, able to deal with both gas dynamics and PGD at the same time, and to
handle vacuum. It is based on the concept of relaxation approximation for systems of
conservation laws. The basic idea is to propose an enlarged system with a stiff relax-
ation source term, the solutions of which are expected to converge to the solutions of
the initial system in the asymptotic limit. In the following, and for the sake of clarity,
the notation of the previous section is abandoned and replaced by the more usual
notation for hyperbolic systems of conservation laws. We do not take into account
the drag force in this section.

3.1. Toward a unified treatment of gas and pressureless gas dynamics.
We first propose writing the pressureless gas system (2.6) (without drag terms) under
the equivalent form

(3.1)

{
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
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with p = 0. Then, following the general idea of [9], we propose approximating the
solutions of this system by those of the energy relaxation system

(3.2)

⎧
⎨

⎩

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(ρEu + pu) = −λρε,

where the so-called relaxation internal and total energies are related by E = ε+ 1
2u

2.
Importantly, the pressure p here no longer equals zero but obeys, for instance, a
perfect gas equation of state,

(3.3) ρε =
p

γ − 1
.

At least formally, we observe from the last equation in (3.2) that the relaxation
internal energy ρε tends to zero as the relaxation parameter λ > 0 goes to infinity.
By (3.3), the solutions of the relaxation system (3.2) are thus expected to provide a
good approximation of the solutions of the PGD for large values of λ. Note that if we
define the temperature T and the mathematical entropy S according to the second
principle of thermodynamics −TdS = dε−pdτ, τ = 1/ρ, easy calculations lead to the
expected entropy inequality ∂t(ρS) + ∂x(ρSu) = −λρε ≤ 0. It is important to note
that the zero internal energy equilibrium manifold, which is also the zero pressure
manifold in the limit of infinite λ, is stable in the sense that for initial data with zero
pressure, the dynamics naturally remain with zero pressure.

The numerical procedure we are going to propose in order to approximate the
solutions of the PGD system (3.1) is very classical in the context of relaxation ap-
proximations. It is based on an operator splitting for (3.2) and is made of two steps
that we now briefly describe.

First step. We solve the convective part of the model:

(3.4)

⎧
⎨

⎩

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(ρEu+ pu) = 0,

which is nothing but the classical gas dynamics system. We will use the condensed
form

(3.5) ∂tU + ∂xF(U) = 0

for (3.4) with clear definitions for U and F(U).
Second step. In the second step, the contribution of the stiff relaxation source

term is accounted for by solving the ODE system

(3.6)

⎧
⎨

⎩

∂tρ = 0,
∂t(ρu) = 0,
∂t(ρE) = −λρε

⇐⇒

⎧
⎨

⎩

∂tρ = 0,
∂t(ρu) = 0,
∂tε = −λε

in the asymptotic regime λ → ∞. This clearly amounts to keeping ρ and ρu unchanged
and to setting ε = 0, that is, ρE = 1

2ρu
2 and p = 0.

3.2. A pressure relaxation model for gas dynamics. In this paragraph, we
propose a pressure relaxation system in order to approximate the solutions of the gas
dynamics system (3.4). Motivated by the seminal work of [17] and [36], we relax the
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nonlinearities associated with the pressure law p only and retain the others for the
sake of accuracy. With this in mind and similarly to [1, 5, 7, 8] (among others), we
introduce the following nonlinear first-order system with singular perturbation:

(3.7)

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 +Π) = 0,
∂t(ρE) + ∂x(ρEu +Πu) = 0,
∂t(ρΠ) + ∂x(ρΠu+ a2u) = µρ(p−Π),

which we write for brevity as ∂tV+∂xG(V) = µR(V). As µ goes to infinity, we observe
at least formally that the relaxation pressure Π tends to p so that the equilibrium
system (3.4) is recovered in this asymptotic regime. The additional equation associ-

ated with Π is easily seen to be equivalent to ∂tΠ+ u ∂xΠ+ a2

ρ ∂xu = µ(p−Π). This
equation is then very similar to that associated with the exact pressure p given by
∂tp+ u ∂xp+ ρc2 ∂xu = 0. The choice of the parameter a > 0 is crucial for the stabil-
ity of the relaxation procedure and is determined by the so-called subcharacteristic
condition a > ρc, where c denotes the sound speed.

The first-order system extracted from (3.7) is hyperbolic and admits the three
eigenvalues λ1 = u − a/ρ, λ2 = u, λ3 = u + a/ρ, with second-order multiplicity for
λ2. We note that λ1 and λ3 approximate the characteristic speeds u − c and u + c
of (3.4). Importantly, these eigenvalues are now associated with linearly degenerate
characteristic fields. This implies that the Riemann problem associated with (3.7)
(with µ = 0) can be explicitly solved, unlike the one associated with (3.4). Riemann
solutions being the key ingredient to devise Godunov-type methods, this mathematical
property justifies the introduction of the relaxation model (3.7).

Here again, the proposed numerical procedure to approximate the solutions of
the gas dynamics system (3.4) is based on a classical operator splitting for (3.7) (see
again [1, 5, 7, 8, 17, 36] among others) and is made up of two steps.

First step. We solve the convective part of the pressure relaxation model taking
µ = 0 in (3.7):

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 +Π) = 0,
∂t(ρE) + ∂x(ρEu+Πu) = 0,
∂t(ρΠ) + ∂x(ρΠu+ a2u) = 0

or, equivalently,

(3.8) ∂tV + ∂xG(V) = 0.

In practice, we will use in this step a Godunov method based on the exact Riemann
solution of (3.8).

Second step. We then solve
⎧
⎪⎪⎨

⎪⎪⎩

∂tρ = 0,
∂t(ρu) = 0,
∂t(ρE) = 0,
∂t(ρΠ) = µρ(p−Π)

in the asymptotic regime µ → ∞. The conservative variables ρ, ρu, and ρE are thus
constant, while Π is set to be equal to p in this step.
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For the sake of completeness, we now give the Riemann solution associated with
(3.8). As in [5] and motivated by the ability to treat vacuum zones, we propose taking
a nonconstant in each Riemann solution, and we solve

(3.9) ∂ta+ u ∂xa = 0.

The Riemann solutions are given as follows: Let two constant states VL = (UL, (ρΠ)L)
and VR = (UR, (ρΠ)R) be given, and let aL and aR be two values for a. The self-
similar Riemann solution (x, t) (→ V(x/t;VL,VR; aL, aR) associated with (3.8) and
initial data

V(x, t = 0) =

{
VL if x < 0,
VR if x > 0

is made of four constant states, VL, V∗
L, V∗

R, and VR, separated by three contact
discontinuities associated with λk = λk(V), k = 1, 2, 3, and propagating with speeds
denoted by λ(VL,V∗

L), λ(V∗
L,V∗

R), and λ(V∗
R,VR). More precisely, we have

V(x
t
;VL,VR)=

⎧
⎪⎪⎨

⎪⎪⎩

VL if x
t < λ(VL,V∗

L),
V∗
L if λ(VL,V∗

L) <
x
t < λ(V∗

L,V∗
R),

V∗
R if λ(V∗

L,V∗
R) <

x
t < λ(V∗

R,VR),
VR if λ(V∗

R,VR) <
x
t .

The intermediate states V∗
L, V∗

R, as well as the speeds of propagation, are determined
using for all k = 1, 2, 3 the continuity of the (strong) Riemann invariants for λk across
the contact discontinuity associated with λl, l ̸= k. We get after easy calculations
λ(VL,V∗

L) = λ1(VL) = uL−aLτL, λ(V∗
L,V∗

R) = u∗, λ(V∗
R,VR) = λ3(VR) = uR+aRτR,

and

u∗
L = u∗

R = u∗ =
aLuL + aRuR +ΠL −ΠR

aL + aR
,

Π∗
L = Π∗

R =
aRΠL + aLΠR − aLaR(uR − uL)

aL + aR
,

1

ρ∗L
=

1

ρL
+

aR(uR − uL) +ΠL −ΠR

aL(aL + aR)
,

1

ρ∗R
=

1

ρR
+

aL(uR − uL) +ΠR −ΠL

aR(aL + aR)
,

ε∗L = εL − Π2
L

2a2L
+

Π∗2

2a2L
, ε∗R = εR − Π2

R

2a2R
+

Π∗2

2a2R
.

At this stage, the initial states VL and VR and, more precisely, the free parameters
aL and aR are implicitly assumed to be such that the waves in the Riemann solutions
are ordered as they should be, namely,

(3.10) λ1(VL) = uL − aL
ρL

< u∗ < λ3(VR) = uR +
aR
ρR

.

Following [5], we define aL = aL(VL) and aR = aR(VR) as follows: if pR ≥ pL,

aL
ρL

= max(cL, cmin) + α

(
pR − pL
ρRcR

+ uL − uR

)

+

,
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aR
ρR

= max(cR, cmin) + α

(
pL − pR

aL
+ uL − uR

)

+

;

if pR ≤ pL,

aR
ρR

= max(cR, cmin) + α

(
pL − pR
ρLcL

+ uL − uR

)

+

,

aL
ρL

= max(cL, cmin) + α

(
pR − pL

aR
+ uL − uR

)

+

,

with α = (γ + 1)/2, cmin > 0, and where pL,R = pL,R(UL,R), cL,R = cL,R(UL,R) are
the values of the pressures and sound speeds evaluated on UL and UR.

This choice has several advantages. First, it is shown to fulfill (3.10) and to give
the positivity of the intermediate densities ρ∗L and ρ∗R. Then, it complies with the
subcharacteristic condition a > ρc. Finally, it guarantees the nonlinear stability of
the underlying relaxation scheme that will be described in the next section and the
possibility of handling vacuum in the sense that the speeds of propagation λ1(VL) and
λ3(VR) remain finite. In particular, discrete entropy inequalities as well as maximum
principles can be proved. These results are pretty technical to establish and are not
recalled in this paper. We refer the reader to [5] for the details.

In the case of PGD, these formulas are to be considered with pL = pR = 0 and
cL = cR = 0. We then observe that the threshold cmin allows us to guarantee (3.10)
when uL ≤ uR and then to avoid the resonance phenomenon.

3.3. A relaxation scheme for the gas and pressureless gas dynamics.
In this section, we present a relaxation scheme for approximating the solutions of
the gas dynamics or PGD equations (3.5) and (3.2) separately. The case of mixed
computations involving both the gas dynamics and PGD at the same time will be
considered in the next paragraph. It is important to notice that the same formalism
will be used for both systems. Just note that in the pressureless case, E must be
understood as a function of the unknowns ρ and ρu, namely, E = (ρu)2/(2ρ), but not
as an unknown with evolution given by the passive transport equation

∂tρE + ∂x(ρEu) = 0.

The initial condition is denoted U(x, 0) = U0(x), with E0(x) = (ρu)20(x)
2ρ0(x)

in the case
of PGD. We first set some notation. Let ∆x and ∆t be two constant steps for space
and time discretizations. Let (xj)j∈Z be a sequence of equidistributed points in R:
xj+1 − xj = ∆x. For all j ∈ Z and all n ∈ N, we define xj+1/2 = xj +

∆x
2 , tn = n∆t,

and consider the following discretization of the computational domain Rx × R+
t :

Rx × R+
t =

⋃

j∈Z

⋃

n≥0

Cn
j ,

with Cn
j = [xj−1/2, xj+1/2[×[tn, tn+1[. On the one hand and as usual in the context

of finite volume methods, the approximate solution U∆t,∆x(x, t) of (3.5) or (3.2) with
initial data U0 is sought as a piecewise constant function on each slab Cn

j :

U∆t,∆x(x, t) = Un
j for (x, t) ∈ Cn

j .
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At time t = 0, we set U0
j = 1

∆x

∫ xj+1/2

xj−1/2
U0(x)dx, j ∈ Z. On the other hand, we define

from U∆t,∆x the piecewise constant approximate solution V∆t,∆x by

V∆t,∆x(x, t) = Vn
j =

(
Un
j

(ρΠ)nj

)
for (x, t) ∈ Cn

j .

This solution is set to be at equilibrium, that is, (ρΠ)nj = p(Un
j ), j ∈ Z, for the gas

dynamics and (ρΠ)nj = 0, j ∈ Z, for the PGD.
Let us assume that the solution U∆t,∆x(x, tn) at time tn is known. In order to

advance it to the next time level tn+1, we now describe the two steps of the method
in detail.

First step: Evolution in time (tn → tn+1−). In this step, we solve (3.8) with
V∆t,∆x(x, tn) as initial data and for times t ∈ [0,∆t]. Under the CFL condition

(3.11)
∆t

∆x
max
V

(|λi(V)|, i = 1, 2, 3) <
1

2
,

where the maximum is taken over all the V under consideration, the solution is ob-
tained by solving a sequence of noninteracting Riemann problems set at each cell
interface xj+1/2. It is explicitly known by the previous section, and we have

V(x, t) = V(x−xj+1/2

t ;Vn
j ,Vn

j+1; aL(Vn
j ), aR(Vn

j+1))

for (x, t) ∈ [xj , xj+1]×]0,∆t], j ∈ Z.

We then get back a piecewise constant function in x ∈ [xj−1/2, xj+1/2] by means of a
classical L2 projection, that is,

Ṽ(x, t) = 1

∆x

∫ xj+1/2

xj−1/2

V(x, t)dx for (x, t) ∈ [xj−1/2, xj+1/2]×]0,∆t], j ∈ Z,

and we set

(3.12) Vn+1−
j =

(
Un+1−
j

(ρΠ)n+1−
j

)
= Ṽ(xj ,∆t), j ∈ Z.

Of course, this first step is nothing but the celebrated Godunov method applied to
(3.8). As a consequence, the updated formula (3.12) can be easily given under the
following conservation form:

Vn+1−
j = Vn

j − ∆t

∆x
(g(Vn

j ,Vn
j+1)− g(Vn

j−1,Vn
j )), j ∈ Z, n ≥ 0,

where the numerical flux function writes for all j ∈ Z as

(3.13) g(Vn
j ,Vn

j+1) = G
(
V
(
0;Vn

j ,Vn
j+1; aL(Vn

j ), aR(Vn
j+1)

))
.

Let us recall that the numerical flux (3.13) is here explicitly known.
Second step: Relaxation (tn+1− → tn+1). We now project the solution V∆t,∆x(x, tn+1−)

obtained at the end of the previous step on the equilibrium manifold µ = +∞. More
precisely, we set for all j ∈ Z

(3.14) Vn+1
j =

(
Un+1
j

(ρΠ)n+1
j

)
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with

Un+1
j = Un+1−

j and (ρΠ)n+1
j = p(Un+1

j )

in the case of the gas dynamics equations and

Un+1
j =

(
ρ, ρu,

(ρu)2

2ρ

)n+1−

j

and (ρΠ)n+1
j = 0

in the pressureless case. This is equivalent to solving in the asymptotic regime, µ =
+∞,

(3.15)

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ = 0,
∂t(ρu) = 0,
∂t(ρE) = 0,
∂t(ρΠ) = −µρ(p−Π)

in the case of the gas dynamics equations and in the case of PGD

(3.16)

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ = 0,
∂t(ρu) = 0,
∂t(ρE) = −λρε,
∂t(ρΠ) = −µρ(p−Π).

In agreement with the description of these two steps, the approximate solution U∆t,∆x

is then updated according to the following consistent finite volume method:

(3.17)

ρn+1
j = ρnj − ∆t

∆x
∆fρ(Un

j ,Un
j+1),

(ρu)n+1
j = (ρu)nj − ∆t

∆x
∆fρu(Un

j ,Un
j+1),

together with

(3.18) (ρE)n+1
j = (ρE)nj − ∆t

∆x
∆fρE(Un

j ,Un
j+1)

in the case of gas dynamics and

(3.19) (ρE)n+1
j =

(
(ρu)2

2ρ

)n+1

j

in the case of PGD. Here, of course, (fρ, fρu, fρE)(Un
j ,Un

j+1) denote the first three
components of g(Vn

j ,Vn
j+1) and ∆fα(Un

j ,Un
j+1) = fα(Un

j ,Un
j+1) − fα(Un

j−1,Un
j ) for

α = ρ, ρu, ρE.

3.4. Coupling the gas and pressureless gas dynamics. In order to perform
computations involving both the gas dynamics and PGD at the same time, we have to
describe how to couple the relaxation schemes we developed for both systems. Recall
that the conservative unknowns are ρ, ρu, and ρE for the gas dynamics and ρ and
ρu for the PGD. The main difference then clearly lies in the treatment of the energy
equation.
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For the sake of clarity, we begin by introducing a color function Y such that Y = 1
for gas dynamics and Y = 0 for PGD. From a numerical point of view, a given cell Cn

j is
said to be pressureless and Y n

j = 0 if the internal energy εnj = (ρE−(ρu)2/2ρ)nj is less
than a given threshold εmin. Otherwise (εnj ≥ εmin), the cell is said to be with pressure
and Y n

j = 1. Introducing the threshold εmin is a convenient way to switch from one
algorithm to the other. In agreement with the threshold cmin already introduced for
the sound speed in the definition of aL and aR, we set

(3.20) εmin =
c2min

γ(γ − 1)
.

Recall indeed that for perfect gas equations of state we have c2 = γ(γ− 1)ε. We thus
distinguish between zones with PGD where the internal energy is exactly zero and
zones where the energy level is above the defined small threshold, a property which
is preserved by the pure convective part of the evolution.

Let us consider a given cell Cn
j . Four different situations must be distinguished,

depending in particular on whether Y n
j−1 = Y n

j = Y n
j+1 or not.

The case Y n
j−1 = Y n

j = Y n
j+1 = 0. In this case, we simply use (3.17) and (3.19)

without any modification.
The case Y n

j−1 = Y n
j = Y n

j+1 = 1. In this case, we simply use (3.17) and (3.18)
without any modification.

The case Y n
j−1 ̸= Y n

j and/or Y n
j+1 ̸= Y n

j . In this case, the cell Cn
j should be

considered with pressure in the update formula. Thus, we propose using

(3.21)

ρn+1
j = ρnj − ∆t

∆x
∆fρ

(
Un

j ,U
n
j+1

)
,

(ρu)n+1
j = (ρu)nj − ∆t

∆x
∆fρu

(
Un

j ,U
n
j+1

)
,

and

(3.22) (ρE)n+1
j = (ρE)

n

j − ∆t

∆x
∆fρE

(
Un

j ,U
n
j+1

)
,

where, for k = j − 1, j, j + 1, Un
k = Un

k if Y n
k = 1 and

Un
k =

(
ρ, ρu, ρE

)n
k
, ρE

n
k = ρnkεmin +

(
(ρu)2

2ρ

)n

k

otherwise.

3.5. Extension to 2D configurations and to second-order accuracy. So
far, we have focused on the monodimensional case. In order to perform the 2D com-
putations presented in the next section on Cartesian meshes, we used a very classical
dimensional splitting method. We briefly recall that it first consists in splitting the
2D governing equations into a pair of quasi-1D equations, and then in solving the un-
derlying sequence of two 1D problems with the proposed numerical strategy. Recall
that if we denote (u, v) the two components of the velocity field, v being associated
with the additional space dimension, the governing equation for v in the quasi-1D
system reads

(3.23) ∂t(ρv) + ∂x(ρvu) = 0.
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This equation means that v is simply passively transported with the flow. We will
thus have to solve the Riemann problem using the same technique as in section 3.2
but with an additional equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 +Π) = 0,
∂t(ρE) + ∂x(ρEu+Πu) = 0,
∂t(ρΠ) + ∂x(ρΠu + a2u) = 0,
∂t(ρv) + ∂x(ρvu) = 0.

From a numerical point of view, a natural discretization of (3.23), which complies
with the exact Riemann solver, is given by

(ρv)n+1
j = (ρv)nj − ∆t

∆x
∆fρv(Un

j ,Un
j+1),

with ∆fρv(Un
j ,Un

j+1) = fρv(Un
j ,Un

j+1)− fρv(Un
j−1,Un

j ) and

fρv(Un
j ,Un

j+1) =

{
fρ(Un

j ,Un
j+1) v

n
j if fρ(Un

j ,Un
j+1) ≥ 0,

fρ(Un
j ,Un

j+1) v
n
j+1 if fρ(Un

j ,Un
j+1) ≤ 0.

This formula was first introduced in [21]. The calculations are left to the reader. The
second-order extension in space we used in the numerical experiments is based on a
monotonic upstream-centered scheme for conservation laws (MUSCL) reconstruction
technique. Regarding the time second-order extension, we used an usual Runge–Kutta
method coupled with a Strang splitting. Both are addressed now in more detail, where
particular attention is paid to the coupling zones.

MUSCL reconstruction. We begin by briefly recalling the MUSCL method for
obtaining the second-order accuracy in space. For more details we refer the reader to
the books [15, 37] and the original references therein. Consider a change of variables
U → U = ϕ(U). The starting point of the method consists in replacing at each time tn

and on each cell Cj the constant values Un
j by means of ϕ and a linear reconstruction

of U. We set

(3.24)

{ Un(x) = ϕ−1(Un(x)), x ∈ Cj = [xj−1/2;xj+1/2), with

Un(x) = Un
j + snj

(x−xj)
∆x , Un

j = ϕ(Un
j ), j ∈ Z.

In (3.24), xj represents the center of the cell Cj : xj = 1
2 (xj−1/2 + xj+1/2), and snj

is the slope of the linear reconstruction. The choice of the reconstructed variable U
generally depends on the system under consideration. In the present study, we will
perform the reconstruction on the so-called primitive variables U = (ρ, u, ε). Note,
however, that from now on ε will be actually reconstructed, i.e., the slope associated
with this variable in the linear reconstruction will be possibly nonzero, only if the
corresponding cell is with pressure, which means that the color function is such that
Y = 1.

We denote Un,±
j and Un,±

j the values at the edges x = xj±1/2 of Un and Un,
respectively:

(3.25)

{
Un,±
j = ϕ−1(Un,±

j ),
Un,±

j = Un
j ±∆Un

j with ∆Un
j = 1

2s
n
j .

Then, following the basic principle of the MUSCL method, we propose replacing
the couple (Un

j ,Un
j+1) with (Un,+

j ,Un,−
j+1 ) in the evaluation of the numerical fluxes
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fα(Un
j ,Un

j+1) and fα(Un
j ,U

n
j+1) for α = ρ, ρu, ρE at each interface j + 1/2 in the

previous formulas.
We now draw particular attention to the choice of the reconstructed variable U

and the slopes snj . It is well known that these have to be carefully determined for
stability reasons. Once U is chosen, a usual choice for snj , or equivalently for ∆Un

j ,
is given by a slope-limiter procedure with, for instance, the so-called minmod limiter.
It reads

(3.26) ∆Un
j =

1

2
minmod(Un

j+1 −Un
j ,U

n
j −Un

j−1),

where the minmod function is defined by

minmod(a, b) =

{
sign(a)min(|a|, |b|) if ab ≥ 0,

0 otherwise

for two scalar quantities a and b (sign denotes the sign function). In (3.26), minmod
is applied component by component. We propose adopting this classical definition
whenever Y n

j = 1. When Y n
j = 0, we propose continuing to use this classical definition

for the first two components ρ and u ofUn
j , but setting∆εnj = 0 for the last component

as already stated above. In other words, the internal energy is not reconstructed when
the cell is considered to be without pressure.

Remark. If Y n
j = 1, it may happen that Y n

k = 0 for k = j − 1 or k = j + 1. In
such a situation Un

k is naturally considered to coincide with (ρnk , u
n
k , εmin) in (3.26).

RK2 time integration. In this section, we aim at proposing a time discretiza-
tion which is second-order accurate in smooth regions and (at least) away from the
coupling zones between the pressure and without pressure zones. Of course, the def-
inition of the strategy must take into account the presence of these coupling zones.
Actually, our objective is to propose a simple numerical time integration which is
equivalent, away from the coupling zones, to the well-known RK2 method (second-
order Runge–Kutta, or Heun) applied to the classical gas dynamics and PGD equa-
tions. The reader is assumed to be familiar with this usual RK2 method. Away from
the coupling zones, if we use the natural condensed form for the first-order (in time)
update formulas

(3.27) αn+1
j = αn

j − ∆t

∆x
∆fn,α,

for α = ρ, ρu, ρE in the case of gas dynamics and α = ρ, ρu and

(3.28) (ρE)n+1
j =

(
(ρu)2

2ρ

)n+1

j

in the case of PGD, the RK2 method is made up of two steps which write

(3.29) αn+1/2
j = αn

j − ∆t

2∆x
∆fn,α,

(3.30) αn+1
j = αn

j − ∆t

∆x
∆fn+1/2,α.

As already said, one proposes using these formulas away from the coupling zones,
that is to say, whenever Y n

j−1 = Y n
j = Y n

j+1. In the coupling zones, that is to say,
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whenever Y n
j ̸= Y n

j−1 or Y n
j ̸= Y n

j+1, the first step (3.29) does not raise any difficulty
since it simply consists in applying the previous second-order in space strategy with

∆t replaced by ∆t/2 for all j. Then, we are able to define the values Y n+1/2
j for all j

depending on whether the values εn+1/2
j are above or below the threshold value εmin.

This is only needed to perform the MUSCL reconstruction as proposed in the previous
subsection in order to define the fluxes fn+1/2,α in (3.30). Note that the proposed
strategy therefore implicitly considers that three fluxes (for mass, momentum, and
total energy) are actually needed in (3.30) if Y n

j−1 = Y n
j = Y n

j+1 = 1 or in a coupling
zone such that Y n

j ̸= Y n
j−1 or Y n

j ̸= Y n
j+1 in agreement with (3.21) and (3.22). On the

contrary, only two fluxes (for mass and momentum) are needed in (3.30) if Y n
j−1 =

Y n
j = Y n

j+1 = 0. In other words, the values Y n+1/2
j are only used to perform the

reconstructions and calculate the fluxes fn+1/2,α and not to determine whether the
cell Cn

j at time tn has to be considered with or without pressure in (3.30). The values
Y n
j play this role. This is to ensure a “finite” propagation of a coupling zone during

a time step tn → tn+1.

4. Results and discussion. Let us first underline that the drag and potential
source terms are not included in the simulations, except for the 2D Taylor–Green
vortices configuration (see the last test cases below). From a numerical point of view,
these terms are then applied via operator splitting through an analytical expression
of the exponential relaxations.1

1D Bouchut–Jin–Li test. To evaluate the performance of the present relax-
ation scheme in the PGD configuration, the first numerical test of Bouchut, Jin, and
Li [6] (the BJL test) is performed. In this test, the initial solution is designed to
create a vacuum state and a mass accumulation. Figure 1 compares the results be-
tween the BJL kinetic scheme and the relaxation scheme for first and second orders.
Figure 1(a) shows that vacuum is properly captured by the first- and second-order
relaxation schemes. As noticed by [6], the first-order scheme forms an artificial den-
sity peak. This problem does not appear for either second-order scheme. Compared
to the BJL scheme, the second-order relaxation scheme is slightly more diffusive, and
the density overshoots created in the zone of negative velocity divergence are a little
bit stronger. All the schemes perfectly capture the discontinuity of the velocity in the
vacuum region (see Figure 1(b)). In the mass accumulation zone, the most accurate
results are obtained with the BJL scheme which is closely followed by the second-
order relaxation scheme. In terms of CPU time, the second-order relaxation scheme
costs about twice as much as the single time step BJL scheme because of the two-step
Runge–Kutta integration. In return, the relaxation scheme can be extended to accu-
rately solve the Euler equations (see the following test cases) and can be applied on
unstructured meshes while the BJL scheme is restricted to PGD and Cartesian grids.

1D Sod shock tube. In order to evaluate the hybrid PGD/gas dynamics re-
laxation method, the Sod shock tube test is performed with the following initial
conditions:

u0 = 0,

{
ρ0 = 1, p0 = 1.1 if x ≤ 0.5,
ρ0 = 0.125, p0 = 0 if x > 0.5.

1The exponential relaxation is used here for the particles’ drag law, but any form of physical
source term can be implemented using operator splitting.
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Fig. 1. Profiles of density (a) and velocity (b) for the BJL numerical test at time t = 0.5:
Exact solution (—), second-order BJL scheme (◦), first-order relaxation scheme (!), second-order
relaxation scheme (+) (80 nodes, CFL=0.5).

At the initial time, x > 0 corresponds to a zero pressure field computed with the
pressureless gas algorithm, while x ≤ 0 is computed with the gas dynamics algorithm.
In this test case, as in all other coupled method calculations, εmin = 10−10 and cmin

is evaluated through (3.20) taking γ = 1.4. Figure 2 shows the density and pressure
profiles at time t = 0.1644 for the first- and second-order relaxation schemes. The
interface between pressure and pressureless regions does not present any numerical
artifact. Due to the poor discretization of the surface discontinuity and the shock,
the density solution is smeared by the numerical diffusion. The second-order scheme
presents significantly better accuracy than the first-order scheme.
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Fig. 2. Profiles of density (a) and pressure (b) for the hybrid relaxation scheme in Sod numerical
test at time t = 0.1644: first-order relaxation scheme (pressure region: ◦; pressureless region: +),
second-order relaxation scheme (pressure region: !; pressureless region: ×) (80 nodes, CFL = 0.5).

1D Shock/δ-shock interaction. The robustness of the second-order relaxation
scheme is tested in a configuration where a shock propagates through a pressureless
region and meets a δ-shock in density. The δ-shock is created by an initial velocity
perturbation located in the pressureless region (see the black line in Figure 3(b)).
Figures 3(a) and 3(b) show two instants of the calculation: before (t = 0.1) and
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during (t = 0.2) the shock/δ-shock interaction. The trace of this interaction on the
velocity profile is an n-wave downstream from the shock position (Figures 3(c) and
3(d)). A corresponding density n-wave appears in Figure 3(a). After having interacted
with the δ-shock (t = 0.4 and 0.5), the shock has a higher density ratio than before
(t = 0.1), whereas its velocity jump stays unchanged. This test demonstrates the high
robustness of the present relaxation scheme.
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Fig. 3. Second-order hybrid relaxation scheme calculation of the interaction of a shock/δ-
shock: Profiles of density (a), (c) and velocity (b), (d). Before and during the interaction (a) and
(b): Time t=0 (—), t=0.1 (pressure region: ◦; pressureless region: •) and t=0.2 (pressure region:
!; pressureless region: +). After the interaction (c) and (d): t=0.4 (pressure region: ◦; pressureless
region: •) and t=0.6 (pressure region: !; pressureless region: +) (120 nodes, CFL=0.5).

2D Taylor–Green vortices. Figure 4(a) shows the velocity field U = (U, V ) of
the carrier phase corresponding to the four contrarotating Taylor–Green vortices used
in the following numerical tests:

{
U(x, y) = sin(2πx) cos(2πy),
V (x, y) = − cos(2πx) sin(2πy).

The spray dynamics is coupled to the gaseous flow field through a Stokes drag source
term, which amounts to relaxing the spray velocity field toward the gaseous one at a
rate set by the Stokes number St, i.e., the nondimensional relaxation time. From [10]
we know that there exists a critical value Stc = 1/8π which separates two regimes.
For St < Stc, the particles cannot escape from the Taylor–Green vortices, while, for
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St ≥ Stc, they are ejected out of their original vortices. Therefore, the following
tests consider two values of St in order to cover these two regimes: St = 0.9Stc and
St = 13Stc. The initial spray velocity is uniformly zero for all test-cases.

Pressureless transport of a nonuniform initial distribution at supercritical Stokes
number. In order to test the method’s capability of treating multidimensional trans-
port of inertial particles, the Stokes number is fixed at a supercritical value St = 13Stc.
Figure 4(a) shows the initial density distribution provided by a cardinal sinus func-
tion. To allow comparison with the BJL scheme, the pressureless relaxation scheme is
used. Figures 4(b) and 4(c) show the results at time t = 0.8 for the second-order BJL
scheme and the second-order relaxation scheme. Both schemes predict very similar
density fields featuring a δ-shock, as expected (see [10]).

(a) (b) (c)

ρ

Fig. 4. Carrier phase velocity field (Taylor–Green periodic vortices) and initial density contours
(a). Snapshots of the density distribution at time t = 0.8 for Stokes number St = 13Stc (200 nodes;
CFL = 0.5): Second-order BJL scheme (b) and second-order pressureless relaxation scheme (c).

Pressure versus pressureless transport of a uniform initial distribution at subcrit-
ical Stokes number. Figures 5(a) and 5(b) compare the density fields obtained with
the second-order BJL scheme and the second-order relaxation scheme, respectively,
starting from a uniform density distribution in subcritical Stokes number conditions
St = 0.9Stc. As for the supercritical case, both schemes predict very similar results,
with mass concentrating in the high strain regions because of the ejection of particles
from the center of vortices.2 Figure 5(c) shows that pressure effects limit the segre-
gation of particles (density concentration here). Physically, this can be interpreted as
a mixing effect from the carrier flow turbulence. Here, this turbulence is very simply
modeled by a uniform relaxation term of internal energy (target value εt = 1).

Hybrid pressure/pressureless transport of a nonuniform initial distribution at
supercritical Stokes number. The hybrid scheme is evaluated in a configuration where
two parcels of high-inertia particles are ejected from their initial vortices and col-
lide. The density distribution is given by a cardinal sinus function whose center is
(0.125,±0.375) and whose radius is 0.125 (see Figure 6; t = 0). A PGD calculation
and a gas dynamics calculation are performed. For the gas dynamics case, a relaxation

2In the limit of very high Knudsen numbers, the represented solution possesses a singular struc-
ture leading to a high concentration of number density of droplets, whereas the Lagrangian solution
leads to two streams of droplets crossing without interaction; consequently, such very narrow bands
or structures result from the Eulerian modeling assumption of PGD and have nothing to do with the
physics of such flows.
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(a) (b) (c)

ρ

Fig. 5. Snapshots of the density distribution at time t= 0.33 for Stokes number St = 0.9Stc:
Second-order BJL scheme (a), second-order pressureless relaxation scheme (b), and second-order
relaxation scheme with pressure (c) (200 nodes; CFL=0.5).

term of internal energy is imposed using a cardinal sinus function centered on y = 0
with a radius of 0.125 and a maximum value of εt = 0.5 (see Figure 6; t = 0; Hybrid
scheme). This energy source term simulates the effect of a local turbulence region of
the carrier flow on the particles’ transport. As expected, Figure 6 shows that, for both
PGD and hybrid schemes, each particle parcel is ejected from its vortex and starts to
interact with its mirror image at t = 0.75. In the PGD case, this interaction forms a
δ-shock at the meeting line y = 0. On the other hand, the hybrid case features only
a small increase in density at y = 0 because pressure effects limit the concentration
of particles (see ρ and p figures at t = 0.75). At t = 0.5, the parcels have just entered
the pressure zone, and the pressure effects are negligible. However, at t = 0.75 the
pressure rises rapidly and reaches a maximum value close to y = 0 where the parcels
collide. Later, at t = 1.1, both schemes evolve differently: most of the density is
concentrated close to y = 0 in the PGD case, while a smoother density distribution
and a broader pressure region is observed in the hybrid case.

5. Conclusions. A novel hybrid numerical method for solving Eulerian models
for spray dynamics has been proposed. Based on the relaxation method, it can deal
with both PGD and general gas dynamics systems of equations in various zones of the
same configuration. Therefore, it has the ability, on the one hand, to compute the low-
inertia particles dynamics, described by PGD, and, on the other hand, to account for
the effects of high-inertia particles in the turbulent regions of the flow, falling under
the general gas dynamics framework. The zero-density is also explicitly handled,
which is a key feature for simulating spray injection. In terms of accuracy, 1D and
2D tests in PGD configurations show that the scheme matches the kinetic scheme
of Bouchut–Jin–Lin previously used and thus validate the approach. In addition,
the hybrid PGD/gas dynamics approach predicts accurate results in the 1D shock
tube test-case. The high robustness of the method is demonstrated, particularly in a
shock/δ-shock interaction. 2D simulations in the framework of Taylor–Green vortices
with eventually localized turbulent subgrid energy source allow us to exhibit the
potential of the method. Additionally, the relaxation framework makes it possible to
handle an arbitrary pressure law such as the real gas-type behavior of turbulent sprays.
Therefore, the present investigation shows that this method has the ingredients needed
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t = 0�

t = 0.5�

t = 0.75�

t = 1.1�

ρ ρ p

Pressureless scheme Hybrid scheme

p

p

p

ρρ

Fig. 6. Snapshots of density (ρ) and pressure (p) for the second-order pressureless and hybrid
schemes at successive times (t = 0.5, 0.75, and 1.1) for St = 13Stc (200 nodes; CFL=0.5). t = 0
is the initial density contours and the constant carrier phase velocity field (Taylor–Green periodic
vortices). For the hybrid scheme, the constant energy source term is plotted in gray-scale with its
upper and lower limits as solid lines. The maximum density at t = 1.1 is 15.47 for the pressureless
scheme and 2.43 for the hybrid scheme.

to simulate turbulent sprays in a DNS/LES framework.
Finally, practical turbulent sprays behave more like a nonequilibrium gas with an
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anisotropic energy distribution. In the future, the present method may be extended to
nonisotropic energy distribution by coupling the PGD model in regions of low-inertia
particles with nonequilibrium gas dynamics in regions of high-inertia particles using,
for example, the Gaussian moment closure proposed by Levermore and Morokoff [23]
as in Vié, Doisneau, and Massot [38].
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