OATAO

Cipen Archive Toulouse Archive Ouverte

OpenArchive TOULOUSEArchive Ouverte OATAQO)

OATAO is an open access repository that collectswvtlork of Toulouse researchers
makes it freely available over the web where pdssib

This is an author-deposited version published http://oatao.univoulouse.fr
Eprints ID: 10057

Tolink to thisbook chapter : DOI:10.1017/jfm.2012.205
URL : http://dx.doi.org/10.1017/jfm.2012.205

Tocitethisversion : Abi Chebel, Nicolas and Vejrazkafidknd Masbernat, Olivier and Risso,
FredericShape oscillations of an oil drop rising in water: effect of surface contamination. (2012)
Journal of Fluid Mechanics, vol. 702 . pp. 533-5&5N 0022-1120

Any correspondance concerning this service shoelddnt to the repositc
administratorstaff-oatao@listes-diff.inp-toulouse.fr




Shape oscillations of an oil drop rising in
water: effect of surface contamination

Nicolas Abi Chebel'?*#, Jifi Vejrazka’, Olivier Masbernat**
and Frédéric Risso'*f

! Institut de Mécanique des Fluides de Toulouse, CNRS & Université de Toulouse, 31400 Toulouse,
France
2 Laboratoire de Génie Chimique, CNRS & Université de Toulouse, France
3IFP - Energies Nouvelles, 92852 Rueil-Malmaison CEDEX, France
4 Fédération de Recherche FERMAT, CNRS, Toulouse, 31400 Toulouse, France

> Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic,
165 02 Prague 6-Suchdol, Czech Republic

Inertial shape oscillations of heptane drops rising in water are investigated
experimentally. Diameters from 0.59 to 3.52 mm are considered, corresponding to
a regime where the rising motion should not affect shape oscillations for pure
immiscible fluids. The interface, however, turns out to be contaminated. The drag
coefficient is considerably increased compared to that of a clean drop due to the
well-known Marangoni effect resulting from a gradient of surfactant concentration
generated by the fluid motion along the interface. Thanks to the decomposition of
the shape into spherical harmonics, the eigenfrequencies and the damping rates of
oscillation modes n =2, 3, 4 and 5 have been measured. Frequencies are not affected
by contamination, while damping rates are increased by a considerable amount that
depends neither on drop instantaneous velocity nor on diameter. This augmentation,
however, depends on the mode number: it is maximum for mode two (multiplied by
2.4) and then relaxes towards the value of a clean drop as n increases. A previous
similar investigation of a drop attached to a capillary has not revealed such an increase
of the damping rates, indicating that the coupling between rising motion and surface
contamination is responsible for this effect.
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1. Introduction

For low-viscosity fluids, a deformed drop generally relaxes to the spherical shape
by performing damped oscillations. This dynamics involves several modes. For a drop
made of pure immiscible fluids and in the absence of an external cause of motion,
these modes were theoretically obtained from linearized Navier—Stokes equations
(Miller & Scriven 1968; Prosperetti 1980; Lu & Apfel 1991). The geometry of each
mode is given by a spherical harmonic Y,,, characterized by two integers, a polar
wavenumber n > 2 and an azimuthal wavenumber m satisfying —n < m < n. In the
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potential flow approximation, their frequency is given by

wj;z\/(”_ D+ 1)+ 2)o 0

(pa(n+ 1) + pn)a®
where p, and p. are respectively the density of the drop and external phases, a is

the drop radius and o is the interfacial tension. Taking vorticity into account, the
frequency w” and damping rate B of each mode are given by Lu & Apfel (1991)

0 = 0 = =B, \/Repn, (1.2)
p.a
Bl = %[Cn + Buy/Regmen), (1.3)

where wu, and . are respectively the dynamic viscosity of the drop and continuous
phases, B, and C, are functions of both the density ratio p,/p. and the viscosity ratio
Wa/ e, and Re ., = 2pca);§a2 /1. 1s the oscillation Reynolds number. In (1.2)—(1.3), the
terms proportional to the square root of the Reynolds number account for the role of
the boundary layers that develop at the interface, while the other terms represent the
contribution of the potential flow that dominates further from the interface. For a given
initial shape, the problem is thus fully characterized by three dimensionless groups,
pd/pc’ :U“d//vl“c and Re s = Reosc,Z-

If the drop is moving at velocity U under the action of gravity, the problem involves
a fourth dimensionless group, the ascending Reynolds number Re,,. = 2p.Ua/ .. Note
that the Weber number based on the rise velocity is proportional to the square of
the Reynolds number ratio Re,./Re,s, which is itself equal to the rise-to-oscillation
velocity ratio U/w,a. Provided that Re,. is less than one hundred and U/w,a is small
compared to unity, a drop may remain almost spherical and rise along a rectilinear
path. If the drop shape is disturbed, its oscillations remain described by the theory
derived for a non-moving drop (Subramanyam 1969; Basaran, Scott & Byers 1989).

The dynamics of a drop rising slowly might thus seem well understood. However,
a tiny amount of surface-active contaminant is known to alter it significantly. Due to
the opposite effect of advection and diffusion, a gradient of the surface concentration
of the adsorbed contaminants may develop along the interface, which gives birth to
a Marangoni effect that stops the fluid circulation within the drop or bubble and
decreases the rise velocity (Cuenot, Magnaudet & Spennato 1997). For an organic
liquid in water, the rise velocity of a spherical drop is generally observed to be close
to that of a rigid sphere (Hu & Kintner 1955). Despite interesting recent attempts
to deal with pure systems (see Wegener, Kraume & Paschedag 2010, and references
therein), no experiments have matched exactly the terminal velocity of a pure drop.
The problem of surface contamination is less arduous with a gas bubble: pure rising
bubbles have been observed either in ultra-purified water (Duineveld 1995) or in
non-polar fluids without need of an ultrapure environment (Zenit & Magnaudet 2008).

In a previous work we have investigated the shape dynamics of a drop of heptane
attached to the tip of a capillary in water (Abi Chebel, Risso & Masbernat 2011,
referred as ACRM hereinafter). Even though the experiments were not carried out in
an ultrapure environment, the oscillations were well described by the theory for a pure
system. Considering modes 2, 3 and 4, the measured frequency was within 3 % of
the theoretical prediction (1.2) and the measured damping rate was found to be 20 %
larger than the theoretical value (1.3); this small discrepancy was attributed to the
attachment constraint that slightly coupled the different modes.
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Experimental setup. Drop
detachment, which occurs between images (e) and (f), is caused by the motion of the
capillary tube (the images are for d = 3.52 mm).

In the present work, a non-spherical drop of heptane is suddenly released in still
water and its damped shape oscillations are recorded and analysed as the drop is rising.
The fluid system is the same as that studied in ACRM. We consider a drop size range
such that the rise velocity is not expected to have any significant effect on the interface
oscillations of pure fluids (U/w,a < 1). The objective is to determine whether or not
the shape dynamics of a drop is altered by the Marangoni effect that develops when
the drop is rising under the action of buoyancy.

2. Experimental setup and parameters

The experimental setup, shown in figure 1, is adapted from that of Vejrazka et al.
(2008). The external phase is distilled water (p. = 998 kg m—>, u. = 1.0 mPa s™!),
further purified by activated carbon filtration and demineralization by ion exchange
resin; the water is stored in an 11 cm x 11 cm x 26 cm glass vessel. The drop phase
is n-heptane (p; = 684 kg m=3, u, = 0.41 mPa s~!) of grade p.a. with no further
purification. The interfacial tension measured by a De Nouy ring tensiometer is
o =49 mN m~', suggesting the presence of impurities as compared to a pure interface
(0 =51 mN m™!); it is stored in a feeding plastic syringe (12 ml, manufacturer Braun)
connected to a fused silica capillary tube of 0.25 mm inner diameter. A drop is
grown up to a chosen diameter. The capillary is then rapidly moved in the vertical
direction by means of an electromagnetic system, which causes both drop detachment
and initial deformation. After its release, the drop starts rising under the action
of buoyancy and experiences shape oscillations due to periodic exchange between
surface and kinetic energy. A high-speed camera (Photron SA 1.1) equipped with a
magnifying lens (Navitar 12X Zoom) is used to film the drop evolution. The image
size is 324 x 864 pixels. The image resolution ranges between 13.3 and 3.64 um and
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FIGURE 2. (Colour online) Drop parameters against diameter: oscillating (Re,,.) and
ascending (Re,.) Reynolds numbers; aspect ratio x.

frame rate between 10000 and 18000 frames s~!, for the biggest and smallest drops
respectively. Image processing is similar to that used in ACRM. The drop contour
is first determined by a home-made algorithm with sub-pixel interpolation based on
greyscale thresholding, leading to an accuracy of +0.4 pixel. The drop centre and
aspect ratio x are determined on each image. The drop velocity is then obtained by
differentiation of drop-centre coordinates on successive images. As the trajectory is
vertical, only the vertical component V, will be presented and discussed.

We consider low-viscosity rising drops (ps/p. = 0.69, wq/u. = 0.41) of diameter
d = 2a ranging from 0.59 to 3.52 mm. In figure 2, the oscillation Reynolds number
Re,, 1s plotted against the drop diameter, as well as the maximal values of the
rise Reynolds number Re,. and the drop aspect ratio xy measured at the end of
the recorded sequence. For diameters less than 1.30 mm (Re,, = 84, x = 1.011) the
terminal velocity is reached before the end of the sequence, while for larger diameters
the drop is still accelerating. In any case, the average deformation is small (x < 1.12)
and the oscillation velocity is large compared to the rise velocity (Re,. at least greater
then 3Re,,.), which leads us to expect that the oscillations of a clean drop can be well
described by the theory derived without accounting for buoyancy.

Figure 3 shows the drag coefficient, C; = 4Apgd/(3p.V?), against the rise Reynolds
number. Experimental values are compared with the simulations for spherical drops at
various viscosity ratios by Rivkind & Ryskin (1976) and Oliver & Chung (1987), and
with the correlation for a rigid sphere by Schiller & Naumann (1933). The measured
drag coefficients are far above the theoretical results for a clean drop of the same
viscosity ratio. For Re . < 84 (d < 1.3 mm), experimental C, values of spherical drops
that have reached their terminal velocity (see figure 4a for instance) are close to the
theoretical results obtained for a rigid sphere. We can therefore conclude that the inner
circulation within the drop is blocked by the Marangoni effect due to the presence
of contaminants. For larger Re,., the experimental C, is even larger due to slight
deformation and to the fact that terminal velocity has not been reached (figure 5a);
there is nevertheless no doubt that contamination acts as well, since the departure from
the expected C, value for a spherical clean drop is huge.
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FIGURE 3. (Colour online) Drag coefficient against ascending Reynolds number. Squares,
measurements (empty and grey symbols denote runs carried out after cleaning: see §4
for details); (blue) circles and triangles, DNS by Oliver & Chung (1987) for a clean
spherical drop of various viscosity ratios; solid (blue) lines, similar simulations by Rivkind
& Ryskin (1976); dashed (red) line, correlation of Schiller & Naumann (1933) for a rigid
sphere.
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FIGURE 4. (Colour online) Time evolution of a drop of diameter d = 0.59 mm.
(a) Amplitude A, of shape modes and rising velocity V,. (b) Absolute values of the peak
amplitude for each mode.
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FIGURE 5. (Colour online) Time evolution of a drop of diameter d = 3.52 mm. (a) Total
amplitude A, and slowly varying amplitude A, of mode two, drop rising velocity V,. (b)
Oscillation amplitude AA,. (c¢) Absolute values of the peaks of AA,,.

3. Description of shape oscillations

As in ACRM, the drop contour is decomposed into spherical harmonics using
spherical coordinates (r, ) (figure 1):

15
r0) =a <1 + ZAnom,o(e)) . (3.1)
n=2

The drop shape being axisymmetric, spherical harmonics reduce to Legendre
polynomials, Y, o = P,(cos(f)). The series starts from n =2 and stops at n = 15.
The amplitude Ay can be disregarded because of drop volume conservation. A; is zero
since the origin of coordinates corresponds to the instantaneous drop centre position.
Stopping the expansion at n = 15 was more than enough for an accurate description of
the present drop shapes. The final accuracy in the determination of A, is better than
10~* for n < 5.

Figure 4(a) shows the time evolutions of the amplitude of the three first harmonics
Ay, A; and A, as well as that of the drop centre velocity V, for the smallest drop
(2a = 0.59 mm). A terminal velocity of 30 mm s~ is reached after approximately
6 ms. Amplitudes A, oscillate around zero, indicating that the mean drop shape
remains spherical during ascension. The dominant harmonic A, exhibits damped
oscillations at constant frequency. The amplitudes of secondary harmonics are
dominated by their own frequency but are also slightly modulated by the frequency of
A,. Figure 5(a) shows V, and A, for the largest drop (d = 3.52 mm). At the end of
the recording (r = 100 ms), a terminal velocity of approximately 125 mm s~! is almost



reached but the oscillations are not yet totally damped out. The major difference
with the smaller drop is that the drop shape around which oscillations take place is
changing as the drop accelerates. The amplitude A,(r) of each harmonic is therefore
the sum of a contribution A, ¢(¢) that slowly increases with time and a sinusoidal
oscillation AA, (7). A,0(t) was determined by time-averaging over a moving window of
duration equal to the period of oscillation. The oscillating part, AA,(7), is illustrated
in figure 5(b) for n =2, 3 and 4. Compared to the smaller drop, harmonic 2 is less
predominant and secondary harmonics are thus less influenced by harmonic 2.

In order to determine the decay of the oscillation modes, the absolute value of
the successive minima and maxima of AA,(t) were plotted against time in a semilog
representation (figures 4b and 5c¢). For n =2, all the measurements accurately lie on a
straight line, indicating that the mechanical energy decays exponentially. For modes of
higher order, a slight modulation is observed, caused by the fact that the corresponding
oscillations occur on a shape that is mainly oscillating at mode 2. However, all the
measurements are nicely distributed around straight lines for all modes and drop sizes.
The slope of these straight lines corresponds to the damping rate g,. A first important
conclusion can be drawn: despite the fact that the drop velocity — and the shape
of the largest drops — evolves with time, shape oscillations of rising drops exhibit
constant angular frequency w, and damping rate f,, as would be the case for clean and
immobile drops.

4. Discussion of frequencies and damping rates

Based on the physical properties of the liquid phases, eigenfrequency o of a
clean non-rising drop is given by (1.2) with B, = 0.534, B; = 0.740, B, = 0.945
and Bs = 1.15 (for general expressions of B, see (3)-(6) of ACRM: note that the
last factor in the denominator of (5) should be squared). The presence of boundary
layers at the interface hardly influences the eigenfrequencies that remain close to the
potential theory prediction (0.95 < 0" /w? < 0.97 for all n) and therefore scale as
d=*/?. Damping rate B is given by (1.3) with C, =3.44, C; = 6.26, C, = 9.87 and
Cs = 14.3 (for general expressions of C, see (4)—-(6) of ACRM). It is controlled by
the dissipation within the boundary layers. For all modes, the term proportional to the
square root of the oscillation Reynolds number represents 79 % of B for the smallest
drop and 85 % for the largest one. Damping rate B therefore scales as d~"/*.

Figure 6 shows the frequency against the drop diameter for modes n =2, 3, 4 and
5. The agreement between experimental values of w, (symbols) and o (grey line)
is remarkable for all modes and diameters. Whereas the rise velocity is drastically
affected by interface contamination, oscillation frequencies of rising drops are close to
that of a clean drop, as observed by ACRM for a drop attached to a capillary.

Figure 7 shows the damping rate against the drop diameter for modes n =2, 3,
4 and 5. The symbols represent the measurements while the grey lines correspond
to the theoretical prediction for a clean drop in the absence of gravity. Unlike the
frequency, the experimental damping rates are much larger than the theoretical ones.
The evolution of B, with the drop size is however parallel to that of B, approximately
following a d="/* power law, which indicates that the dissipation is still dominated
by the boundary layers. The experimental damping rates are indeed well described by
(1.3) provided that the theoretical prefactor B, of \/Re,. , is corrected by an empirical
factor K,: B:* =K, x B, with K, =2.4, K; =1.85, K, = 1.43, Ks = 1.21 (black lines
in figure 7).

Suppression of interface contamination was attempted. All the equipment was
cleaned with a degreasing agent (Eurostar 75N) and then carefully rinsed under
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FIGURE 7. Damping rates against diameter for each mode. Symbols, measurements (empty
and grey symbols denote runs carried out after cleaning); grey lines, the theoretical value (1.3)
for a clean drop without considering gravity; black lines, (1.3) modified with BS?.



flowing pure water; a new syringe was also used to inject heptane. A drop was
released just after the cleaning. Its damping rate, represented by the empty symbol
in figure 7, is indeed very close to B”. Successive drops were thus released. Their
damping rates (grey symbols) progressively move from the clean reference (grey
line) towards contaminated values (black line). This suggests that the water—heptane
interface, initially clean, becomes rapidly contaminated within the present experimental
device, which is not suitable for work in ultra-clean conditions. Once the interface is
sufficiently contaminated, measurements of damping rates are reproducible. Empty and
grey symbols are used to represent drag coefficients and frequencies of these runs in
figures 3 and 6 too. The corresponding values are not distinguishable from others. This
was expected for w,, since it is not affected by interface contamination, but it is rather
surprising for C,, which is considerably increased compared to that of a clean drop.
As a matter of fact, the damping rate is less sensitive to surface contamination than the
drag coefficient.

Let us turn back to fully contaminated damping rates (black symbols). ACRM
observed that the damping rates of attached drops are not significantly affected by
contamination. A minimum translation velocity V, is thus necessary for a Marangoni
effect to develop so the contamination can alter the damping rates. Moreover, we
observed that: (i) for a given run the damping rate remains constant as the drop
accelerates; and (ii) for a given n the value of K, is independent of the drop
diameter. The present damping rates are thus independent of the drop velocity. Thus
there should exist a threshold V,. above which the impact of the contamination on
the damping rate saturates. The value of V. is necessarily less than the velocity,
Vomin = 15 mm s~!, attained by the smallest drop at the instant when the first values
of the amplitude maximum are measured. The dimensionless group that controls this
effect is the Péclet number, Pe = 2aV,/D,, where Dy is the surface diffusion coefficient
of the contaminants. Since D, is expected to be of the order of 10™° m? s7! (Lu &
Apfel 1991) and 2aV,,;, ~ 107> m? s~!, the Péclet number is very large in all present
experiments, which probably explains the independence of the damping rates on the
rise velocity.

Another remarkable result is how the effect of the contamination on the damping
rate varies with the mode number. The larger n, the smaller is K,. This is probably
related to the ratio between the wavelength, A, = 2ma/n, of the deformation and the
length scale, L,, of the interfacial tension gradient along the interface. Since the Péclet
number is large, the balance between advection and diffusion along the interface leads
to L,/Ay & L,/2a = Pe”' « 1, where A, is of the order of 2a at least for n < 5.
The region where a significant gradient of interfacial tension exists and is able to
cause an additional tangential stress within the oscillating boundary layer is therefore
confined within a single wavelength of the shape oscillations. It is reasonable to think
that affecting a single wavelength has less and less influence as the number n of
wavelengths increases.

Let us summarize the main findings. Inertial shape oscillations of a rising drop
at small Weber number in a non-ultrapure environment have been investigated
experimentally. As is commonly reported in the literature, the rise velocity is strongly
affected by the presence of surface-active contaminants that are naturally present. The
eigenfrequencies of shape oscillations are not affected by contamination. However,
the damping rates are strongly increased, the effect being maximum for the largest
wavelengths. Comparison with a fixed drop of the same fluids indicates that the
rising motion is responsible for the increase of the damping rate. This phenomenon
is therefore different from that reported for levitated drops (Lu & Apfel 1990) and is



probably related to an additional tangential stress within boundary layers at the drop
surface caused by a Marangoni effect due to drop rising. It is also observed to be
independent of the rising velocity, as a probable consequence of a large Péclet number.
However, the boundary layers corresponding to drop translation and oscillation are
different, and the damping rate turns out to be less sensitive to contamination than the
drag coefficient.
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