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Numerical investigation of a high order hybridizable discontinuous
Galerkin method for 2d time-harmonic Maxwell’s equations

Liang Li* Stéphane Lanteri’ Ronan Perrussel*

1 Introduction

Discontinuous Galerkin (DG) methods have been extensively studied in the recent years (Arnold et al., 2002)-
(Cockburn and Shu, 1989)-(Cockburn and Shu, 1998). A DG method can be viewed as a clever combination
of a finite element method (FE) and a finite volume method (FV) (Hesthaven and Warburton, 2008). A
space of basis and test functions is defined as in the FE method on one hand, while the equation is satisfied in
a sense closer to the FV method on the other hand. Ideally, the DG methods share almost all the advantages
of the FE and the FV methods: adaptivity to complex geometries, easily obtained high order accuracy,
hp-adaptivity and natural parallelism.

DG methods have been considered for the convection-diffusion equation (Cockburn and Shu, 1998),
model elliptic equations (Arnold et al., 2002) and the Helmholtz equation (Feng and Wu, 2009)-(Feng and
Xin, 2012). For Maxwell’s equations, DG methods have been developed for both time-transient (Hesthaven
and Warburton, 2002)-(Fezoui et al., 2005)-(Cohen et al., 2006) and time-harmonic problems (Houston
al., 2004)-(Houston et al., 2005)-(Dolean et al., 2008). Despite many advantages, the DG methods have
one main drawback particularly sensitive for stationary problems: the number of globally coupled Degrees
Of Freedom (DOFs) is vaz’l Ndof; with N; being the number of elements and Ndof; being the number of
DOFs on element ¢, which is greater than the number of DOFs used by conforming FE methods for the same
accuracy. For instance, with triangular meshes in 2d the total number of DOFs for the complete first order
edge element method (Nedelec, 1986) is 2N with Ny being the number of edges, while the total number of
DOFs of the first order DG method is 9/V;. Since N; = %Nf in a triangular mesh, the number of DOFs of
the DG method is approximately three times as large as that of the edge element method for a first order
approximation for both methods. Consequently, the DG methods are expensive both in terms of CPU time
and memory consumption, especially for time-harmonic problems. Hybridization of DG methods (Cockburn
et al., 2009) is devoted to address this issue while keeping all the advantages of DG methods.

The hybridizable discontinuous Galerkin (HDG) methods introduce an additional hybrid variable on the
faces of the elements, with which the local solutions can be determined. A so-called conservativity condition
is imposed on the numerical flux, whose expression involved the hybrid variable, at the interface between
neighboring elements. As a result, the HDG methods produce a linear system in terms of the degrees
of freedom of the additional hybrid variable only. In this way, the number of globally coupled DOFs is
drastically reduced. The local solutions of the electromagnetic fields can then be obtained by solving local
problems element-by-element. Optimal convergence properties of some HDG methods have been obtained or
demonstrated numerically for the convection-diffusion equations (Nguyen et al., 2009)-(Nguyen et al., 2009),
the Helmholtz equation (Griesmaier and Monk, 2011), and 2d Maxwell’s equations (Nguyen et al., 2011).
The method that we study in this paper actually coincides with the method referred as HDGII in (Nguyen
et al., 2011) (up to a scaling factor). Moreover, since in 2d Maxwell’s equations are similar to Helmholtz’
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equation up to the rotation of the transverse field, our HDG method is also closely related to the formulation
theoretically studied in (Griesmaier and Monk, 2011).

In contrast with the work of (Nguyen et al., 2011) where a similar formulation has been introduced,
our presentation puts more emphasis on the implementation aspects in the spirit of (Kirby el al., 2012),
and on the computational performance assessment of the method in comparison with an equivalent upwind
flux-based DG formulation. Besides, we propose two methodological extensions in view of the application of
the method to more realistic propagation problems. First, we introduce a direct extension of the formulation
adopted in (Nguyen et al., 2011) in order to consider both an absorbing boundary condition and a perfectly
electric conductor boundary condition (the latter being the only boundary condition considered in (Nguyen
et al., 2011)) in the definition of the boundary value problem for the 2d transverse magnetic Maxwell
equations. Second, we address the issue of taking into account geometries with curved boundaries. Several
authors have studied this aspect, see (Bassi and Rebay, 1997)-(Fahs, 2010)-(Krivodonova and Berger, 2006)-
(Zldamal, 1973) and references therein. In (Luo et al., 2001), the authors study the importance of using
properly curved mesh entities to get feasible high order discretizations over curved domains. (Bassi and
Rebay, 1997) show that, in the presence of curved boundaries, a meaningful high order accurate solution can
be obtained only if a corresponding high order approximation of the geometry is employed. (Fahs, 2010) has
proposed an isoparametric technique combined with a high order DG formulation to solve the time-transient
Maxwell equations. The author finds that, under p-refinement, exponential convergence is achieved with
quadratic and cubic geometric approximations while the linear approximation leads to no improvement of
accuracy. Unsurprisingly, when we deal with curved computational domains, a linear approximation of
the geometry will confine the convergence order of our HDG method to 2. We thus resort to a higher
order geometric approximation to gain optimal convergence of the HDG method. Both quadratic and cubic
mappings are studied.

This article is organized as follows. In section 2, we present 2d Maxwell’s equations and give some
notations that will be used throughout this paper. In section 3, we propose a HDG formulation and discuss
the link between classical upwind flux DG formulation and the HDG formulation. Some properties of the local
problems and of the global reduced problem are also stated. Section 4 consists of the implementation details
of the discretization of our HDG formulation. Section 5 is devoted to the treatment of curved elements,
especially the evaluation of integrals over curved elements through both quadratic and cubic mappings.
Numerical results are given in section 6. Finally, in section 7 we draw some concluding remarks.

2 Problem statement and notations

2.1 Time-harmonic Maxwell’s equations in 2d

We aim at solving time-harmonic Maxwell’s equations in 2d (here a transverse magnetic setting is considered)
without volume source term for sake of simplicity?

iwe,E —curlH=0, in Q and iwp,H+curl E =0, in Q, (1)

where i is the imaginary unit, w is the angular frequency, €, and p,. are the relative electric permittivity and
magnetic permeability, £ = E, and H = (HI Hy) denote the electric and magnetic fields. The boundary
conditions are given by
E =0, onI,,, @)
E+ (nx H) = E™ + (n x H") = ¢", on I,
with I',, UT, = 9Q, T',, N T, = (0, n the outward unit norm vector on 92, and E™¢, H™ an incident
electromagnetic wave. The first relation of (2) indicates a metallic boundary condition (also called perfect

electric conductor condition) on T',,, while the second relation states a Silver-Miiller (first order absorbing
boundary) condition on T',. The differential operators in this 2d setting are

curl £ = (GyE fﬁmE) and curlH = 0,H, — 0,H,,

LA volume source can be straightforwardly added.



and the cross-product of two vectors is u X v = uzvy — UyVs.

2.2 Notations

A triangulation 7T, of 2 is considered with K denoting an element (a triangle) of the mesh. We denote by F}
the union of all interior interfaces (edges in the present 2d case, anyhow, we call them faces) of 7, by ]-",?
the union of all the boundary interfaces of T;,, and by F;, = F} UF{Z. For an interface F = K+ N K~ € F,
let (v*,v%) be the traces of (v,v) on F from the interior of K*. On this face, we define mean (average)
values { -} and jumps [ -] as follows

=5 +v0),

hp = 5" +07),
+

[nxv]p=nt xvi4+n xv,

[ot]r = vttt +o7t,
where n* denotes the outward unit norm vector to K* and t* denotes the unit tangent vectors to the

boundaries 9K+ such that t* x n* = 1 and t~ x n~ = 1. For the boundary faces these expressions are
modified as (assuming F' = 0K N 9N)

{V}F = V+a
{U}F = ’U+7
+ ot

[nxv]r=n

[[Utﬂp = 1}+t+.

X v,

Let P, (D) denote the space of polynomial functions of degree at most p on a domain D. For any element
K € Ty, let VP(K) be the space P,(K) and VP(K) the space (P,(K))?. The discontinuous finite element
spaces are then defined by

VP ={velL*9) | vk € VP(K), VK € Tp,},

Vi ={ve(L*N)?|v|lk € VI(K), VK € Ty},

where L?(Q) is the space of square integrable functions on the domain . We also introduce a traced finite
element space which takes into account the metallic boundary condition

M} ={ne L*(F) | nlr € Py(F), VF € Fp and n|r,, =0}.

Note that M} consists of functions which are continuous on an edge, but discontinuous at its ends. For

two vectorial functions u and v in (L?(D))?, we denote (u,v)p = / u-vdz where ~ denotes the complex
D

conjugation, while for functions v and v in L?(D), we denote (u,v)p = / uv dz provided D is a domain in
D
R?, and we denote (u,v)p = / puvdsif F'is a curve. Accordingly, for the whole triangulation we have

()7 = Z('v')Kv (5o, = Z<'v'>3K’

KeTh KeTh
<7 >.7'—;L_Z<'7'>F’ <7 >Fa: Z <7 >F
FeF, FeFpnl'y



3 Formulation of the HDG method

3.1 Principles
The DG method seeks an approximate solution (Ej, Hy) in the space V' x V¥ that should satisfy for all K
in h
(iwer Ep,v)g — (curlHp,v)g =0, Vv € VP(K),
(iwp,Hp, V) + (curl By, v) g =0, Vv € VP(K).

Applying appropriate Green’s formulas and replacing the boundary terms by numerical traces Eh and ﬁh,
we have

{ (iwe, Ep, v)k — (Hp, curlv) g — (n x Hy,v)ox =0, Vo € VP(K), -

(iwp, Hp, v) i + (B, curl v) g — (Epon x v)ag =0, Vv € VP(K).

In the following, we give a formulation to define (Ej,,Hy) in terms of a hybrid unknown A;, only. The new
variable \;, € M f is introduced mainly to replace the numerical trace Ej which can now be written as

N A\, for F e FLU{FPnT,
Eh—{ h h {h }:/\h, VF € Fp. (4)

0 for F e ]-',? nT,,

Thus Eh is single-valued on each face. We then consider a local numerical trace ﬁh of the form
I/‘\Ih:Hh+T(Eh7>\h)t on 0K, (5)

where 7 > 0 is a local stabilization parameter (i.e. that can be defined for each face based on values assigned
at the element level). Adding the contributions of (3) over all elements and enforcing the continuity of the
tangential component of Hy,, we can formulate a problem which is to find (Ej, Hp, A\p) € VI x VI x M}

such that R
(iwe, Ep,v)7,, — (Hp, curlv)y, — (nx Hy,v)or, =0, Yo € VP,

(iwprHp, V)7, + (Ep,curl v) 7, — (A, X v)g7, =0, Vv e V7, (6)
<[[1’1 X Hhﬂﬂ?)fh + <)\ha77>Fa = <9mcv77>1“aa V77 S M}IZa
where the last equation is called the conservativity condition. Note that we also take the absorbing boundary
condition into consideration in the formulation of this conservativity condition. From the expression (5) of
Hj,, once \j, is known, we can obtain the local solution through (3) due to the discontinuous nature of V;” and
V7. Moreover, we can eliminate Ej, and Hj, via the first two equations of (6) to obtain a weak formulation
in terms of A, only. For an interior face FF = KT N 9K~ we have

(In x Hyl,n)p =([n x (Hy + 7(Ep — A)t)],0)r

't xH  n)ox+ + (n~ x Hy ,n)ox-
—(TTEf o+ — (T E; Mok~
A Mo+ + (T~ A, Mok,

thus
([n x Hy,m)z, = (0 x Hy, n)ar, — (7(En = An),n)om.- (7)

Inserting (7) into (6) and applying an appropriate Green formula again to the first equation of (6), we obtain
another equivalent description of the problem (6) which is to search for the approximation (Ej, Hy, \) €
VP x VJ x M} such that
(iwey Ep,v)7, — (curl Hy, v) 75, + (T(Ep — An), Yo7, =0, Vv € V,
(iwuth,v)T}L + (Eh, curl V)T;L — </\h7 n x V>a7‘h =0, Vv e VZ, (8)
(n x Hy,n)or, — (T(En = An)smdor, + (A — g™, m)r, =0, ¥n € M.



Note that the first two equations define the local problems, which are solved element-by-element. The third
equation defines the hybrid variable Ap.

3.2 Relationship between HDG and upwind flux DG

The conservativity condition holds on all the interior faces, which means
([ x Hyl,n) 5 =0, ¥ne M.

From the formulation, we can infer that [n x ﬁhﬂ = 0 on every interior face on conforming meshes (Cockburn
et al., 2009)-(Nguyen et al., 2009)-(Nguyen et al., 2011). Substituting Hj, with the expression in (5), we

have
[[Il X (Hh + T(Eh — )\h)t)ﬂ = [[Il X Hhﬂ — [[T(Eh - /\h)ﬂ

=0, VFeFL
For an interior face F = 0K+t N OK~ it holds that

[nxH,]-7"Ef -7 E, +(t"+77)\,=0o0n F.
Solving for A, we obtain (since 77 + 77 # 0)

~ 1 1
— _ + o+ -
Eh—)\h—ﬁ(’r Eh —+ 7 Eh)—ﬁﬂanhﬂ on F, (9)

by recalling the definition (4) of A\j. Inserting the expression for \j into the following identity
nt x HE = n* x HE + 0t x (15 (EBF - a)th),
we get 0¥ x Hi = n* x Hj,? with

~ 1

H,=—— T [Ent] on F (10)
n .
h= T — [ L&n

("H; +71 Hh)+77++7

This flux H), is single-valued on F. The expressions for the numerical fluxes E, (9) and Hj, (10) suggest a
close relationship between the HDG method and the upwind flux-based DG method. In fact, the proposed
HDG method is mathematically equivalent to the upwind flux-based scheme used in (Dolean et al., 2008)
when the parameter 7 is uniformly 1 and absorbing conditions are considered on the whole boundary. The
expression (10) of Hj, also shows that the HDG method (8) is locally conservative as defined in (Arnold et

al., 2002) because Hj, is single-valued across inter-element boundaries (Cockburn et al., 2009)-(Nguyen et
al., 2011).

3.3 Well-posedness of the local problems
The problem on an element K is the local version of the first two equations of (8)

{ (iwe, By, v) g — (curl Hy, v) g + (T(En — An),v)ox =0, Yv € VP(K), (1)

(iwprHp, V) + (Ep, curl v) g — (Ap,n X v)grx =0, Vv € VP(K).

To prove the well-posedness of this problem, it is sufficient to prove that the solution (Ej, Hy) is unique for
a given A,. In (11), we consider v = E}, and v = H;, and we obtain by adding both relations

(iwe,.Eh, Eh)K — (curl Hh, Eh)K =+ TK<(Eh — /\h), Eh>8K
+(iwp, Hy, Hy) g + (En, curl Hy, ) g — 75 (An, En)or = 0.

2The normal components nt ﬁf and nt -ﬁh can be different but only the tangential components are relevant in the
problem considered here. This point is not obvious in the formulation considered in (Nguyen et al., 2011).



which, with A, = 0, yields the following equality
(iweTEh, Eh)K —+ (iquHh, Hh)K -+ 23((Eh, curl Hh)K) + TK<Eh, Eh>6K =0, (12)

where the operator < is used to denote the imaginary part. We assume that both ¢,., u, and 7k are strictly
positive real numbers®. Considering the real part of (12), we have 7x (Ex, Ep)ox = 0, which implies that
Eyp = 0 on 0K. We cannot then conclude on the general well-posedness of the local problems because it
is possible to have resonant frequency in the relation (12), since we are solving a Dirichlet-like boundary
problem on each element. Note however that this problem never showed up in our numerical experiments.

In the sequel the HDG method employing the spaces V/”, V¥ and M} is denoted by by HDG-P,. In the
HDG-P; and HDG-P;, cases, all the degrees of freedom are on 0K, and thus Ej;, = 0 on the entire element K.
Thus we have H, = 0 on K, by comparing the imaginary parts of (12) on both sides. As a result, we can
ensure at least the well-posedness of the local problems for the HDG-P; and HDG-Py case. It is coherent
with the results stated in (Feng and Xin, 2012) for the HDG-P; method?.

In the following sections, we assume that the local problems are always well-posed even if the polynomial
degree is greater than 2. Moreover, as the local problem matrices have to be assembled and inverted for the
assembly of the global matrix (details are given in Section 4) such a ill-posed local problem could be locally
detected during the assembly process and the problematic local element refined in order to obtain well-posed
problems on the newly created elements and to pursue the assembly of the global matrix.

3.4 Characterization of the reduced problem

For any n € M}, we denote by (E},H]) the vector fields whose restriction to an element K of 7y, is the
solution to the local problem

(lwe, B}, v) g — (curl HY ,v) g — (n X (fIZ —H]),v)ox =0, Vv € VP(K), (13)
(lwp, HY V) + (B} curl v) g — (n,n X v)gr =0, Vv € VP(K),
where the relation (5) is used in the first equation. We explicitly rewrite the reduced problem as
an(An;n) = bu(n), ¥n € My, (14)

with R
{ah(/\hﬂ?) = (Inx Hyl,m) 7, + .01,
br(n) = (9", M1.,

where the subscript h of X is taken out for simplicity. In the following, we explore some properties of the
sesquilinear form aj. Summing (13) over all the elements of 7, we obtain the following relations by recalling
the definition of [-]

{ (iwe, B}, v)7, — (curl HY, v)7, — ([n x (] — H)],v)7, =0, Vo € V7, 15)

(—iwp, v, H) 7 + (curlv, E)) 75, — (In x v],n) 7, =0, Vv € V}.

3In a lossy medium, &, or/and pu, could have a negative imaginary part. In this case the well-posedness is easier to prove
and not studied here.

4As mentioned in subsection 3.2, there is a close relationship between the HDG and upwind flux-based DG methods.
Moreover, there is also a similarity between 2d Maxwell’s equation and Helmholtz’ equation. Using both similarities, it can be
shown that the method considered here is similar (for some parameter choices) to the method studied in (Feng and Xin, 2012)
and then well-posedness results have to be coherent.



Note that the second relation of (15) is obtained by taking the summation in the complex conjugation of
the second relation of (13). The sesquilinear form in (14) can now be obtained

ah()\han) = <[[l’l X ﬁz]]an>]:h + </\h777>Fu
= ([n x Hz], n)z, + ([0 x (Hy = H)Ln)z, + M mr,
— (—iwp, L HY) 7, + (eurl Y B}y + ([ x () — HD)Lm) s, + b
(by the second relation of (15), taking v = HJ)
= (—iwp, Hp, HY) 7, + (iwer By, By, + (o< (Hy = HR)L, (n - B) 7,
+ (An,m)r, (by the first relation of (15)).

a

Considering the definition (5) of H}, we have:
an (M) = (—iwp By, HY) 7, + (e By, B, + (tOn — E7), (0= ED)ori, + Anomr,. (16)

When ¢, and pu, are real-valued, we can infer that the corresponding coefficient matrix K, whose assembly
is detailed in the next section, is complex symmetric and all the eigenvalues lie in the right half-plane of
the complex plane, because of the third and fourth term of (16). Moreover, the first two terms define the
imaginary part of K if ¢, and p, are real-valued. This matrix is similar to the one resulting from the
discretization of the wave equation: it is symmetric but indefinite as soon as w is sufficiently large (this point
will be assessed in the numerical experiments). It is probably more classical if we multiply (16) by iw in
order to obtain
iwan(Anyn) = (pr(—iwHy), (—iwH}))7, — (e, By, Ef) 7,
+iw(r(An = Ep), (0= B)) o, + iw(An, n)r, -

We then find the equivalent of the bilinear form given in (Nguyen et al., 2011, Eq. (45)) where they consider
W3 = —iwH} as an unknown instead of Hj.

4 Implementation

In the section we discuss about the main aspects of the implementation of the previously introduced HDG
method and we essentially follow the setting and notations adopted in (Kirby el al., 2012). For sake of
simplicity, the proposed implementation insures an admissible finite element mesh with possibly curved
boundaries. For an element K. of index e € [1, N;| where N; is the number of elements of 7, let us write
the local solution restricted to K, as follows

e
np

Ee = E5¢f,

i=t Ne (17)

P
He = (H; H;) with Hg=> HS 5 ué€{zy},
j=1

where Ny is the dimension of P,(K.) and ¢$’s are the (real-valued) local basis functions. Similarly, for a
face Fy of index f € [1, N¢] where Ny is the number of faces of 7; (i.e. the cardinal of F,), A is represented
by

Ny
- fonf
M =2 A,
j=1

where NZ{ is the dimension of P, (F) and 1/); ’s are the (real-valued) local basis functions. Moreover, we denote
by o(e,l) the index f of the face Fy € Fj, which is the [-th face of element K. € 7, (with [ =1,...,3).



4.1 Discretization of local problems

Discretization of the first equation of (11) on the element K, leads to

3 3
iwe, M E® + (D))" H — (D5)"Hy + Y 7 @VEfES — Y r@DF{A7) =,
=1 =1

T

where - is used to denote the matrix transposition. The entries of the local matrices are defined by

M4, j] = (¢5, 7 ) k. :/ Pip§ dx,

e

DWJF%%ﬁwma:/(&ﬁwwxwmﬂewwh

(18)
Emﬂ:%w%@:/ et ds,
oKL

er: - o(e,l e e 1o(el
Fili, j] = (47 )7@i>8Ké:/ eiu? Y ds,
oK!

where 0K stands for the I-th face of element K. Similarly, the discretization of the second equation of (11)
is s
iquMeﬁ; - D;Ee + Z QZZAU(&D =0,
1=1

3
inTMeﬂZ + D;Ee _ Z Q;léo(&l) -0,
=1
where the matrices M¢ and D¢ are defined in (18), and

e

e [ - e e o(el e e o(el
Qulid) = (etnitf horr = [ nietnf D s, e fay), (19)

e

with n® = (ni nfj) the outward unit norm vector to K¢. The local linear system on the element K. can
then be written as

He¢ Aa(e,l)
A° E’Z +Ce 30(672) =0, (20)
E° Ao (@)
with
iwILLTMe 0 —}D);
Ac—| 0 iwpmMe De
3 k)
DT —(D)7T iwe, M+ Y r(@DEf
=1
and
7641 36;2 Zg
e B T R

—reDFs  —rleARy (3R



4.2 Global discretization for )\

Suppose that the interior face F¢ of index f is shared by elements K. and K, with local index [ and £, i.e.
f=o(e,l) =0(g,k). The conservativity condition on Fy writes as

<ne X Hi,77>3[(é + <ng X szn>8K§
- T(e’l)<Eiy W)aKg — rlok) (E}, 77>6K§
+ e (Amokt + 7GR (), 77>6K; =0, Vn € VP(Fy).

The corresponding discretization is

(Q)THE — (Q¢)THS — 7D (F5)TE® + 7D GS A

(21)
+(@)TH] — QT HY - TP EDTE? + 1 NG =0,
where
G/ li,5) = (! ) p, = / i ds.
Fy
For a boundary face on T',, (21) is replaced by
Q)" Hy — (@) " H — 7V FHTES + (14 7D)GI A = g™, (22)

where

g;nc,f = <ginc’ ¢f>Ff = / ginciﬁlf dS, =1, ,Tlg.
Fy

To get an explicit global system for A, let us replicate some notations from (Kirby el al., 2012). Let N ie’l)

denote the number of degrees of freedom of A on the face with local index [ of element K., and let N, denote

the total number of degrees of freedom of A. We introduce the trace space spreading operator A% - as a

matrix of size N §e’l) x N, which scatters the global trace space values to the local vector on K¢ (Kirby el
al., 2012). With these notations, we can rewrite the equation for the local solver (20) as
He
AW+ CAYpeA =0 with W°= | Hj |, (23)
Ee

where A is the vector gathering all the global trace space information. Adding all the equations involving
every interior face (21) and every boundary face (22) element by element we have

N, N,
> (Arpa) B + LAgncAl = Y (Aiine) g = g,
e=1 e=1

where the sum over elements along with the left application of the transpose of A% . allows to gather the
element-wise contributions corresponding to faces and

inc,o(e,1)
inc,o(e,2)

inc,o(e,3)

Q
|
e e ke

gmeo(el (1 = 1,2,3) is nontrivial only on the faces lying on the boundary T',. From (21), B¢ and L¢ are
defined by
ST (@7 —reDFT
B = | —( Zz)T (Qiz)T _7(6’2)(]1?6 1,
—( Z3)T (Qiz’))T _7(6’3)(F§)T

N =
~— —



and

T(e,l)Ga(e,l) 0 0
Le = 0 r(e2)Go(e2) 0
0 0 T(G,B)Ga'(e,?))

Note that for a boundary face f = o(e,l), from (22), the corresponding diagonal block of L¢ turns out to be
(14 7D)GoD | [ may be 1, 2 or 3.
Thus, replacing W¢ with its solution from the local system (23), we get

Ny
Z(A?IDG)T[*BS(Ae)il(CEA?{DGA + LAy pehl =g,

e=1

with which we obtain a global equation for A:

KA = g, (24)
Where
Ny Ny
K=Y (A%pe) KAfpe = > _(Ahpe) L — B (A°) "' C A pe-
e=1 e=1

Thus, the assembly of (24) can be performed as a classical finite element assembly process with a sequence
of computations of elementary matrices K°.

5 Curvilinear elements

The most important thing related to curvilinear elements is the way to calculate the integrals in (18) and
(19). In order to save computing time, the integration on the underlying element is transferred to the
integration over the reference element through integration by substitution, i.e.

r = [ soaax= [ su@navie)= [ sr@nile 5)

where ¥ is the mapping from the reference element /C, to the current element K. which will be defined
later, ||[J¢|| denotes the determinant of the Jacobian matrix of the mapping ¥. For a standard element with
straight edges only, an affine mapping is accurate enough. Then the determinant of the Jacobian matrix
|[Jw|l is a constant for each element and can be taken out of the integration symbol. However for a curved
element, the affine mapping is not accurate enough and higher order mappings are needed. We consider
the second order (quadratic) and the third order (cubic) mappings in this paper. In this case || Jg|| is no
longer constant and cannot be taken out of the integration. The numerical treatment of curved boundaries
in the context of classical (continuous) finite element methods is described in numerous textbooks such as
(Solin et al., 2004). The design of a DG method on curvilinear domains for the solution of the time-transient
Maxwell equations is described in (Fahs, 2010). Here, we outline the main ingredients of the adaptation of
the proposed HDG method to curvilinear domains and we refer to (Lanteri et al., 2011) for more details.
Indeed, in the spirit of what is done for a DG method (Fahs, 2010), the numerical treatment of curved
boundaries relies on two main ingredients:

e A mapping. We consider a regular triangulation 7, of the computational domain Q = Uk, ¢7; K. such
that each interior element has only straight edges, and each curved element has at most one edge on
the curved boundary. Each interior element is considered as a standard element, which is defined by
an affine map from the reference element /.. The curved elements are defined as the images of /C,
through isoparametric mappings. Suppose that K, = {(£,{) € R?: £,¢ > 0,& + ¢ < 1} is the reference
triangle with vertices A;, Ao and As in (£, () coordinates. The curved element K. spanned by three
counter-clockwise counted vertices (n1,n2,n3) is defined by the mapping

K. > (z,y) = ¥(£,0) : K, — R,

10



The three vertices (n1,n2 and ng) are enough to define an affine mapping. We need more information
to define the quadratic or cubic mapping (see (Lanteri et al., 2011) for more details).

e Integration rules. Integration by substitution leads to the appearance of ||Jy (€)||, which is a polynomial
of total degree 1 for a quadratic mapping, and of total degree 4 for a cubic mapping

1T (&)l = Z R)EC. (26)

The coefficients JZ-(;n) (n) in (26) are listed below:

— Quadratic case:

IO =Dlesn,esn), J& =4D(ear,es5:), IS =4D(ess-,e51).

— Cubic case:
9 9
T = Dlea esn), S = =S (Ly+ L), I = 5 (La + La),
2 27
Jl(:l))) = 27(L2 — L), J2(3) = 5141’ Jég) = _?Léla
243 . ;
I = TD(67,7*,€6,6*>7 IS = g, JP = g,
where

Ly =D(e21,€6,6+), Lo =Dl(eay,er7+), Ly =Dl(es,e€66+), La=Dl(es,er 7).

Note that we use D(w1, ws) to denote the determinant of (wy, ws) with wy, wy € R2. The symmetric
Dunavant cubature formulas (Cools, 2003) are used to calculate the integrations (25). The integrations
over the curved edges are also computed through integration by substitution

7= [ Jeoax= [ s / @) Ts (1)]|dt,
Fy

where ||J3()|| denotes the norm of the differential of the quadratic or cubic mapping ® evaluated in
t. A Gauss-Legendre quadrature is used to compute these line integrals.

6 Numerical experiments

In this section, we give some numerical results to show the effectiveness of the considered HDG method.
The HDG and DG methods have been implemented in a Fortran 90 code. Simulations are conducted on a
workstation equipped with an Intel Xeon 2.67GHz CPU. Our implementation of high order discontinuous
Galerkin (DG and HDG) methods makes use of nodal basis functions with equispaced nodes up to order 4.
MUMPS (a MUltifrontal Massively Parallel sparse direct Solver) (Amestoy et al., 2000) is used to solve the
reduced linear system (24). Two test problems are considered in order to evaluate the method.

6.1 Plane wave propagation in vacuum

We first consider a simple problem consisting of the propagation of a plane wave in vacuum. The computa-
tional domain is chosen to be the unit square £ =]0; 1[?> and the Silver Miiller absorbing boundary condition
is imposed on the whole boundary. The electromagnetic parameters €, and p, are set to be 1 everywhere,
and unless otherwise stated the angular frequency is w = 47 and 7 = 1 in the HDG formulation.

11



6.1.1 TUniform meshes

Uniform triangular meshes are considered in this subsection. We tested both the upwind flux DG method
(UF-P,, denotes the upwind flux DG method of order p) and the HDG method (HDG-P, denotes the HDG
method of order p). The numerical convergence results are presented in Figure 1. Compared to the upwind
flux DG method, the HDG method can achieve the same accuracy but with less globally coupled degrees of
freedom. For 2d Maxwell’s equations, the number of unknowns of the HDG method is Nupa = Ny - ndf,
provided N, the number of faces (edges in the 2d case), and ndf the number of DOFs on each face, while,
the number of unknowns of the upwind flux scheme is Nyr = 3N, -nde, with N, the number of elements
(triangles in this case), nde the number of DOFs on each element. In order to compare, Ny ~ 3/2 N,
ndf = p+1, and nde = (p+1)(p+ 2)/2, so with the increase of the degree of the interpolation polynomials,
the reduction of the number of DOFs by the HDG method can be seen more and more evidently. We can
also observe in Figure 1 the interest of higher order polynomial approximations which allows a considerable
reduction of the number of DOFs. The numerically estimated convergence order (using a linear regression
method) of the HDG method is given in Table 1. A detailed comparison between the performances of the

T T T T 177177 T T T T T TTT] T T T T T TTT] T T T T 1777
107" « 10! _| | —e— HDG-P,
- @- UF-P;
0 L | ol | |-=—HDG-E,
8 o -m- UFP,
= = —4+— HDG-P3
= -5 . = -
;10 NN (Ul 1|-+- UF-P;
2 = —+— HDG-B,
1077 . 1077 |- 4- UF-Py
-9 |- o -9 | i
10 | L1011l | [ 10 | [ | 1111l
107 10° 107 10
VNdof. VNdof.

Figure 1: Ls-error for both E and H fields for several polynomial approximations. Ndof is the number of
degrees of freedom. HDG-P, and UF-P, ,i = 1,2, 3,4 demonstrate the convergence results for HDG method
and upwind flux scheme respectively.

Table 1: Numerical convergence order using the HDG method on uniform meshes.
’ P, P, P3 Py

E field 18 3.0 40 5.0

Hfield 19 30 4.0 5.0

HDG method and the upwind flux DG method is given in Table 2. In Table 2, “MS” denotes the mesh
size, “Memory” denotes the memory measured in MB consumed when solving the global linear system by the
direct solver MUMPS, “Ttonstruction. denotes the CPU time measured in seconds for the construction of the
global linear system and “Tgojution” denotes the CPU time measured in seconds for solving the resulting linear
system. It is seen in Table 2 that the HDG method saves the memory cost as well as the required CPU time
to yield a given accuracy level. The CPU time for the construction of the global matrix of the HDG method
is higher than that of the upwind flux DG method, because in the HDG method we are required to compute
K¢ = B¢(A¢)~1C* on each element. Note that it is not necessary to explicitly compute the entries of (A¢)~!,
and that the computation of K¢ for each element can be done in parallel, which means the construction time
can be reduced in a parallel version of the code. However the CPU time for solving the global linear system
and the total CPU time consumed by the HDG method are much less than those of the upwind flux DG

12



Table 2: Comparisons between HDG and upwind flux (UF) DG methods on memory and CPU time.

MS Memory (MB) Tconstruction (S) Tsolution (S)
HDG UF HDG UF HDG UF |

Py
0.140 2 5 0.00 0.00 0.01 0.03
0.071 5 19 0.01 0.00 0.02 0.10
0.035 20 85 0.03 0.01 0.04 0.64
0.018 86 389 0.09 0.03 0.52 3.87
P,
0.140 3 11 0.01 0.00 0.01 0.07
0.071 9 48 0.03 0.01 0.04 0.35

0.035 41 221 0.09 0.02 0.22  2.06
0.018 187 1024 0.37 0.08 1.27  13.33

P3
0.14 4 21 0.02 0.01 0.01 0.14
0.071 15 96 0.08 0.02 0.08 0.77

0.035 71 435 0.29 0.05 0.29 4.63
0.018 327 1955 1.16 0.19 254 31.14
Py
0.140 5 36 0.05 0.01 0.02  0.30
0.071 24 160 0.21 0.03 0.12 1.45
0.035 106 720 0.80 0.11 0.67  8.29
0.018 499 3258 3.17 0.40 4.54 5141

method due especially to the reduction of the number of global coupled unknowns®

In order to study how the parameter 7 affects the convergence of the HDG method, we give the errors
of both the E field and H field versus different values of 7 in Figure 2. The results are obtained using
the HDG-P3 scheme on the mesh with mesh size 0.071. Figure 2 shows that the convergence of the HDG
method seems to weakly depend on the choice of 7. It is easily observed that with the increase of 7 we
have a little more accurate solution for E, but we lose the accuracy of the solution for H. The value of
the parameter 7 can be chosen around 1. In all the following numerical experiments, we set 7 = 1. The
condition numbers of the coefficient matrices of the resulting global linear systems are presented in Table 3.
The results for HDG-P; and HDG-P3 are given here, but similar observations can be done for the HDG-Py
and HDG-P, methods. We find that the condition numbers on the same mesh decrease as the frequency
of the incident wave grows. The condition number is more dependent on the mesh size and the size of the
matrix. This provides a good chance to develop efficient iterative solvers for the resulting linear systems.
A similar conclusion has also been made by Griesmaier and Monk in (Griesmaier and Monk, 2011), where
they employ an HDG method to solve Helmholtz equation. The distributions of the eigenvalues of the global
matrix K of (24) for the coarsest mesh, i.e. h = 0.14, are shown in Figure 3. All the eigenvalues have
nonnegative (positive in this case) real parts, which is in agreement with the conclusion made in subsection
3.4. From Figure 3, we can also observe that on the same mesh the eigenvalues become clustered as the
frequency increases, which agrees with the observations from Table 3. Finally, it can be noticed that the
number of eigenvalues with a positive imaginary part increases when w increases for a fixed discretization;
this is due to the indefinite and wave equation-like nature of the imaginary part of the matrix as underlined
in subsection 3.4.

5Probably other properties of the resulting linear systems have an impact on the computing costs but this is not discussed
here and is actually the subject of an ongoing research.
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Figure 2: Errors of both £ and H field versus 7 for the HDG-P3 method.

Table 3: Condition numbers of the coefficient matrices K (24) of the reduced system with respect to w.

HDG-P,

Mesh size h 0.14 0.071 0.035 0.018
w =21 1.05e4+03 4.07e4+03 1.59e+04 6.21e+-04
w=4m 8.13e+02 2.96e+03 1.06e+04 4.19e+04
w =81 4.38e+02 2.07e+03 8.36e+03 2.89e+04
w = 167 8.77e4+01 7.39e+02 5.42e+03 2.18e+04

HDG-P;

Mesh size h 0.14 0.071 0.035 0.018
w =21 3.18e+03 1.23e+04 4.91e+04 1.95e+05
w=4rm 2.12e+03 8.27e+03 3.26e+04 1.35e+05
w=8m 1.57e+03 6.16e+03 2.50e+04 1.01e+05
w = 167 1.25e+03 4.00e+-03 1.77e+04 6.73e+-04
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Figure 3: Distributions of the eigenvalues of the global matrix for several angular frequencies.

6.1.2 Independently refined non-uniform meshes

Independently refined non-uniform meshes are used in this subsection. Four meshes are involved, and the
mesh sizes are 0.184, 0.123, 0.0578 and 0.0289, respectively. Here “Mesh size” refers to the largest edge length
of the mesh 7. The first three meshes are given in Figure 4. Numerical convergence results are shown in
Figure 5. The estimated numerical convergence orders are given in Table 4. Optimal convergence orders

Table 4: Numerical convergence order using the HDG method on independently refined meshes.
] P, Py, Py Py \

FE field 20 31 42 52

Hfield 2.0 31 42 52

are again obtained for both fields £ and H on non-uniform meshes, concluded from Figure 1, Figure 5, Table
1 and Table 4. These convergence rates are also theoretically proved in (Griesmaier and Monk, 2011).

6.2 Scattering of a plane wave by a metallic cylinder

The electromagnetic scattering of a plane wave by an infinite metallic cylinder is now considered. The radius
of the cylinder is taken to be Ay, where Ay denotes the wavelength of the incident wave in the vacuum. The
artificial absorbing boundary is set to be a concentric circle with radius being 3)\¢. The angular frequency is
w = 2mw. We use four independently refined meshes whose characteristics are summarized in Table 5, where
N; denotes the number of elements, Ny; denotes the number of straight faces and N.; denotes the number
of curved faces. The first three meshes are shown in Figure 6. The convergence history of the HDG method
based on the affine mapping is shown in Figure 7. We can see that the asymptotic convergence order for
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Figure 5: Convergence results of both £ and H fields on independently refined meshes.

both E and H is limited to 2. The convergence histories of the HDG method with a quadratic and a cubic
mappings are given in Figure 8. In Figure 8, one can see that an optimal convergence order is obtained. The
estimated convergence orders of the HDG method with an affine mapping, a quadratic mapping and a cubic
mapping are summarized in Table 6. The contour lines of £, and H, are displayed in Figure 9. From
Figure 9, we find that for the affine mapping, the largest errors are located on the elements near the curved
boundary, and then spread all over the computational domain. For high order mappings, we do not have
this observation. The use of an high order isoparametric mapping is the key to the success of high order
HDG schemes when the computational domain has curved boundaries. In the case of affine mapping, the
geometric error dominates, which makes the asymptotic convergence order bounded by 2.

A comparison between the performance of the HDG method and the upwind flux DG method is given
in Table 7. We use the same notations as in Table 2. In addition, for “Tionstruction > ‘-A” denotes the
CPU time spent for the construction of the linear system with affine mapping, while “-C” denotes that with

Table 5: Triangular meshes used for the scattering of a plane wave by a metallic cylinder.

Mesh  Mesh size h Ny Ngy Ny
M1 0.660 314 439 64
M2 0.372 1278 1853 128
M3 0.191 5040 7432 256
M4 0.096 20234 30095 512
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Figure 6: Trainagular meshes for the scattering of a plane wave by a metallic cylinder.
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Figure 9: Contour lines of the fields and errors for the scattering of a plane wave by a metallic cylinder.
Simulations are performed using the HDG-P, method with affine map and quadratic map on mesh M3.
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Table 6: Numerical convergence order of the HDG method for the scattering of a plane wave by a metallic
cylinder.

Affine map Quadratic map Cubic map

E H E H E H
P2 24 24 32 3.2 3.2 3.2
P3 21 2.1 4.2 4.2 42 41

P4 21 2.1 5.1 5.1 5.1 5.0

cubic mapping. The memory and CPU time cost for the solution of the linear systems are the same with
different isoparametric mappings. Compared to the total CPU time spent for the construction of the globally
coupled linear system, the extra CPU time spent on high order mappings is very small. We can make similar
observations from Table 7 as from Table 2. Moreover, on the finest mesh, the linear systems obtained from
UF-P3; and UF-P,4 cannot be solved by MUMPS due to the large number of globally coupled DOFs, so we
use “~’ to denote the unknown memory and CPU time costs.

Table 7: Comparisons between HDG and upwind flux DG methods on memory and CPU time.

Mesh  Memory (MB) Ttonstruction (S) Tsolution (S)
HDG UF HDG-A HDG-C UF-A UF-C HDG UF ‘
Py
M1 2 9 0.00 0.00 0.00 0.00 0.01 0.04
M2 7 42 0.01 0.01 0.00 0.01 0.03 0.25
M3 29 197 0.04 0.03 0.01 0.01 0.15 1.5
M4 134 942 0.16 0.16 0.04 0.04 0.84 104
Py
M1 4 22 0.02 0.01 0.00 0.00 0.01 0.15
M2 14 109 0.04 0.04 0.01 0.02 0.06 0.91
M3 61 514 0.16 0.16 0.03 0.03 0.33 5.41
M4 285 2408 0.61 0.62 0.13 0.13 2.04 373
Py
M1 5 43 0.03 0.03 0.01 0.01 0.01 0.30
M2 23 211 0.12 0.13 0.02 0.03 0.10 1.85
M3 106 1003 0.47 0.49 0.07 0.08 0.62 125
M4 497 - 1.93 1.95 0.30 0.32 4.01 -
P,
M1 7 76 0.08 0.09 0.01 0.02 0.02 0.56
M2 35 364 0.32 0.34 0.05 0.05 0.18 3.49
M3 162 1679 1.28 1.33 0.15 0.18 1.06 23.1
M4 771 - 5.13 5.20 0.62 0.68 7.39 -

6.3 Scattering of a plane wave by a dielectric cylinder

We finally consider the problem of the scattering of a plane wave by a dielectric cylinder. The incident
frequency is 300 MHz. The relative permittivity of the dielectric cylinder is 2.25. The radius of the dielectric
cylinder is 1. The artificial absorbing boundary is set to be a concentric circle with radius 3. A quadratic
mapping is employed to deal with the curved boundaries e.g. the boundary of the dielectric cylinder and that
of the artificial boundary. We use four independently refined meshes whose characteristics are summarized
in Table 8, where N,, N, and N; respectively denote the number of vertices, elements and faces (straight

19



and curved). The convergence results are presented in Table 9. We find that the optimal convergence rate is
obtained on refined meshes for all the HDG-P;, i = 1,2, 3,4 methods. But if an affine mapping is employed
on the entire mesh, the convergence rate is confined to 2. The last three meshes are shown in Figure 10.

Table 8: Triangular meshes used for the scattering of a plane wave by a dielectric cylinder.

Mesh Mesh size h N, N; Ny
M1 1.167 59 92 150
M2 0.684 201 352 552
M3 0.384 795 1432 2196
M4 0.185 2945 5696 8640
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Figure 10: Triangular meshes for the scattering of a plane wave by a dielectric cylinder.

7 Concluding remarks and future works

In this paper, we have studied a hybridizable discontinuous Galerkin method for the numerical solution of
the time-harmonic Maxwell equations in 2d. The HDG method is developed directly for the first order
(mixed) form of Maxwell’s equations, from which we can obtain the approximate solutions to both electric
and magnetic fields. In this HDG method, we are required to solve local problems on every element to get
the solutions for the fields and a global system to obtain the solution for the hybrid variable. The proposed
method has been shown to be locally conservative. The well-posedness of the local problems for the HDG-P;
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Table 9: Numerical convergence order of the HDG method for the scattering of a plane wave by a dielectric
cylinder.

Py P,
Mesh B = Enllz2 [H =~ .1 1E = Enll» [H =, .-
Error Order Error Order Error Order Error Order
M1  3.96e+00 - 4.30e+00 - 3.07e+00 - 3.45e+00 -

M2  2.52e+00 0.8 2.78e+-00 0.8 1.34e+-00 1.5 1.56e-+00 1.5
M3  1.46e+00 0.9 1.64e+-00 0.9 1.27e-01 4.1 1.63e-01 3.9
M4 2.97e-01 2.2 3.40e-01 2.2 1.11e-02 3.3 1.64e-02 3.2

P3 P,
Mesh B = Enllz2 TH =, 1E = Enll» 0=, .-
Error Order Error Order Error Order Error Order
M1 1.98e+00 - 2.38¢+00 - 6.49e-01 7.37e-01

M2 2.23e-01 4.1 2.87e-01 3.9 2.98e-02 5.8 4.45e-02 5.3
M3 1.09e-02 5.2 1.72e-02 4.9 1.18e-03 5.6 2.15e-03 5.3
M4 5.79e-04 4.0 9.52e-04 4.0 3.10e-05 5.0 5.23e-05 5.1

and HDG-P; methods is assured. The assembly of the reduced system is similar to a classical finite element
assembly and the reduced system has a wave equation-like nature which results in an indefinite global linear
system. The numerical results show that the approximate solutions for both E and H fields have optimal
convergence order. Compared to a standard upwind flux-based DG method, the HDG method can reduce
the memory cost and the computing CPU time, because of the reduction of the number of globally coupled
degrees of freedom.

In addition, an isoparametric mapping technique combined with the proposed high order HDG formula-
tion has been discussed for handling curvilinear geometries. Numerical experiments have shown that high
order isoparametric mappings play an essential role for the high order accuracy of the HDG methods. With
an affine geometric approximation, we can only have second order accuracy for high order HDG methods.
With quadratic or cubic mappings, the optimal convergence order of high order HDG method can be retained.

The encouraging results obtained here in 2d naturally motivate the development of a high order HDG
method for the system of 3d time-harmonic Maxwell equations. Indeed, this is the ultimate objective of
our investment in hybridizable DG methods for the numerical solution of time-harmonic electromagnetic
wave propagation involving irregularly shaped objects and complex media. In the 3d case, several issues
have to be considered simultaneously: the design of a locally well-posed HDG formulation of the system
of partial differential equations at hand; the choice of an appropriate high order interpolation method in
view of hp-adaptivity; the numerical treatment of curved boundaries; the design of an appropriate, ideally
parallel, solution strategy for the resulting global linear system for the hybrid variable; and, the definition of
a parallelization strategy for taking full benefit of the local character of the HDG method. Concerning the
last point, a very appealing approach is to combine a SIMD (Single Instruction Multiple Data) fine grain
parallelism with a MIMD (Multiple Instruction Multiple Data) coarse grain parallel model, in particular for
exploiting modern heterogeneous multicore parallel systems.

The development of such a high order HDG method for the system of 3d time-harmonic Maxwell equations
is as a matter of fact underway. For large-scale problems, the solution strategy that we will adopt is
based on domain decomposition principles building upon previous works on Schwarz algorithms (Dolean
et al., 2008). To conclude, and to give a first illustration of the capabilities of the method in 3d, we
provide here preliminary results, considering again the model problem of the propagation of a plane wave
in the vacuum. The computational domain is chosen to be the unit cube =] — 0.5;0.5[> and the Silver
Miiller absorbing boundary condition is imposed on the whole 02. For this test problem, we employ a
Matlab implementation of the HDG-P; and HDG-P; methods with nodal Lagrange basis expansions on
tetrahedral elements. A sequence of regular tetrahedral meshes are employed, which divide the unit cube
into (V; — 1) x (N, —1) x (N, — 1) little cubes, where N,, N, and N, are the number of grid points on the
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edges of the unit cube, and then each little cube is divided into 6 tetrahedrons. Table 10 summarizes the error
and convergence behaviors of both the HDG-P; and HDG-P; methods. In Table 10, «Mesh size»denotes the
edge length of the tetrahedrons on the edge of the unit cube (we set N, = N, = N, in the construction of
the tetrahedral meshes) and Ngos stand for the total number of degrees of freedom. We observe that the
convergence orders of the approximate solutions for both E and H seems to be optimal as it was the case in
2d. These results with more details on the formulation can be found in (Li et al., 2011).

Table 10: Propagation of a plane wave in vacuum: numerical convergence of the HDG-P; and HDG-P,
methods.

Mesh size h IE —Epgl2 |IH — Hyll2
Niof Error Order Error Order
HDG-P;
1/2 720  2.27e-01 - 2.35e-01 -
1/4 5184  6.02e-02 1.9 6.68e-02 1.8
1/8 39168 1.54e-02 2.0 1.78e-02 1.9
HDG-P,
1/2 1440  3.13e-02 - 3.36e-02 -
1/4 10368  4.00e-03 3.0 4.44e-03 2.9
1/8 78336  4.93e-04 3.0 5.53e-04 3.0
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