
HAL Id: hal-00906171
https://hal.science/hal-00906171

Preprint submitted on 27 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Logarithmic Sobolev Inequalities for
Log-Subharmonic Functions

Piotr Graczyk, Todd Kemp, Jean-Jacques Loeb

To cite this version:
Piotr Graczyk, Todd Kemp, Jean-Jacques Loeb. Strong Logarithmic Sobolev Inequalities for Log-
Subharmonic Functions. 2013. �hal-00906171�

https://hal.science/hal-00906171
https://hal.archives-ouvertes.fr


Strong Logarithmic Sobolev Inequalities for Log-Subharmonic

Functions

Piotr Graczyk∗
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Abstract

We prove an intrinsic equivalence between strong hypercontractivity (sHC) and a strong logarithmic

Sobolev inequality (sLSI) for the cone of logarithmically subharmonic (LSH) functions. We introduce a

new large class of measures, Euclidean regular and exponential type, in addition to all compactly-supported

measures, for which this equivalence holds. We prove a Sobolev density theorem through LSH functions, and

use it to prove the equivalence of (sHC) and (sLSI) for such log-subharmonic functions.

Contents

1 Introduction 2

1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Alternative Formulation of sHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Convolution property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Compactly Supported Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Density results through LSH functions 8

2.1 Properties of Euclidean regular measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Continuity of the Dilated Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Proof of Theorem 1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The Intrinsic Equivalence of (sLSI) and (sHC) 14

∗Partly supported by ANR-09-BLAN-0084-01
†Partly supported by NSF Grant DMS-1001894 and NSF CAREER Award DMS-1254807

1



1 Introduction

In this paper we study strong versions of logarithmic Sobolev inequalities (sLSI) and strong hypercontractiv-

ity (sHC) in the real spaces R
n and for logarithmically subharmonic (LSH) functions, continuing our research

published in [12] and solving the conjecture on the equivalence between (sHC) and (sLSI) formulated in [12,

Remark 5.11]. The main difficulty to overcome, as already noticed by Gross and Grothaus in [16], was efficient

approximating of (logarithmically) subharmonic functions.

If µ is a probability measure, the entropy functional Entµ relative to µ, defined on all sufficiently integrable

positive test functions g, is

Entµ(g) =

ˆ

g ln

(
g

‖g‖1

)
dµ

where ‖g‖1 = ‖g‖L1(µ). (When ‖g‖1 = 1, so g is a probability density, this gives the classical Shannon entropy.)

The logarithmic Sobolev inequality is an energy-entropy functional inequality: a measure µ on R
n (or more

generally on a Riemannian manifold) satisfies a log Sobolev inequality if, for some constant c > 0 and for all

sufficiently smooth positive test functions f ,

Entµ(f
2) ≤ c

ˆ

|∇f |2 dµ. (LSI)

Making the substitution g = f2 gives the equivalent form Entµ(g) ≤
c
4

´

|∇g|2/g dµ, the integral on the right

defining the Fisher information of g relative to µ. In this form, the inequality was first discovered for the standard

normal law µ on R by Stam in [29]. It was rediscovered and named by Gross in [14], proved for standard Gaussian

measures on R
n with sharp constant c = 2. Over the past four decades, it has become an enormously powerful

tool making fundamental contributions to geometry and global analysis [2, 3, 4, 5, 6, 8, 9, 10, 21, 23, 26],

statistical physics [18, 31, 32, 33], mixing times of Markov chains [7, 11, 17], concentration of measure and

optimal transport [22, 24, 30], random matrix theory [1, 25, 34], and many others.

Gross discovered the log Sobolev inequality through his work in constructive quantum field theory, particu-

larly relating to Nelson’s hypercontractivity estimates [28]. In fact, Gross showed in [14] that the log Sobolev

inequality (LSI) is equivalent to hypercontractivity. Later, in [19, 20], Janson discovered a stronger form of

hypercontractivity that holds for holomorphic test functions.

Theorem 1.1 (Janson [19]). If µ is the standard Gaussian measure on C
n, and 0 < p ≤ q < ∞, then for all

holomorphic functions f ∈ Lp(Cn, µ), ‖f(e−t · )‖q ≤ ‖f‖p for t ≥ 1
2 ln

q
p ; for t < 1

2 ln
q
p , the dilated function

f(e−t · ) is not in Lq(Cn, µ).

Remark 1.2. Nelson’s hypercontractivity estimates [28] involve the semigroup e−tAµ , where Aµ is the Dirichlet

form operator for the measure µ:
´

|∇f |2 dµ =
´

fAµf dµ. If dµ = ρ dx has a smooth density ρ, integration by

parts shows that Aµ = −∆−(∇ρ/ρ)·∇, and so when applied to holomorphic (hence harmonic) functions, e−tAµ

is the flow of the vector field ∇ρ/ρ. For the standard Gaussian measure, this is just the coordinate vector field x,

the infinitesimal generator of dilations Ef(x) = x ·∇f(x), also known as the Euler operator. The perspective of

this paper, like its predecessor [12], is that the strong hypercontractivity theorem is essentially about the dilation

semigroup f 7→ f(e−t · ), independent of the underlying measure.

Janson’s strong hypercontractivity differs from Nelson’s hypercontractivity in two important ways: first, the

time-to-contraction is smaller, 1
2 ln

q
p as opposed to the larger Nelson time 1

2 ln
q−1
p−1 , and second, the theorem

applies even in the regime 0 < p, q < 1 where the Lp “norms” are badly-behaved. Nevertheless, in [15],

Gross showed that Janson’s theorem is also a consequence of the same log Sobolev inequality (LSI); moreover,

he generalized this implication considerably to complex manifolds (equipped with sufficiently nice measures).

The reverse implication, however, was not established: the proof requires (LSI) to hold for non-holomorphic
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functions (in particular of the form |f |p/2). We refer the reader to [12] for an extensive list of recent literature on

strong hypercontractivity in the holomorphic category, and related ideas (notably reverse hypercontractivity) in

the subharmonic category.

The aim of the present paper is to prove an intrinsic equivalence of strong hypercontractivity and a log

Sobolev inequality. The starting point is a generalization of Theorem 1.1 beyond the holomorphic category. A

function on R
n is log-subharmonic (LSH for short) if ln |f | is subharmonic; holomorphic functions are prime

examples. In [12], we proved that Theorem 1.1 holds in the larger class LSH, for the Gaussian measure and

several others. We also established a weak connection to a strong log Sobolev inequality.

Definition 1.3. A measure µ on R
n satisfies a strong logarithmic Sobolev inequality if there is a constant c > 0

so that, for non-negative g ∈ LSH sufficiently smooth and integrable,

Entµ(g) ≤
c

2

ˆ

Eg dµ. (sLSI)

Inequality (sLSI) could be written equivalently in the form Entµ(f
2) ≤ c

´

fEf dµ; we will use it in L1-

form throughout. In [12], we showed the strong log Sobolev inequality holds for the standard Gaussian measure

on R
n, with constant c = 1 (half the constant from (LSI)), and conjectured that (sLSI) is equivalent in greater

generality to the following form of Janson’s strong hypercontractivity.

Definition 1.4. A measure µ on R
n satisfies the property of strong hypercontractivity if there is a constant

c > 0 so that, for 0 < p ≤ q <∞ and for every f ∈ Lp(µ) ∩ LSH, we have

‖f(r · )‖Lq(µ) ≤ ‖f‖Lp(µ) if 0 < r ≤ (p/q)c/2. (sHC)

Remark 1.5. The statement in Definition 1.4 is given in multiplicative notation rather than additive, with r = e−t

scaling the variable. It would appear more convenient to use the constant c instead of c
2 in (sLSI) and (sHC). We

choose to normalize with c
2 for historical reasons: Gross’s equivalence of the log Sobolev inequality and Nelson’s

hypercontractivity equates c in (LSI) to c
2 scaling the time to contraction.

Notation 1.6. For a function f on R
n and r ∈ [0, 1], fr denotes the function fr(x) = f(rx).

1.1 Main Results

In [12], we showed that (sHC) implies (sLSI) in the special case that the measure µ is compactly supported. Our

first result is the converse.

Theorem 1.7. Let µ be a compactly supported measure on R
n. Suppose that µ satisfies (sLSI) for all sufficiently

smooth functions g ∈ LSH(Rn). Then µ satisfies (sHC) for all functions f ∈ LSH(Rn).

Remark 1.8. We emphasize here that the domains in the equivalence consist of log-subharmonic functions a

priori defined on all of Rn, not just on the support of µ. Indeed, the dilation semigroup is not well-defined if this

is not satisfied. In fact, it is not hard to see that this result extends to log-subharmonic functions defined on any

star-shaped open region containing the support of µ.

Theorem 1.7 and its converse have non-trivial applications: for example, Proposition [12, Proposition 4.2]

implies that (sLSI) holds true for any compactly supported symmetric measure on R, with constant c ≤ 2.

Nevertheless, it excludes the standard players in log Sobolev inequalities, most notably Gaussian measures. In

[12, Theorem 5.8], we proved directly that (sLSI) holds true for the standard Gaussian measure on R
n, with best

constant c = 1. This was proved directly from (LSI), and relied heavily on the precise form of the Gaussian
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measure; a direct connection to strong hypercontractivity (also proved for the Gaussian measure in [12, Theorem

3.2]) was not provided. That connection, for a wide class of measures, is the present goal.

The technicalities involved in establishing the equivalence of (sLSI) and (sHC) are challenging because of

the rigidity of the class LSH: standard cut-off approximations needed to use integrability arguments in the proof

are unavailable for subharmonic functions. To amend this, we use a fundamentally different approximation

technique: the dilated convolution introduced in [13, 16], and developed in Section 2.2 below. In [13], the

authors provided a local condition on the density of µ under which this operation is bounded onLp(µ) (amounting

to a bound on the Jacobian derivative of the translation and dilation). Here we present alternative conditions,

which require little in terms of the local behaviour of the measure (they are essentially growth conditions near

infinity) and achieve the same effect.

Definition 1.9. Let p > 0 and let µ be a positive measure on R
n with density ρ. Say that µ (or ρ) is Euclidean

exponential type p if ρ(x) > 0 for all x and if the following two conditions hold:

sup
x

sup
|y|≤s

|x|p
ρ(ax+ y)

ρ(x)
<∞ for any a > 1, s ≥ 0 (1.1)

sup
x

sup
1<a<1+ǫ

ρ(ax)

ρ(x)
<∞ for some ǫ > 0. (1.2)

If µ is Euclidean exponential type 0, we say it is Euclidean regular.

The terminology derives from the fact that conditions (1.1) and (1.2) insist that the Euclidean group acts on

ρ in a controlled manner; exponential type refers to the growth condition involving |x|p (indeed, for p > 0 the

measure must have tails that decay faster than any polynomial to be Euclidean exponential type p). For any

probability measure µ with strictly positive density ρ, denote for a ≥ 1 and p, s ≥ 0

Cpµ(a, s) = Cpρ(a, s) ≡ sup
x

sup
|y|≤s

|x|p
ρ(ax+ y)

ρ(x)
. (1.3)

Then the condition that µ is Euclidean exponential type p is precisely that Cpµ(a, s) < ∞ for each a > 1 and

s ≥ 0, and C0
µ(a, 0) is uniformly bounded for a close to 1. It is clear from the definition that Cpµ(a, s) is an

increasing function of s. Moreover, if µ is Euclidean exponential type q then it is Euclidean exponential type p
for any p < q. For convenience, we will often write Cµ for C0

µ.

Example 1.10. On R, the densities (1 + x2)−α for α > 1
2 are Euclidean regular. On R

n the densities e−c|x|
a

with a, c > 0 are Euclidean exponential type p for all p > 0.

More examples and properties that prove the Euclidean regular measures form a rich class are given in Section

2.1. The purpose of introducing this class at present is its utility in proving a density theorem for an appropriate

class of Sobolev-type spaces.

Definition 1.11. Let µ be a measure on R
n, and let p > 0. Define the Sobolev space LpE(µ) to consist of those

weakly-differentiable functions f ∈ Lp(µ) for which Ef ∈ Lp(µ). To be clear: Ef(x) =
∑n

j=1 xjuj(x), where

uj is the function (posited to exist) satisfying

−

ˆ

∂jϕf dx =

ˆ

ϕuj dx

for any ϕ ∈ C∞
c (Rn), where dx denotes Lebesgue measure.
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Standard techniques, involving approximation by C∞
c functions, show that LpE is dense in Lp for reasonable

measures. However, our goals here involve approximation of log-subharmonic functions, and the usual cut-off

approximations fail to preserve subharmonicity. An alternative approach is to use a convolution approximate

identity procedure, as is readily available for Lebesgue measure. The problem is that, for a given bump function

ϕ, the operation f 7→ f ∗ ϕ is typically unbounded on Lp(µ) when µ is not Lebesgue measure. Indeed, for Lp

of Gaussian measure, even the translation f 7→ f( · + y) is unbounded. The problem is that the convolution

can shift mass in from near infinity. One might hope to dilate this extra mass back out near infinity, to preserve

p-integrability; thus the dilated convolution f 7→ (f ∗ ϕ)r. Section 2.2 shows that this operation behaves well in

Lp spaces of Euclidean regular measures; it also preserves the cone LSH.

The main technical theorem of this paper is the following Sobolev density theorem.

Theorem 1.12. Let p ∈ [0,∞), and let µ be a Euclidean exponential type p probability measure on R
n. Then

the cone LSH ∩ LpE(µ) is dense in the cone LSH ∩ Lp(µ).

Using Theorem 1.12, we will prove the equivalence of (sLSI) and (sHC), the latter in a nominally weaker form.

Definition 1.13. Let µ be a probability measure on R
n, and let 0 < p < q < ∞. Denote by LSHp<q(µ) the

closure of Lq(µ) ∩ LSH in Lp(µ) ∩ LSH.

For any probability measure, there is a common dense subspace (L∞) for all the full Lq-spaces, q > 0, and so the

closure of Lq in Lp is all of Lp for p < q; the proof uses cut-offs that do not respect subharmonicity, and indeed,

there are no non-constant bounded subharmonic functions. In [15], Gross showed that, under certain conditions

on a measure µ on a complex manifold (in terms of its Dirichlet form operator d∗d), in the presence of a full log

Sobolev inequality (LSI), there is a common dense subspace for all holomorphic Lq spaces of µ. In the present

context of logarithmically-subharmonic functions, no such technology is known, and we will content ourselves

with the spaces LSHp<q. We will consider the nature of the spaces in a future publication.

This brings us to our main theorem: the equivalence of (sLSI) and (sHC) for logarithmically subharmonic

functions.

Theorem 1.14. Let µ be an O(n)-invariant probability measure on R
n.

(1) If µ is Euclidean exponential type p for all p > 0, and if µ satisfies the strong log Sobolev inequality

(sLSI), then µ satisfies strong hypercontractivity (sHC) in the spaces LSHp<q(µ): for 0 < p ≤ q <∞ and

f ∈ LSHp<q, ‖fr‖q ≤ ‖f‖p for 0 < r ≤ (p/q)c/2.

(2) If µ is Euclidean exponential type p for some p > 1, and if µ satisfies (sHC) in the above sense, then µ
satisfies the strong log Sobolev inequality (sLSI):

Entµ(g) ≤
c

2

ˆ

Eg dµ

for all g ∈ LSH ∩ L1
E(µ) ∩ C

1(Rn).

Remark 1.15. The global assumption of rotational-invariance in Theorem 1.14 is actually quite natural in this sit-

uation. The functional g 7→
´

Eg dµ on the right-hand-side of our strong log Sobolev inequality is not generally

positive, since the operator E is not generally self-adjoint in L2(µ); however, when µ is rotationally-invariant,

this functional is positive on the cone LSH, as pointed out in [12, Proposition 5.1].

We emphasize that Theorem 1.14 is intrinsic. While the two directions of the theorem require slightly different

assumptions on the applicable measures, the implications between (sLSI) and (sHC) both stay within the cone

LSH of log-subharmonic functions. This is the main benefit of extending Janson’s strong hypercontractivity

theorem from holomorphic functions to this larger class, and restricting the log-Sobolev inequality to it: here, the

two are precisely equivalent.
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1.2 Alternative Formulation of sHC

The following equivalent characterization of strong hypercontractivity will be useful in what follows.

Proposition 1.16. Fix c > 0 and let q(r) denote the function q(r) = r−2/c. A measure µ satisfies strong

hypercontractivity (sHC) if and only if for each function f ∈ L1(µ) ∩ LSH,

‖fr‖q(r) ≤ ‖f‖1 and ‖fr‖1 ≤ ‖f‖1, for r ∈ (0, 1].

Remark 1.17. Similarly, the form of strong hypercontractivity given in Theorem 1.14 is equivalent to the same

inequalities above holding for all f in the nominally smaller space LSH1<q(r).

For the proof, it is useful to note that the class LSH is closed under f 7→ fp for any p > 0.

Proof. First, suppose (sHC) holds with constant c. The case p = q = 1 yields ‖fr‖1 ≤ ‖f‖1 for 0 < r ≤
(p/q)2/c = 1. More generally, by (sHC), ‖fr‖q ≤ ‖f‖1 whenever 0 < r ≤ (1/q)c/2; i.e. whenever q ≥ r−c/2 =
q(r). In particular, it follows that ‖fr‖q(r) ≤ ‖f‖1 as claimed.

Conversely, suppose the above conditions hold true. Fix q ≥ p > 0 and let f ∈ Lp(µ) ∩ LSH. Then fp ∈
L1(µ)∩LSH, and so by assumption we have ‖(fp)r‖q(r) ≤ ‖fp‖1 for 0 < r ≤ 1. Since (fp)r = (fr)

p, it follows

immediately that ‖fr‖
p
p·q(r) ≤ ‖f‖pp. Setting q = p · q(r) and solving for r, we have r = r(p, q) ≡ (p/q)c/2, and

so we have proved the equality case of (sHC). Finally, suppose that r′ ≤ r(p, q) = (p/q)c/2; then there is s ∈
(0, 1] so that r′ = s · r(p, q). Dilations form a multiplicative semigroup, so fr′ = (fr(p,q))s. We have just proved

that fr(p,q) ∈ Lq, and hence (fr(p,q))
q is in L1(µ). Therefore, by assumption, ‖[(fr(p,q))

q]s‖1 ≤ ‖(fr(p,q))
q‖1;

unwinding this yields

‖fr′‖
q
q = ‖(fr(p,q))s‖

1
q = ‖[(fr(p,q))s]

q‖1 = ‖[(fr(p,q))
q]s‖1 ≤ ‖(fr(p,q))

q‖1 = ‖fr(p,q)‖
q
q ≤ ‖f‖qp

by the equality case, thus proving (sHC).

Remark 1.18. In fact, (sHC) implies the putatively stronger statement that r 7→ ‖fr‖q(r) is non-decreasing on

[0, 1]; however, the weaker form presented above is generally easier to work with.

1.3 Convolution property

We will use the convolution operation to prove the Sobolev density theorem at the heart of this paper, as well as

Theorem 1.7. We begin by showing that this operation preserves the cone LSH.

Lemma 1.19. Let f ∈ LSH. Let ϕ ≥ 0 be a C∞
c test function. Then f ∗ ϕ ∈ LSH ∩ C∞.

Proof. Since f ∈ LSH, f ≥ 0 and ln f is subharmonic. In particular, ln f is upper semi-continuous and locally

bounded above, and so the same holds for f . Thus f is locally bounded and measurable; thus f ∗ ϕ defines an

L1
loc ∩ C

∞ function. We must show it is LSH.

Any subharmonic function is the decreasing limit of a sequence of C∞ subharmonic functions, cf. [27,

Appendix 1, Proposition 1.15]. Applying this to ln f , there is a sequence fn ∈ LSH ∩C∞ such that fn ↓ f . Let

gn = fn +
1
n ; so gn is strictly positive, and gn ↓ f . Since ϕ is ≥ 0, it follows from the Monotone Convergence

Theorem that gn ∗ ϕ ↓ f ∗ ϕ pointwise.

Now, (gn ∗ ϕ)(x) =
´

Rn gn(x − ω)ϕ(ω) dω. Since translation and positive dilation preserve the cone LSH,

the function x 7→ gn(x−ω)ϕ(ω) is continuous and LSH for each ω. Moreover, the function ω 7→ gn(x−ω)ϕ(ω)
is continuous and bounded. Finally, for small r, sup|t−x|≤r gn(t−ω)ϕ(ω) ≤ ‖ϕ‖∞ sup|t|≤|x|+r gn(t) is bounded

uniformly in ω. It follows from [12, Lemma 2.4] that gn ∗ ϕ is LSH. (The statement of that lemma apparently
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requires the supremum to be uniform in x as well, but this is an overstatement; as the proof of the lemma clearly

shows, only uniformity in ω is required).

Thus, f ∗ϕ is the decreasing limit of strictly positive LSH functions gn ∗ϕ. Applying the Monotone Conver-

gence Theorem to integrals of ln(gn ∗ϕ) about spheres now shows that ln(f ∗ϕ) is subharmonic, so f ∗ϕ ∈ LSH
as claimed.

1.4 Compactly Supported Measures

This section is devoted to the proof of Theorem 1.7. It follows the now-standard Gross proof of such equivalence:

differentiating hypercontractivity at the critical time yields the log Sobolev inequality, and vice versa. The tech-

nical issues related to differentiating under the integral can be dealt with fairly easily in the case of a compactly

supported measure; the remainder of this paper develops techniques for handling measures with non-compact

support. The forward direction of the theorem, that (sHC) implies (sLSI) for compactly supported measures, is

[12, Theorem 5.2], so we will only include the proof of the reverse direction here.

Proof of Theorem 1.7. By assumption, (sLSI) holds for sufficiently smooth and integrable functions; here we

interpret that precisely to mean Entµ(g) ≤ c
2

´

Eg dµ for all g ∈ C1(Rn) for which both sides are finite. Fix

f ∈ L1(µ)∩LSH∩C1. Utilizing Proposition 1.16, we must consider the function α(r) = ‖fr‖q(r) where q(r) =

r−2/c. Let β(r) = α(r)q(r) =
´

f(rx)q(r) µ(dx) and set βx(r) = f(rx)q(r) so that β(r) =
´

βx(r)µ(dx). Then,

∂

∂r
ln βx(r) = q′(r) ln f(rx) +

q(r)

f(rx)
x · ∇f(rx).

Since q′(r) = − 2
rcq(r), and since x · ∇f(rx) = 1

r (Ef)r(x) =
1
rE(fr)(x), we have

∂

∂r
βx(r) = −

2

rc
fr(x)

q(r) ln fr(x)
q(r) +

1

r
q(r)fr(x)

q(r)−1(Efr)(x). (1.4)

Fix 0 < ǫ < 1. As f is C1, the function (of x) on the right-hand-side of (1.4) is uniformly bounded for r ∈ (ǫ, 1]
and x ∈ suppµ (due to compactness). The Dominated Convergence Theorem thus allows differentiation under

the integral, and so

β′(r) =

ˆ

∂

∂r
βx(r)µ(dx). (1.5)

Thus, since α(r) = β(r)1/q(r) and β(r) > 0, it follows that α is C1 on (ǫ, 1] and the chain rule yields

α′(r) =
α(r)

q(r)β(r)

2

rc

[
β(r) ln β(r) +

rc

2
β′(r)

]
. (1.6)

From (1.4) and (1.5), the quantity in brackets is

ˆ

f q(r)r dµ · ln

ˆ

f q(r)r dµ+
rc

2

ˆ

(
−

2

rc
f q(r)r ln f q(r)r +

1

r
q(r)f q(r)−1

r Efr

)
dµ

=

ˆ

f q(r)r dµ · ln

ˆ

f q(r)r dµ−

ˆ

f q(r)r ln f q(r)r dµ+ q(r)
c

2

ˆ

f q(r)−1
r Efr dµ

=− Entµ(f
q(r)
r ) +

c

2

ˆ

E(f q(r)r ) dµ, (1.7)

where the equality in the last term follows from the chain rule.

Since f ∈ C1, it is bounded on the compact set suppµ, and so are all of its dilations fr. Hence, both terms

in (1.7) are finite, and so by the assumption of the theorem, this term is ≥ 0. From (1.6), we therefore have
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α′(r) ≥ 0 for all r > ǫ. Since this is true for each ǫ > 0, it holds true for r ∈ (0, 1]. This verifies the first

inequality in Proposition 1.16. For the second, we use precisely the same argument to justify differentiating

under the integral to find

∂

∂r
‖fr‖1 =

ˆ

∂

∂r
fr(x)µ(dx) =

1

r

ˆ

Efr(x)µ(dx) ≥
2

cr
Entµ(fr) ≥ 0

by the assumption of (sLSI). This concludes the proof for f ∈ C1.

Now, if f ∈ L1(µ) ∩ LSH, we consider a smooth approximate identity sequence ϕk. The inequalities in

Proposition 1.16 hold for f ∗ ϕk by the first part of the proof and Lemma 1.19. Note by simple change of

variables that (f ∗ϕk)r = fr ∗ (r
nϕk)r, and that (rnϕk)r is also an approximate identity sequence. The function

fr is LSH, so it is upper semi-continuous and consequently locally bounded. Thus fr ∈ Lq(r) and (f ∗ ϕk)r
converges to fr in Lq(r). This concludes the proof.

2 Density results through LSH functions

2.1 Properties of Euclidean regular measures

In this section, we show several closure properties of the class of Euclidean regular measures (of any given

exponential type p ∈ [0,∞)): it is closed under bounded perturbations, convex combinations, product, and

convolution. Throughout, we use µi (i = 1, 2) to stand for such measures, and ρi to stand for their densities.

Proposition 2.1. Let µ1 and µ2 be positive measures on R
n, and suppose µ1 is Euclidean exponential type

p ∈ [0,∞). If there are constants C,D > 0 such that Cµ1 ≤ µ2 ≤ Dµ1, then µ2 is also Euclidean exponential

type p.

Proof. The assumption is that Cρ1 ≤ ρ2 ≤ Dρ1. Let ǫ > 0 be such that sup1<a<1+ǫ C
0
ρ1(a, 0) < ∞. Then for

any such a,
ρ2(ax)

ρ2(x)
≤
Dρ1(ax)

Cρ1(x)
≤
D

C
C0
ρ1(a, 0)

for all x; thus C0
ρ2(a, 0) ≤

D
CC

0
ρ1(a, 0), and so sup1<a<1+ǫ C

0
ρ2(a, 0) <∞. Similarly, for x, y ∈ R

n and a > 1,

|x|p
ρ2(ax+ y)

ρ2(x)
≤ |x|p

Dρ1(ax+ y)

Cρ1(x)
≤
D

C
Cpρ1(a, |y|)

and so Cpρ2(a, s) ≤
D
CC

p
ρ1(a, s) <∞.

Proposition 2.2. Let µ1 and µ2 be Euclidean regular measures of exponential type p ∈ [0,∞). For any t ∈ [0, 1],
µ = (1− t)µ1 + tµ2 is Euclidean exponential type p.

Proof. Let ǫ > 0 be such that sup1<a<1+ǫ C
0
ρi(a, 0) < ∞ for i = 1, 2. Let ρ be the density of µ. Then for any

x ∈ R
n,

ρ(ax) = (1− t)ρ1(ax) + tρ2(ax) ≤ (1− t)C0
ρ1(a, 0)ρ1(x) + tC0

ρ2(a, 0)ρ2(x)

≤ max{C0
ρ1(a, 0), C

0
ρ2(a, 0)}ρ(x)

and so C0
ρ(a, 0) ≤ max{C0

ρ1(a, 0), C
0
ρ2(a, 0)} is uniformly bounded for 1 < a < 1 + ǫ, as required. Similarly,

for x, y ∈ R
n and a > 1,

|x|pρ(ax+ y) ≤ (1− t)|x|pρ1(ax+ y) + t|x|pρ2(ax+ y) ≤ (1− t)Cpρ1(a, |y|)ρ1(x) + tCpρ2(a, |y|)ρ2(x)

≤ max{Cpρ1(a, |y|), C
p
ρ2(a, |y|)}ρ(x)

which shows that Cpρ(a, s) ≤ max{Cpρ1(a, s), C
p
ρ2(a, s)} <∞ for a ≥ 1 and s ≥ 0.
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Proposition 2.3. Let p ∈ [0,∞), let µ1 be a Euclidean exponential type p measure on R
n1 , and let Let µ2 be a

Euclidean exponential type p measure on R
n2 . Then the product measure µ1 ⊗ µ2 is Euclidean exponential type

p on R
n1+n2 .

Proof. For i = 1, 2 let ρi be the density of µi; then µ1 ⊗ µ2 has density ρ1 ⊗ ρ2(x1, x2) = ρ1(x1)ρ2(x2). Fix

ǫ > 0 so that sup1<a<1+ǫ C
p
ρi(0, a) <∞ for i = 1, 2. Then, letting x = (x1, x2),

ρ1 ⊗ ρ2(ax) = ρ1(ax1)ρ2(ax2) ≤ C0
ρ1(a, 0) ρ1(x1) · C

0
ρ2(a, 0) ρ2(x2)

and so C0
ρ1⊗ρ2(a, 0) ≤ C0

ρ1(a, 0) · C
0
ρ2(a, 0), meaning sup1<a<1+ǫ C

0
ρ1⊗ρ2(a, 0) < ∞. Similarly, for fixed

x,y ∈ R
n1+n2 and a > 1,

|x|pρ1 ⊗ ρ2(ax+ y) = (|x1|+ |x2|)
pρ1(ax1 + y1)ρ2(ax2 + y2).

By elementary calculus, (|x1|+ |x2|)
p ≤ 2p−1(|x1|

p + |x2|
p), and so we have

|x|pρ1 ⊗ ρ2(ax+ y) ≤ 2p−1|x1|
pρ1(ax1 + y1) · ρ2(ax2 + y2) + 2p−1ρ1(ax1 + y1) · |x2|

pρ2(ax2 + y2).

For the first term, we have |x1|
pρ1(ax1 + y1) ≤ Cpρ1(a, |y1|)ρ1(x1) while ρ2(ax2 + y2) ≤ C0

ρ2(a, |y2|); for the

second term, we have ρ1(ax1 + y1) ≤ C0
ρ1(a, |y1|)ρ1(x1) while |x2|

pρ2(ax2 + y2) ≤ Cpρ2(a, |y2|). If |y| ≤ s
then |yi| ≤ s for i = 1, 2. All together, this shows that

Cpρ1⊗ρ2(a, s) ≤ 2p−1
[
Cpρ1(a, s)C

0
ρ2(a, s) + C0

ρ1(a, s)C
p
ρ2(a, s)

]

which is finite since both ρ1, ρ2 are Euclidean exponential type p (and hence also Euclidean regular). This proves

the proposition.

Proposition 2.4. Let µ1 and µ2 be positive measures on R
n, each of Euclidean exponential type p ∈ [0,∞).

Then µ1 ∗ µ2 is Euclidean exponential type p.

Proof. Let ρj be the density of µj . By assumption, for i = 1, 2 Cpiρi (a, s) <∞ for a > 1 and s ≥ 0, and there is

ǫ > 0 such that sup1<a<1+ǫ C
0
ρi(a, 0) <∞, cf. (1.3). Then for a ≥ 1 and x ∈ R

n

ρ1 ∗ ρ2(ax) =

ˆ

ρ1(ax− u)ρ2(u) du = an
ˆ

ρ1(ax− av)ρ2(av) dv.

By definition, ρ1(a(x− v)) ≤ C0
ρ1(a, 0)ρ1(x− v) and ρ2(av) ≤ C0

ρ2(a, 0)ρ2(v) for all x, v. Thus

ρ1 ∗ ρ2(ax) ≤ anC0
ρ1(a, 0) · C

0
ρ2(a, 0)

ˆ

ρ1(x− v)ρ2(v) dv = anC0
ρ1(a, 0) · C

0
ρ2(a, 0)ρ1 ∗ ρ2(x).

It follows that C0
ρ1∗ρ2(a, 0) ≤ anC0

ρ1(a, 0) · C
0
ρ2(a, 0), and hence

sup
1<a<1+ǫ

C0
ρ1∗ρ2(a, 0) ≤ (1 + ǫ)n sup

1<a<1+ǫ
C0
ρ1(a, 0) · sup

1<a<1+ǫ
C0
ρ2(a, 0) <∞ (2.1)

as required. Similarly, for x, y ∈ R
n and a > 1,

|x|pρ1 ∗ ρ2(ax+ y) = |x|p
ˆ

ρ1(ax+ y − u)ρ2(u) du = an
ˆ

|x|pρ1(a(x− v) + y)ρ2(av) dv.

Note (by elementary calculus) that |x|p ≤ 2p−1(|x− v|p + |v|p), and so

|x|pρ1 ∗ ρ2(ax+ y) ≤ 2p−1an
[
ˆ

|x− v|pρ1(a(x− v) + y)ρ2(av) dv +

ˆ

ρ1(a(x− v) + y)|v|pρ(av) dv

]
.
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In the first term, we have |x− v|pρ1(a(x− v) + y) ≤ Cpρ1(a, |y|)ρ1(x− v) and ρ2(av) ≤ C0
ρ2(a, 0), and so

ˆ

|x− v|pρ1(a(x− v) + y)ρ2(av) dv ≤ Cpρ1(a, |y|) · C
0
ρ2(a, 0) ρ1 ∗ ρ2(x).

In the second term, we have ρ1(a(x− v) + y) ≤ C0
ρ1(a, |y|)ρ1(x− v) and |v|pρ(av) ≤ Cpρ2(a, 0), and so

ˆ

ρ1(a(x− v) + y)|v|pρ(av) dv ≤ C0
ρ1(a, |y|) · C

p
ρ2(a, 0) ρ1 ∗ ρ2(x).

All together, for any s ≥ |y|, this gives

Cpρ1∗ρ2(a, s) ≤ 2p−1an
[
Cpρ1(a, s) · C

0
ρ2(a, 0) + C0

ρ1(a, s) · C
p
ρ2(a, 0)

]
(2.2)

which is finite since both ρ1 and ρ2 are Euclidean exponential type p (and thus also Euclidean regular). Equations

(2.1) and (2.2) prove the proposition.

2.2 Continuity of the Dilated Convolution

One easy consequence of Definition 1.9 is that the operation f 7→ fr is bounded on Lp.

Lemma 2.5. Let µ be a Euclidean regular probability measure, let p > 0, and let r ∈ (0, 1). Then

‖fr‖Lp(µ) ≤ r−n/pCµ
(
1
r , 0

)1/p
‖f‖Lp(µ).

Proof. We simply change variables u = rx and use Definition 1.9:

ˆ

|fr(x)|
pµ(dx) =

ˆ

|f(rx)|pρ(x) dx = r−n
ˆ

|f(u)|pρ(x/r) dx ≤ r−nCµ
(
1
r , 0

) ˆ
|f(u)|pρ(x) dx.

Remark 2.6. By condition (1.2) of Definition 1.9, the constant in Lemma 2.5 is uniformly bounded for r ∈ (ǫ, 1]
for any ǫ > 0; that is, there is a uniform (independent of r) constant Cǫ so that, for r ∈ (ǫ, 1], ‖fr‖Lp(µ) ≤
Cǫ‖f‖Lp(µ).

The next proposition shows that, under the assumptions of Definition 1.9, the dilated convolution operation

is indeed bounded on Lp. As usual, the conjugate exponent p′ to p ∈ [1,∞) is defined by 1
p +

1
p′ = 1.

Proposition 2.7. Let µ be a Euclidean regular probability measure on R
n. Let p ∈ [1,∞), and let ϕ ∈ C∞

c be

a test function. Then the dilated convolution operation f 7→ (f ∗ ϕ)r is bounded on Lp(µ) for each r ∈ (0, 1).
Precisely, if K = suppϕ and s = sup{|w| ; w ∈ K}, then

‖(f ∗ ϕ)r‖Lp(µ) ≤ r−n/pCµ(
1
r ,

s
r )

1/p Vol(K)1/p‖ϕ‖Lp′ (K) ‖f‖Lp(µ),

where Cµ is the constant defined in (1.3).

Proof. Denote by K the support of ϕ. By definition,

‖(f ∗ ϕ)r‖
p
Lp(µ) =

ˆ

Rn

∣∣∣∣
ˆ

K
f(rx− y)ϕ(y) dy

∣∣∣∣
p

ρ(x) dx.
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We immediately estimate the internal integral using Hölder’s inequality:

∣∣∣∣
ˆ

K
f(rx− y)ϕ(y) dy

∣∣∣∣
p

≤

ˆ

K
|f(rx− y)|p dy · ‖ϕ‖p

Lp′ (K)
,

which is finite since the first integral is the p-th power of the Lp-norm of f restricted to the compact set rx−K .

Hence,

‖(f ∗ ϕ)r‖
p
Lp(µ) ≤ ‖ϕ‖p

Lp′ (K)

ˆ

Rn

ˆ

K
|f(rx− y)|pdy ρ(x) dx. (2.3)

We apply Fubini’s theorem to the double integral, which is therefore equal to

ˆ

K

ˆ

Rn

|f(rx− y)|pρ(x) dx dy =

ˆ

K
r−n

ˆ

Rn

|f(u)|pρ

(
u+ y

r

)
du dy (2.4)

where we have made the change of variables u = rx− y in the internal integral. By assumption, ρ is Euclidean

regular, and so we have

ρ(1ru+ 1
ry) ≤ Cµ(

1
r ,

s
r ) ρ(u), y ∈ K. (2.5)

where s = sup{|w| ; w ∈ K}. Substituting (2.5) into (2.4), we see that (2.3) yields

‖(f ∗ ϕ)r‖
p
Lp(µ) ≤ r−nCµ(

1
r ,

s
r )Vol(K) ‖ϕ‖p

Lp′ (K)

ˆ

|f(u)|pρ(u) du.

This completes the proof.

Remark 2.8. The explicit constant in Proposition 2.7 appears to depend strongly on the support set of ϕ, but it

does not. Indeed, it is easy to check that the standard rescaling of a test function, ϕs(x) = s−nϕ(x/s), which

preserves total mass, also preserves the ϕ-dependent quantity above; to be precise, Vol(suppϕs)‖ϕs‖p
Lp′ (Rn)

does

not vary with s. In addition, the constant Cµ(1/r, s/r) is well-behaved as s shrinks (indeed, it only decreases).

It is for this reason that the proposition allows us to use the dilated convolution operation with an approximate

identity sequence in what follows.

The use of Proposition 2.7 is that it allows us to approximate an Lp function by smoother Lp functions, along

a path through LSH functions. To prove this, we first require the following continuity lemma.

Lemma 2.9. Let µ be a Euclidean regular probability measure, and let r ∈ (0, 1). Then for any f ∈ Lp(µ), the

map Tf : R
n → Lp(µ) given by [Tf (y)](x) = fr(x− y) is continuous.

Proof. First note that, by the change of variables u = rx− ry,

‖Tf (y)‖
p
Lp(µ) =

ˆ

|f(rx− ry)|pρ(x) dx = r−n
ˆ

|f(u)|pρ
(
1
ru+ y

)
du,

and the latter is bounded above by r−nCµ(
1
r , |y|) ‖f‖

p
Lp(µ), showing that the range of Tf is truly in Lp(µ) for

y ∈ R
n. Now, fix ǫ > 0 and let ψ ∈ Cc(R

n) be such that ‖f − ψ‖Lp(µ) < ǫ. Let (yk)
∞
k=1 be a sequence in R

n

with limit y0. Then

‖Tf (yk)− Tf (y0)‖Lp(µ) ≤ ‖Tf (yk)− Tψ(yk)‖Lp(µ) + ‖Tψ(yk)− Tψ(y0)‖Lp(µ) + ‖Tψ(y0)− Tf (y0)‖Lp(µ).

The first and last terms are simply Tψ−f (yk) (with k = 0 for the last term), and so we have just proved that

‖Tψ−f (yk)‖Lp(µ) ≤ r−n/pCµ
(
1
r , |yk|

)1/p
‖ψ − f‖Lp(µ) < r−n/pCµ

(
1
r , |yk|

)1/p
ǫ.
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Moreover, there is a constant s so that |yk| ≤ s for all k, and since Cµ(a, s) is an increasing function of s, it

follows that

‖Tf (yk)− Tf (y0)‖Lp(µ) ≤ ‖Tψ(yk)− Tψ(y0)‖Lp(µ) + 2r−n/pCµ
(
1
r , s

)1/p
ǫ.

For each x, (Tψ(yk)(x) − Tψ(y0)(x) = ψ(rx − ryk) − ψ(rx − ry0) converges to 0 since ryk → ry0 and ψ
is continuous. In addition, ψr is compactly supported and continuous, so it is uniformly bounded. Since µ is a

probability measure, it now follows that ‖Tψ(yk) − Tψ(y0)‖Lp(µ) → 0 as yk → y0, and the lemma follows by

letting ǫ ↓ 0.

Corollary 2.10. Let µ be a Euclidean regular probability measure, and let r ∈ (0, 1). Then for any f ∈ Lp(µ),
and ϕk an approximate identity sequence (ϕk ∈ C∞

c (Rn) with
´

ϕk(x) dx = 1 and suppϕk ↓ {0}),

‖fr ∗ ϕk − fr‖Lp(µ) → 0 as k → ∞.

Proof. Fix ǫ > 0 and let ψ ∈ Cc(R
n) be such that ‖f −ψ‖Lp(µ) < ǫ. The standard 3 term inequality in this case

is

‖fr ∗ ϕk − fr‖Lp(µ) ≤ ‖(fr − ψr) ∗ ϕk‖Lp(µ) + ‖ψr ∗ ϕk − ψr‖Lp(µ) + ‖ψr − fr‖Lp(µ). (2.6)

Following the proof of Lemma 2.9, we have ‖fr−ψr‖Lp(µ) ≤ r−n/pCµ(1/r, 0)
1/pǫ, and from condition (1.2) of

Definition 1.9 this is a uniformly bounded constant times ǫ for r away from 0. Also, note that

fr ∗ ϕk(x) =

ˆ

fr(x− y)ϕk(y) dy =

ˆ

f(rx− ry)ϕk(y) dy = r−n
ˆ

f(rx− u)ϕk(u/r) du;

that is to say, fr ∗ ϕk = r−n(f ∗ ϕ̃k)r , where we set ϕ̃k = (ϕk)1/r . Hence,

‖(f − ψ)r ∗ ϕ̃k‖Lp(µ) = r−n‖((f − ψ) ∗ ϕ̃k)r‖Lp(µ)

≤ r−nr−n/pCµ
(
1
r ,

sk
r

)1/p
Vol(suppϕ̃k)

1/p‖ϕ̃k‖Lp′ (Rn) · ‖f − ψ‖Lp(µ)

by Proposition 2.7, where sk = sup{|w| ; w ∈ suppϕk}. Since Cµ(1/r,
s
r ) is increasing in s, this constant is

uniformly bounded as k → ∞. What’s more, cf. Remark 2.8, the product Vol(suppϕ̃k)
1/p‖ϕ̃k‖Lp′ (Rn) can also

be made constant with k (for example by choosing ϕk(x) = knϕ(kx) for some fixed unit mass C∞
c test-function

ϕ). The result is that both the first and last terms in (2.6) are uniformly small as k → ∞. Thus, we need only

show that ψr ∗ ϕk → ψr in Lp(µ). The quantity in question is the pth root of

ˆ

∣∣∣∣
ˆ

ψr(x− y)ϕk(y) dy − ψr(x)

∣∣∣∣
p

µ(dx) =

ˆ

∣∣∣∣
ˆ

Kk

[ψr(x− y)− ψr(x)]ϕk(y) dy

∣∣∣∣
p

µ(dx), (2.7)

where we have used the fact that ϕk is a probability density; here Kk denotes the support of ϕk. Since ψr is

bounded, we may make the blunt estimate that the quantity in (2.7) is

≤

ˆ

sup
y∈Kk

|ψr(x− y)− ψr(x)|
p

∣∣∣∣
ˆ

Kk

ϕk(y) dy

∣∣∣∣
p

µ(dx) =

ˆ

sup
y∈Kk

|ψr(x− y)− ψr(x)|
p µ(dx).

Since ψr is continuous and Kk is compact, there is a point yk ∈ Kk such that the supremum is achieved at yk:

supy∈Kk
|ψr(x− y)− ψr(x)|

p = |ψr(x− yk)− ψr(x)|
p. As k → ∞, the support Kk of ψk shrinks to {0}, and

so yk → 0. The function |ψr(x − yk)− ψr(x)|
p is continuous in x, and so converges to 0 pointwise as yk → 0.

It therefore follows from the dominated convergence theorem that ‖ψr ∗ ϕk − ψr‖Lp(µ) → 0, completing the

proof.

We will now use Proposition 2.7 and Corollary 2.10 to prove our main approximation theorem: that LpE(µ)
is dense in Lp(µ) through log-subharmonic functions.
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2.3 The Proof of Theorem 1.12

Proof of Theorem 1.12. The basic idea of the proof is as follows: approximate a function f ∈ LSH ∩ Lp(µ)
by (f ∗ ϕ)r , and let ϕ run through an approximate identity sequence and r tend to 1. We show that the dilated

convolution (f ∗ ϕ)r is in LSH ∩ LpE(µ), and that these may be used to approximate f in Lp-sense.

Part 1: (f ∗ ϕ)r is in LSH ∩ LpE(µ). Let ϕ ∈ C∞
c (Rn) be a non-negative test function. Lemma 1.19 shows that

f ∗ ϕ is C∞ and LSH. It is elementary to verify that the cone C∞ ∩ LSH is invariant under dilations g 7→ gr;
hence the dilated convolution (f ∗ ϕ)r is C∞ and LSH. For fixed r < 1, Proposition 2.7 shows that (f ∗ ϕ)r is

in Lp(µ), since f ∈ Lp(µ). We must now apply the differential operator E. Note that (f ∗ ϕ)r is C∞, and so

E[(f ∗ ϕ)r](x) = x · ∇[(f ∗ ϕ)r](x) =

ˆ

rx · ∇ϕ (rx− y)f(y) dy.

Decomposing rx = (rx− y) + y, we break this up as two terms

E[(f ∗ ϕ)r](x) =

ˆ

(rx− y) · ∇ϕ (rx− y)f(y) dy +

ˆ

y · ∇ϕ(rx− y)f(y) dy. (2.8)

The first term is just (f ∗ Eϕ)r(x), and since Eϕ is also C∞
c (Rn), Proposition 2.7 bounds the Lp-norm of this

term by the Lp-norm of f . Hence, it suffices to show that the second term in (2.8) defines an Lp(µ)-function of

x. We now proceed analogously to the proof of Proposition 2.7. Changing variables u = rx − y for fixed x in

the internal integral and then using Hölder’s inequality,

ˆ

Rn

∣∣∣∣
ˆ

Rn

y · ∇ϕ (rx− y)f(y) dy

∣∣∣∣
p

ρ(x) dx

=

ˆ

Rn

∣∣∣∣
ˆ

K
(rx− u) · ∇ϕ(u)f(rx− u) du

∣∣∣∣
p

ρ(x) dx

≤

ˆ

Rn

(
ˆ

K
|rx− u|p |f(rx− u)|p du

) (
ˆ

K
|∇ϕ (u)|p

′

dy

)p/p′
ρ(x) dx,

where K = suppϕ. Note that ‖∇ϕ‖p′ < ∞ is a constant independent of f . So we must consider the double

integral, to which we apply Fubini’s theorem,

ˆ

Rn

(
ˆ

K
|rx− u|p|f(rx− u)|pdu

)
ρ(x) dx =

ˆ

K

(
ˆ

Rn

|rx− u|p|f(rx− u)|pρ(x) dx

)
du.

Now we change variables v = rx− u for fixed u in the internal integral, to achieve

ˆ

K

(
ˆ

Rn

|v|p|f(v)|pρ

(
v + u

r

)
r−n dv

)
du. (2.9)

Finally, we utilize the assumption that ρ is exponential type p, and so there is a constant C(p, r,K) so that

|v|pρ(v+ur ) ≤ C(p, r,K)ρ(u) for u ∈ K . Hence the integral in (2.9) is bounded above by C(p, r,K)r−nVol(K)
times the finite norm

´

|f |p dµ, which demonstrates that E[(f ∗ ϕ)r] is in Lp(µ).

Part 2: (f ∗ ϕ)r approximates f in Lp(µ). Let ϕk be an approximate identity sequence. Note by simple change

of variables that (f ∗ ϕk)r = fr ∗ (rnϕk)r, and that (rnϕk)r is also an approximate identity sequence. Since

fr ∈ Lp(µ), by Lemma 2.5, it follows from Corollary 2.10 that (f ∗ ϕk)r → fr, k → ∞, in Lp(µ). We must

now show that fr → f in Lp(µ) as r ↑ 1. For this purpose, once again fix ǫ > 0 and choose a ψ ∈ Cc(R
n) so

that ‖f − ψ‖Lp(µ) < ǫ. Then

‖f − fr‖Lp(µ) ≤ ‖f − ψ‖Lp(µ) + ‖ψ − ψr‖Lp(µ) + ‖ψr − fr‖Lp(µ). (2.10)
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The first term is < ǫ, and changing variables the last term is

‖ψr − fr‖
p
Lp(µ) =

ˆ

|ψ(rx)− f(rx)|pρ(x) dx = r−n
ˆ

|ψ(u)− f(u)|pρ(u/r) du

≤ r−nCµ
(
1
r , 0

) ˆ
|ψ − f |p dµ.

Here we have used the fact that µ is Euclidean regular. Note that, by condition (1.2) of Definition 1.9, the constant

appearing here is uniformly bounded by, say, C , for r ∈ (12 , 1]. Thence, the last term in (2.10) is bounded above

by C1/pǫ and is also uniformly small. Finally, the middle term tends to 0 as r ↑ 1 since ψr → ψ pointwise and

the integrand is uniformly bounded. Letting ǫ tend to 0 completes the proof.

3 The Intrinsic Equivalence of (sLSI) and (sHC)

In this section, we prove Theorem 1.14: if a measure µ is sufficiently Euclidean regular (satisfying the conditions

of Definition 1.9), and if µ is invariant under rotations, then µ satisfies a strong log-Sobolev inequality precisely

when it satisfies strong hypercontractivity. It will be useful to fix the following notation.

Notation 3.1. Let c > 0 be a fixed constant, let µ be a measure on R
n, and let f be a function on R

n.

1. For r ∈ (0, 1], let q = q(r) denote the function

q(r) = r−2/c.

Note that q ∈ C∞(0, 1], is decreasing, and q(1) = 1.

2. Define a function αf,µ : (0, 1] → [0,∞) by

αf,µ(r) ≡ ‖fr‖Lq(r)(µ) =

(
ˆ

|f(rx)|q(r) µ(dx)

)1/q(r)

.

When the function f and measure µ are clear from context, we denote αf,µ = α.

We begin with the following general statement.

Lemma 3.2. Suppose µ is a Euclidean regular probability measure. Let q0 > 1, and let f ≥ 0 be in Lq0(µ) ∩
C∞(Rn). Let ǫ ∈ (0, 1), and suppose there are functions h1, h2 ∈ L1(µ) such that for all r ∈ (ǫ, 1],

|f(rx)q(r) log f(rx)| ≤ h1(x), |f(rx)q(r)−1Ef(rx)| ≤ h2(x) a.s.[x]. (3.1)

Then there is ǫ′ ∈ (ǫ, 1) such that α = αf,µ is differentiable on (ǫ′, 1], and for r in this domain,

α′(r) =
2

crq(r)
‖fr‖

1−q(r)
q(r)

[
‖fr‖

q(r)
q(r) log ‖fr‖

q(r)
q(r) −

ˆ

f(rx)q(r) log f(rx)q(r) µ(dx)

+
cq(r)

2

ˆ

f(rx)q(r)−1Ef(rx)µ(dx)

]
.

(3.2)

Remark 3.3. Note that (1/q(r))c/2 = r. Hence, if f ∈ LSH and µ satisfies the strong hypercontractivity

property of (sHC) (with p = 1) we have α(r) ≤ ‖f‖1 = α(1) for r ∈ (0, 1]. The conditions of Lemma 3.2

guarantee that α is differentiable; hence, we essentially have that α′(1) ≥ 0. Equation (3.2) shows that α′(1)
is closely related to the expression in (sLSI), and indeed this is our method for proving the logarithmic Sobolev

inequality in what follows.
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Proof. Set β(r, x) = f(rx)q(r), so that α(r)q(r) =
´

β(r, x)µ(dx). Note, β(r, x) = fr(x)
q(r). The function

q(r) is continuous and q(1) = 1, so there is ǫ′ > 0 so that q(r) < q0 for r ∈ (ǫ′, 1); and hence f q(r) ∈ L1(µ).

(We increase ǫ′ if necessary so 0 < ǫ < ǫ′.) As µ is Euclidean regular, Lemma 2.5 shows that f
q(r)
r is also in

L1(µ), and so β(r, ·) ∈ L1(µ) for all r ∈ (ǫ′, 1). Since f ∈ C∞, we can check quickly that β(·, x) is as well;

using the fact that q′(r) = −2
c r

−2/c−1 = − 2
crq(r), and that ∂

∂rf(rx) = 1
rEf(rx), logarithmic differentiation

yields
∂

∂r
β(r, x) = q(r)

[
−

2

cr
f(rx)q(r) log f(rx) +

1

r
f(rx)q(r)−1Ef(rx)

]
. (3.3)

From the hypotheses of the Lemma, we therefore have
∣∣∣∣
∂

∂r
β(r, x)

∣∣∣∣ ≤
q(r)

r

[
2

c
h1(x) + h2(x)

]

for almost every x ∈ R
n, for r ∈ (ǫ′, 1]. As q(r)/r is uniformly bounded on (ǫ′, 1], we see that | ∂∂rβ(r, x)| is

uniformly bounded above by an L1(µ) function. It now follows from the Lebesgue differentiation theorem that

α(r)q(r) =
´

β(r, x)µ(dx) is differentiable on a neighbourhood of 1, and

d

dr

[
α(r)q(r)

]
=

ˆ

∂

∂r
β(r, x)µ(dx)

= −
2

cr
q(r)

ˆ

f(rx)q(r) log f(rx)µ(dx) +
1

r
q(r)

ˆ

f(rx)q(r)−1Ef(rx)µ(dx).

(3.4)

Consequently α(r) is differentiable in a neighbourhood of 1. Again using logarithmic differentiation,

α′(r) = α(r)
d

dr
logα(r) = α(r)

d

dr

[
1

q(r)
logα(r)q(r)

]
,

and again using the fact that q′(r) = − 2
crq(r),

d

dr

[
1

q(r)
logα(r)q(r)

]
=

2

crq(r)
log α(r)q(r) +

1

q(r)
α(r)−q(r)

d

dr

[
α(r)q(r)

]

=
α(r)−q(r)

q(r)

(
2

cr
α(r)q(r) logα(r)q(r) +

d

dr

[
α(r)q(r)

])
.

Combining with (3.4), we therefore have

α′(r) =
α(r)1−q(r)

q(r)

[
2

cr
α(r)q(r) logα(r)q(r) −

2

cr
q(r)

ˆ

f(rx)q(r) log f(rx)µ(dx)

+
1

r
q(r)

ˆ

f(rx)q(r)−1Ef(rx)µ(dx)

] (3.5)

Simplifying (3.5), and using the definition α(r) = ‖fr‖q(r), yields (3.2), proving the lemma.

We therefore seek conditions on a function f (and on the measure µ) which guarantee the hypotheses of

Lemma 3.2 (specifically the existence of the Lebesgue dominating functions h1 and h2). Naturally, we will work

with LSH functions f . We will also make the fairly strong assumption that µ is rotationally-invariant.

Notation 3.4. Let f : Rn → R be locally-bounded. Denote by f̃ the spherical average of f . That is, with ϑ
denoting Haar measure on the group O(n) of rotations of Rn,

f̃(x) =

ˆ

O(n)
f(ux)ϑ(du).
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If µ is rotationally-invariant, then
´

f dµ =
´

f̃ dµ for any f ∈ L1(µ). As such, we can immediately weaken the

integrability conditions of Lemma 3.2 as follows.

Lemma 3.5. Suppose µ is a Euclidean regular probability measure that is invariant under rotations of Rn. Let

q0 > 1 and let f ≥ 0 be in Lq0(µ) ∩C∞(Rn). Denote by f1, f2 : (0, 1] × R
n → R the functions

f1(r, x) = f(rx)q(r) log f(rx), f2(r, x) = f(rx)q(r)−1Ef(rx). (3.6)

Fix ǫ ∈ (0, 1), and suppose that there exist functions h1, h2 ∈ L1(µ) such that, for r ∈ (ǫ, 1], |f̃j(r, x)| ≤ hj(x)
for almost every x, j = 1, 2. (Here f̃j(r, ·) refers to the rotational average of fj(r, ·), as per Notation 3.4.) Then

the conclusion of Lemma 3.2 stands: for some ǫ′ ∈ (ǫ, 1), the function α = αf,µ is differentiable on (ǫ′, 1], and

its derivative is given by (3.2).

Proof. Following the proof of Lemma 3.2, only a few modifications are required. Defining β(r, x) as above,

α(r)q(r) =
´

β(r, x)µ(dx); since µ is rotationally-invariant, this is equal to
´

β̃(r, x)µ(dx) where β̃ refers to

the rotational average of β in the variable x. Evidently β̃(r, ·) is µ-integrable for sufficiently large r < 1 (since β
is). To use the Lebesgue differentiation technique, we must verify that ∂

∂r β̃(r, x) exists for almost every x and is

uniformly bounded by an L1(µ) dominator. Note that β(r, x) is locally-bounded in x for each r, and so for fixed

x it is easy to verify that indeed
∂

∂r
β̃(r, x) =

ˆ

O(n)

∂

∂r
β(r, ux)ϑ(du).

Using (3.3), we then have

∂

∂r
β̃(r, x) = q(r)

ˆ

O(n)

(
−

2

cr
f(rux)q(r) log f(rux) +

1

r
f(rux)q(r)−1Ef(rux)

)
ϑ(du).

That is, using (3.6), ∂
∂r β̃(r, x) = q(r)

[
− 2
cr f̃1(r, x) +

1
r f̃2(r, x)

]
. Hence, from the assumptions of this lemma,

∣∣∣∣
∂

∂r
β̃(r, x)

∣∣∣∣ ≤
q(r)

r

[
2

c
h1(x) + h2(x)

]

and so, since q(r)/r is uniformly bounded for r ∈ (12 , 1], it follows that α(r)q(r) =
´

β̃(r, x)µ(dx) is differen-

tiable near 1, with derivative given by

ˆ

∂

∂r
β̃(r, x)µ(dx) = q(r)

[
−

2

rc

ˆ

f̃1(r, x)µ(dx) +
1

r

ˆ

f̃2(r, x)µ(dx).

]

Now using the rotational-invariance of µ again, these integrals are the same as the corresponding non-rotated

integrands
´

fj(r, x)µ(dx), yielding the same result as (3.4). The remainder of the proof follows the proof of

Lemma 3.2 identically.

Remark 3.6. The point of Lemma 3.5 – that it is sufficient to find uniform Lebesgue dominators for the rotational

averages of the terms in (3.1) – is actually quite powerful for us. While a generic subharmonic function in

dimension ≥ 2 may not have good global properties, a rotationally-invariant subharmonic function does, as the

next proposition demonstrates. We will exploit this kind of behaviour to produce the necessary bounds to verify

the conditions of Lemma 3.5 and prove the differentiability of the norm.

Proposition 3.7. Let f : Rn → R be subharmonic and locally-bounded. Then f̃ is also subharmonic; moreover,

for fixed x ∈ R
n, r 7→ f̃(rx) is an increasing function of r ∈ [0, 1].
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Proof. Fix u ∈ O(n). Since f is locally-bounded, subharmonicity means that
ffl

B(x,r) f(t) dt ≥ f(x) for every

x ∈ R
n, r ∈ (0,∞). Changing variables, we have

 

B(x,r)
f(αt) dt =

 

u·B(x,r)
f(t) dt =

 

B(ux,r)
f(t) dt ≥ f(ux).

Hence, f ◦u is subharmonic for each u ∈ O(n). The local-boundedness of f means that the function u 7→ f(ux)
is uniformly bounded in L1(O(n), ϑ) for x in a compact set, and hence it follows that f̃ is subharmonic.

Hence f̃ is a rotationally-invariant subharmonic function. Fix x ∈ R
n and r ∈ [0, 1]. Then rx is in the ball

B(0, |x|), and since f̃ is subharmonic, the maximum principle asserts that f̃(rx) is no larger than the maximum of

f on ∂B(0, |x|). But f̃ is constantly equal to f̃(x) on ∂B(0, |x|) by rotational-invariance, and so f̃(rx) ≤ f̃(x),
proving the proposition.

Proposition 3.7 makes it quite easy to provide a uniform Lebesgue dominating function for the function f1 in

Lemma 3.5.

Proposition 3.8. Suppose µ is a rotationally-invariant probability measure on R
n. Let q0 > 1, and let f ≥ 0 be

subharmonic and in Lq0(µ). Define f1 as in (3.6): f1(r, x) = f(rx)q(r) log f(rx). Set g1(x) = f(x)q0 , and set

h1 = g̃1 + 1; i.e. h1(x) = 1 +
´

O(n) f(ux)
q0 ϑ(du). Then h1 ∈ L1(µ) and there is an ǫ ∈ (0, 1) and a constant

C > 0 so that for all r ∈ (ǫ, 1], |f̃1(r, x)| ≤ Ch1(x) for almost every x.

Remark 3.9. By the rotational-invariance of µ,
´

h1 dµ =
´

g̃1 dµ + 1 =
´

g1 dµ + 1 =
´

f q0 dµ + 1 < ∞,

and so h1 is a uniform L1(µ) dominator verifying the first condition of Lemma 3.5.

Proof. Choose some small δ ∈ (0, 1). First note from simple calculus that, for u ≥ 1, u−δ log u ≤ 1
eδ . Now,

choose ǫ ∈ (0, 1) so that qǫ < q0 − δ; then q(r) < q0 − δ for r ∈ (ǫ, 1]. Consequently, if f(y) ≥ 1, we have

0 ≤ f(y)q(r) log f(y) ≤ f(y)q0−δ log f(y) ≤
1

eδ
f(y)q0 .

On the other hand, for 0 ≤ u ≤ 1, |uq(r) log u| ≤ 1
eq(r) ≤ 1

e (again by simple calculus). Thus, since f ≥ 0, in

total we have

|f(y)q(r) log f(y)| ≤
1

e
max

{
1

δ
f(y)q0 , 1

}
≤

1

eδ
[f(y)q0 + 1]. (3.7)

Set C = 1
eδ . With y = rx, the left-hand-side of (3.7) is precisely f1(r, x). Averaging (3.7) over O(n) and

recalling that g1(y) = f(y)q0 , we have

|f̃1(r, x) ≤ C[g̃1(rx) + 1].

Recall that if ϕ is convex and f is subharmonic then ϕ ◦ f is also subharmonic. Thus, since q0 > 1 and f
is subharmonic, g1 is also subharmonic, and hence from Proposition 3.7, g̃1(rx) ≤ g̃1(x). This proves the

proposition.

We must now bound the second term f̃2(r, ·) uniformly for r in a neighbourhood of 1. The following Lemma is

useful in this regard.

Lemma 3.10. Let k̃ be a C∞ non-negative subharmonic rotationally-invariant function. Then for x ∈ R
n and

r ∈ (0, 1],
Ek̃(rx) ≤ r2−nEk̃(x). (3.8)
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Proof. Since k̃ is rotationally-invariant, there is a function h : [0,∞) → R so that k̃(x) = h(|x|). The Laplacian

of k̃ can then be expressed in terms of derivatives of h; the result is

∆k̃(x) = h′′(|x|) + (n− 1)
1

|x|
h′(|x|). (3.9)

Hence, since k̃ is subharmonic and smooth, it follows that for t > 0,

t h′′(t) + (n− 1)h′(t) ≥ 0. (3.10)

One can also check that, in this case, Ek̃(x) = |x|h′(|x|). Now, define F (r) = rn−2Ek̃(rx) = rn−2r|x|h′(r|x|).
Then F is smooth on (0,∞) and F (1) = |x|h′(|x|) = Ek̃(x). We differentiate, yielding

F ′(r) = |x|
d

dr
rn−1h′(r|x|) = |x|(n − 1)rn−2h′(r|x|) + |x|rn−1h′′(r|x|)|x|

= |x|rn−2
[
r|x|h′′(r|x|) + (n− 1)h′(r|x|)

]
.

Equation (3.10) with t = r|x| now yields that F ′(r) ≥ 0 for r > 0. Hence, F (r) ≤ F (1) for r ≤ 1. This is

precisely the statement of the lemma.

Proposition 3.11. Let q0 > 1 and let µ be a rotationally-invariant probability measure on R
n. Let f ≥ 0

be subharmonic, C∞, and in Lq0E (µ). Define f2 as in (3.6): f2(r, x) = f(rx)q(r)−1Ef(rx). Set g3(x) =
(f(x)q0−1 + 1)|Ef(x)|, and set h2 = g̃3. Then there is an ǫ ∈ (0, 1) and a constant C > 0 so that for all

r ∈ (ǫ, 1], |f̃2(r, x)| ≤ Ch2(x) for almost every x; moreover, h2 ∈ L1(µ).

Proof. Fix ǫ ∈ (0, 1) small enough that q(r) < q0 for all r ∈ (ǫ, 1]. Define g2(r, y) = f(y)q(r)−1Ef(y). and

note that f2(r, x) is given by the dilation f2(r, x) = g2(r, rx). Since E is a first-order differential operator, we

can quickly check that

g2(r, y) =
1

q(r)
E(f q(r))(y).

We now average both sides over O(n). Set k = f q(r), which is C∞, and let u ∈ O(n). Then we have the

following calculus identity:

E(k ◦ u)(y) = y · ∇(k ◦ u)(y) = y · u⊤∇k(uy) = (uy) · ∇k(uy) = (Ek)(uy).

For fixed y the function u 7→ (Ek)(uy) is uniformly bounded and so we integrate both sides to yield

Ẽk(y) =

ˆ

O(n)
(Ek)(uy)ϑ(du) =

ˆ

E(k ◦ u)(y)ϑ(du) = E

ˆ

k ◦ u(y)ϑ(du) = E(k̃)(y).

In other words, g̃2(r, y) = 1
q(r)E(f̃ q(r))(y). As in the proof of Proposition 3.8, the function k̃ = f̃ q(r) is

subharmonic, and rotationally invariant. Hence, we employ Lemma 3.10 and have

g̃2(r, rx) =
1

q(r)
Ek̃(rx) ≤

1

q(r)
r2−nEk̃(x) = r2−ng̃2(r, x).

Since r2−n is uniformly bounded for r ∈ (ǫ, 1], it now suffices to find a uniform dominator for g̃2(r, x).

We therefore make the estimates: since q(r) < q0 we have

|g2(r, x)| = f(x)q(r)−1|Ef(x)| ≤ max{f(x)q(r)−1, 1}|Ef(x)| ≤ max{f(x)q0−1, 1}|Ef(x)|

≤
(
f(x)q0−1 + 1

)
|Ef(x)|.
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That is to say, |g2(r, x)| ≤ g3(x) for r ∈ (ǫ, 1]. Hence,

|g̃2(r, x)| =

∣∣∣∣∣

ˆ

O(n)
g2(r, ux)ϑ(du)

∣∣∣∣∣ ≤
ˆ

O(n)
|g2(r, ux)|ϑ(du) ≤

ˆ

O(n)
g3(ux)ϑ(du) = g̃3(x) = h2(x),

thus proving the estimate.

As usual, by rotational invariance of µ,
´

g̃3 dµ =
´

g3 dµ, and so to show h2 ∈ L1(µ) we need only verify that

g3 ∈ L1(µ). To that end, we break up g3(x) = f(x)q0−1|Ef(x)|+ |Ef(x)|. By assumption, f ∈ Lq0E (µ) and so

|Ef | ∈ Lq0(µ); as µ is a finite measure, this means that |Ef | ∈ L1(µ) and hence the second term is integrable.

For the first term, we use Hölder’s inequality:

ˆ

f q0−1|Ef | dµ ≤ ‖f q0−1‖q′0‖Ef‖q0 = ‖f‖q0−1
q0 ‖Ef‖q0 .

Both terms are finite since f ∈ Lq0E (µ), and hence g3 ∈ L1(µ), proving the proposition.

Combining Lemma 3.5 and Propositions 3.8 and 3.11, we therefore have the following.

Theorem 3.12. Let q0 > 1 and let µ be a probability measure of Euclidean type q0, that is invariant under

rotations of Rn. Suppose that µ satisfies strong hypercontractivity of (sHC) with constant c > 0. Let f ∈
Lq0E (µ) ∩ LSH ∩ C∞. Then the strong log-Sobolev inequality, (sLSI), holds for f :

ˆ

f log f dµ−

ˆ

f dµ log

ˆ

f dµ ≤
c

2

ˆ

Ef dµ.

Proof. Under the conditions stated above, the results of the preceding section show that the function α = αf,µ is

differentiable on (ǫ′, 1] for some ǫ′ ∈ (0, 1). Since µ satisfies strong hypercontractivity, Proposition 1.16 shows

that the function α is non-decreasing on (0, 1]. It therefore follows that α′(r) ≥ 0 for r ∈ (ǫ′, 1] (here α′(1)
denotes the left-derivative). Hence, from (3.2) we have, for r ∈ (ǫ′, 1],

‖fr‖
q(r)
q(r) log ‖fr‖

q(r)
q(r) −

ˆ

f(rx)q(r) log f(rx)q(r) µ(dx) +
cq(r)

2

ˆ

f(rx)q(r)−1Ef(rx)µ(dx) ≥ 0.

At r = 1, this reduces precisely to (sLSI), proving the result.

Theorem 3.12 is part (2) of Theorem 1.14. The proof of (1) is essentially the same.
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