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This study provides a baseline describing natural small scale variability of Symbiodinium density in the sentinel coral
Acropora globiceps during the summer, under non-bleaching conditions. Spatial scales investigated range from the colony
scale (1–10 cm, i.e. among branches of the same colony) to the reef scale (1–10 km, i.e. among stations distributed over
several locations and depths), at Moorea Island, French Polynesia. The coral–Symbiodinium symbiosis is a key process in
scleractinian coral physiology, and Symbiodinium density provides an easy-to-measure and inexpensive biomarker of this
symbiosis health. Spatial variability of three major environmental factors: light intensity, sedimentation and water motion
was also assessed to evaluate their potential link with Symbiodinium density. Density of Symbiodinium did not significantly
differ within colonies or among colonies within a station. However, a marked depth gradient was observed, showing increas-
ing density with increasing depth and decreasing light intensity. These observations provide an interesting reference for forth-
coming comparisons with disturbed conditions, such as bleaching events.
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I N T R O D U C T I O N

Reef-building corals live in a symbiotic association with
unicellular dinoflagellate algae, referred to as zooxanthel-
lae (genus Symbiodinium). Translocated algal photo-
synthates satisfy most host energetic requirements and
are essential for coral survival in oligotrophic tropical
shallow waters (Muscatine & Porter, 1977). Algal sym-
bionts supply the coral host with sugars, glycerol and
amino acids, while algae benefit from host metabolic pro-
ducts, such as CO2, phosphates and nitrogenous com-
pounds (Hallock, 2001).

Symbiodinium density in coral colonies varies at several
spatial and temporal scales, both under normal conditions
(i.e. in the absence of perturbation) and after particular dis-
turbances. Algal endosymbiont density can vary among
coral species (Drew, 1972), as well as among colonies of the
same species, at both local and regional scales (Fitt et al.,
2001). Light (D’Croz et al., 2001; Bhagooli & Yakovleva,
2004), sedimentation and eutrophication (Brodie et al., 2007;
Sawall et al., 2011), water motion (Finelli et al., 2006),
water temperature (Steen & Muscatine, 1987; Sunagawa
et al., 2008) and salinity (Hoegh-Guldberg & Smith, 1989;
Sunagawa et al., 2008) are known to influence the density of
Symbiodinium. Despite these advances, the amount and
causes of variability in coral algal endosymbionts density at
a small spatial scale, i.e. from the colony scale (1–10 cm) to
the reef scale (1–10 km), remain poorly documented in
natural populations. The symbiotic relationship between
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Symbiodinium and its coral host is vulnerable and highly sen-
sitive to environmental or anthropogenic disturbances, and
may be disrupted (Bhagooli & Yakovleva, 2004; Weis,
2008). The disruption of this symbiosis is commonly referred
to as coral bleaching, which is broadly defined as the drastic
loss of endosymbiotic dinoflagellates or their associated pig-
ments from the coral host cells (Douglas, 2003).
Mass-bleaching events, which occur over large spatial scale,
are typically associated with higher than average seawater
temperature periods (Goreau & Hayes, 1994; Baker et al.,
2008), often in conjunction with increased light (Lesser
et al., 1990). These events can cause mass mortality within
coral populations and subsequent cascading effects on
coral-associated fauna (McClanahan et al., 2009; Leal et al.,
2012), and may induce a long-term shift in the composition
of reef assemblages (Adjeroud et al., 2009). Surviving coral
colonies often show decreased growth and fecundity,
reduction in competitive abilities and increased susceptibility
to diseases (McClanahan et al., 2009). In recent decades,
mass bleaching events have raised increasing concern,
especially in the present situation of climate change (Baker
et al., 2008). In this context, studies have been set up to esti-
mate coral reef health and document the consequences and
extent of catastrophic disturbances such as mass bleaching
events. Most of these programmes only document the abun-
dance of coral colonies, and do not take into account phys-
iological processes underlying coral health, such as the
coral–Symbiodinium relationship (Fitt et al., 2001).
However, estimating coral–Symbiodinium symbiosis health
through measures of parameters such as Symbiodinium
density has been demonstrated to be relevant in studies
investigating bleaching events (see, for example, Fagoonee
et al., 1999; Stimson et al., 2002; Shenkar et al., 2006; Li
et al., 2008). In this context, documenting Symbiodinium
density variation under natural, non-bleaching conditions
is critical to provide a baseline allowing comparisons when
a bleaching event occurs. This is especially true in the
present context of climate change, in reef systems under
the influence of recurrent mass bleaching events, such as
islands of the Central Pacific (Salvat, 1992; Adjeroud et al.,
2005, 2009; Penin et al., 2007, 2013).

In this context, the present study aims at documenting
intra-colony and small scale natural spatial variation in
Symbiodinium density in a sentinel coral species under non-
bleaching conditions during the summer season (warm
period). Symbiodinium density was chosen because it is an
inexpensive and easy-to-measure variable that is a good
proxy for the health of the coral–Symbiodinium relationship
(Moothien-Pillay et al., 2005). The method used can be
implemented in many locations with very basic laboratory
equipment (Bürker type haemocytometer and dissecting
microscope).

The present study documents intra-colony variation
(colony scale: 1–10 cm) as well as small spatial scale variation
in the field thanks to a hierarchical sampling design encom-
passing the station scale (1–10 m), the location scale (50–
100 m), and the reef scale (4–7 km). Additional measure-
ments of light intensity, sedimentation rate, and water
motion allowed the spatial patterns of variation of these key
environmental factors to be compared with Symbiodinium
density, thus providing a better understanding of the impli-
cations of these factors for the coral–Symbiodinium relation-
ship in the field.

M A T E R I A L S A N D M E T H O D S

Sampling strategy
The present study focused on the coral Acropora globiceps
(Dana, 1846), a major reef-building species in Moorea.
Acropora globiceps is a ubiquitous species in the Society
Archipelago, abundant both in the lagoon and on the whole
depth range of the outer slope, and is easy to identify in the
field. It is widespread in the Indo-Pacific, from the central
Indian Ocean (Andaman Sea) to south central Pacific
(Pitcairn) via the Great Barrier Reef, Micronesia and
Polynesia (Wallace, 1999). It is also highly sensitive to
changes of environmental conditions, and particularly to
temperature variations, like most species of this genus
(Marshall & Baird, 2000; Penin et al., 2007, 2013; Kayal
et al., 2011). As a consequence, A. globiceps can be considered
as a sentinel species and an adequate candidate for surveys
documenting coral health in the Society Archipelago.

Moorea Island (17830′S, 149850′W, Society Archipelago,
French Polynesia) exhibits a narrow coral reef belt surround-
ing the island, which compresses the spatial organization
along highly marked environmental gradients (Adjeroud,
1997); therefore, it is a unique system to study spatial variabil-
ity of Symbiodinium density and the role environmental
factors may play in causing these patterns.

First, colony scale variability of Symbiodinium density was
studied at three different depths (6, 12 and 18 m) at one site
(Vaipahu). At each of these three depths, eight colonies
were randomly chosen. For each colony, the extremity of
four branches (2 cm long apex), two internal, and two exter-
nal, were collected for comparison of Symbiodinium density
(Oliver, 1984).

A hierarchical sampling design (Figure 1), which includes
various depths and locations was used to determine small
spatial scale variation of Symbiodinium density: (1) at the
station scale (1–10 m), among colonies within a sampling
station; (2) at the location scale (50–100 m), among stations
implemented at different depths (6, 12 and 18 m) within a
location; and (3) at the reef scale (4–7 km), among three
locations within the outer reef slope of Moorea Island
(Figure 1: Haapiti on the west coast, Tiahura and Vaipahu
on the north coast; see Penin et al. (2007) for habitat descrip-
tion). Since no significant differences were observed at the
colony scale, small spatial scale variability was assessed
through sampling three branches of each of eight colonies ran-
domly chosen within a 100 m2 area at the nine sampling
stations.

Because Symbiodinium density is known to vary seasonally
(Fagoonee et al., 1999; Moothien-Pillay et al., 2005), coral
samples were collected in March 2007, which is the warmest
month of the year in Moorea (CRIOBE temperature data),
in order to provide a baseline corresponding to warm
period, i.e. when mass bleaching events are most likely to
happen (Adjeroud et al., 2009). Indeed, about one month
after the sampling, the first signs of bleaching were observed
around Moorea (mid-April; Penin et al., 2013).

Sample analysis
Coral samples were initially preserved at 2208C. Tissues of
the frozen fragments were then separated from the coral
skeleton with a high-pressure water jet (Water-PickTM;
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Fitt et al., 2000) using 0.22 mm-filtered seawater (50 ml per
sample) and allowed to settle. The slurry was then ground in
a glass tissue homogenizer and fixed with 4% formalin for
further counts and observations (Lasker, 2003). Density
was determined from counts of three replicate aliquots,
using a haemocytometer (Bürker type), under an optical
microscope. The Symbiodinium cell counts were normalized
to total coral surface using a paraffin method adapted from
Chancerelle (2000), based on the weight difference between

the clean and dry skeleton and the same skeleton coated
with paraffin (i.e. sealing fragments of coral skeletons with
a varnish and single dipping in paraffin wax at 658C).

Other methods exist to document coral– Symbiodinium
symbiosis performances (see for example Frade et al.,
2008a, b). However, they imply using expensive equipment
and laboratory facilities (such as aquarium systems,
pulse-amplitude modulation fluorometers, etc.), that are
not always available, especially in remote locations like

Fig. 1. Map of Moorea indicating the position of the nine sampling stations encompassing three locations (Haapiti, Tiahura and Vaipahu) and three depths (6, 12
and 18 m) on the outer reef slope. Variation of Symbiodinium density has been characterized at the colony scale as well as at three different hierarchical small
spatial scales represented by different line patterns. Distances among stations within a location are not to scale.

Fig. 2. Colony-scale variation of Symbiodinium densities: mean Symbiodinium density (zoox.cm22) in external vs internal branches for each of the eight colonies
(1–8) sampled at each of the three depths (6, 12 and 18 m) at Vaipahu site. Error bars represent standard deviations.
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Table 1. Non-parametric statistical analysis of spatial variation of Symbiodinium density at the colony, station, location and reef scales.

Colony scale
Mann–Whitney (MW) tests, internal vs external branches.
a1 (without Bonferroni correction) ¼ 0.0500; a2 (with Bonferroni correction) ¼ 0.0125

Depth U P sig. with a1 sig. with a2

All depths 1200.00 0.4059 NS NS
6 m 111.00 0.1657 NS NS
12 m 108.00 0.0875 NS NS
18 m 111.00 0.5217 NS NS

Station scale
Kruskall–Wallis (KW) tests among colonies within stations.
a1 (without Bonferroni correction) ¼ 0.0500; a2 (with Bonferroni correction) ¼ 0.0056

Station H P sig. with a1 sig. with a2

Haapiti 6 m 6.813 0.4486 NS NS
Haapiti 12 m 3.000 0.8850 NS NS
Haapiti 18 m 15.293 0.0324 ∗ NS
Tiahura 6 m 7.640 0.3654 NS NS
Tiahura 12 m 1.840 0.9682 NS NS
Tiahura 18 m 10.080 0.1841 NS NS
Vaipahu 6 m 10.240 0.1754 NS NS
Vaipahu 12 m 10.893 0.1433 NS NS
Vaipahu 18 m 3.173 0.8685 NS NS

Location scale
KW tests among stations within sites, and MW pairwise post-hoc tests (6 vs 12 m, 6 vs 18 m, and 12 vs 18 m).
a1 (without Bonferroni correction) ¼ 0.0500; a2 (with Bonferroni correction) ¼ 0.0042

KW tests

Location H P sig. with a1 sig. with a2

Haapiti 47.39 ,0.0001 ∗ ∗

Tiahura 61.941 ,0.0001 ∗ ∗

Vaipahu 59.909 ,0.0001 ∗ ∗

MW tests

Station U P sig. with a1 sig. with a2

Haapiti 6 m vs Haapiti 12 m 0.00 ,0.0001 ∗ ∗

Haapiti 6 m vs Haapiti 18 m 0.00 ,0.0001 ∗ ∗

Haapiti 12 m vs Haapiti 18 m 272.00 ,0.0001 ∗ ∗

Tiahura 6 m vs Tiahura 12 m 0.00 ,0.0001 ∗ ∗

Tiahura 6 m vs Tiahura 18 m 0.00 ,0.0001 ∗ ∗

Tiahura 12 m vs Tiahura 18 m 11.00 ,0.0001 ∗ ∗

Vaipahu 6 m vs Vaipahu 12 m 0.00 ,0.0001 ∗ ∗

Vaipahu 6 m vs Vaipahu 18 m 0.00 ,0.0001 ∗ ∗

Vaipahu 12 m vs Vaipahu 18 m 31.00 ,0.0001 ∗ ∗

Reef scale
KW tests among locations and MW pairwise post-hoc tests (Haapiti vs Tiahura, Haapiti vs Vaipahu, and Tiahura vs Vaipahu).
a1 (without Bonferroni correction) ¼ 0.0500; a2 (with Bonferroni correction) ¼ 0.0125
KW test

H P sig. with a1 sig. with a2

Moorea 0.371 0.8305 NS NS

MW tests

Station U P sig. with a1 sig. with a2

Haapiti vs Tiahura 2506.00 0.7311 NS NS
Haapiti vs Vaipahu 2448.00 0.5651 NS NS
Tiahura vs Vaipahu 2509.00 0.7402 NS NS
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the French Polynesian islands. Symbiodinium counting
method used in the present study presents the advantage
of being easy to implement with basic laboratory
equipment.

Environmental factors
To identify major factors potentially associated with spatial
variations of Symbiodinium density, light intensity (relative
photosynthetic photon flux, rPPF, in mmol.m22.s21), sedi-
mentation (total sedimentation rate, SR, in mg.cm22.d21),
and water motion (diffusion factor, DF) were measured at
each station. Variability in light intensity was assessed
through a relative photosynthetic photon flux (rPPF), which
is calculated as the ratio between underwater and surface
photosynthetic photon flux (PPF, mmol.m22.s21), within the
range of the photosynthetically active radiations (400–
700 nm). Measures were made using a MQ-200 quantum
meter (Apogee Instruments Inc., Logan UT, USA) at zenith
and on cloud-free days. For each replicate, underwater and
surface PPF were measured five times within 60 s at each of
five random replicate plots. Three replicates were performed
at each station, on three different days. Variability in water
motion was characterized through comparison of diffusion
factor (DF), calculated as the ratio between weight loss of
clod cards deployed in the field for 24 h and weight loss of
identical cards kept in a motionless seawater tank
(Thompson & Glenn, 1994). At each station, five replicate
racks, each encompassing four clod cards, were used on
each of five randomly chosen days. Variability in sedimen-
tation was quantified through a comparison of dry sediment
weight deposited per cm2 and per day. At each station, five
sediment collectors were deployed for ten days in three repli-
cate periods, following Stewart et al. (2006). Temperature was
not measured, because it does not significantly vary within the
studied depth range at these sites during the warm season
(Penin et al., 2007).

Statistical analysis
Due to lack of normality and homoscedasticity of the distri-
butions of Symbiodinium densities, even after appropriate

transformations, parametric statistics like ANOVA could
not be used. As a consequence, non-parametric statistical ana-
lyses were used. Intra-colony comparisons (between internal
and external branches) were performed using Mann–
Whitney rank tests (MW). For comparisons among stations,
locations and depths, Kruskal–Wallis rank tests (KW) were
conducted, completed by MW rank tests for post-hoc pairwise
comparisons. Spatial variability of light intensity, water
motion, and sedimentation rate were explored through the
use of KW rank tests and complementary MW rank tests
for pairwise comparisons. Non-parametric Spearman corre-
lations were used to detect significant relationships between
variability of Symbiodinium density and variability of light
intensity, sedimentation, and water motion among the nine
sampling stations. Results are presented with two values of
a, the first one being the classical 0.05, and the second one
being the a obtained after standard Bonferroni corrections,
which is a method aiming at adjusting the a risk to the
number of tests run, thus limiting the risk of Type I errors
(i.e. rejecting H0 when H0 is true). Results were virtually iden-
tical with the two methods, but we choose to present both due
to controversy raised by the use of Bonferroni corrections
(Cabin & Mitchell, 2000; Moran, 2003).

R E S U L T S

Symbiodinium density ranged from 0.77 to 2.32 × 106cm22.
No difference was observed between internal and external
branches at the Vaipahu site, whatever the depth being con-
sidered (Figure 2; Table 1). Similarly, Symbiodinium density
did not significantly vary at the station scale (i.e. among colo-
nies within a sampling station, Table 1). In contrast, signifi-
cantly higher densities were observed at deep stations than
at shallow stations at all three locations (Figure 3; Table 1).
Marked gradients were also observed among the nine
sampling stations for the measured environmental variables.
The rPPF decreased with increasing depth, but no significant
variation was observed among locations (Figure 4; Table 2).
Total dry sediment weight did not vary among depths, but
was significantly lower at Haapiti than at Vaipahu or
Tiahura (Figure 4; Table 2). Diffusion factor decreased with

Fig. 3. Multi-scale variation of Symbiodinium densities: mean Symbiodinium density (zoox.cm22) for each of the eight colonies sampled at each of the nine study
stations around Moorea. Error bars represent standard deviations.
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depth, and significant differences were detected among
locations, Haapiti presenting the highest values and Vaipahu
the lowest (Figure 4; Table 2).

Spatial variability in Symbiodinium density was strongly
and negatively correlated with light intensity, but not with
sedimentation rates or water motion (Figure 5; Table 3).

D I S C U S S I O N

Symbiodinium density observed in Acropora globiceps tissues
around Moorea was of the same order of magnitude as

values previously measured in A. palmata and A. cervicornis
in the Caribbean (Fitt et al., 2000), in A. formosa in the
Indian Ocean (Fagoonee et al., 1999), in different Acropora
species in the South China Sea (Li et al., 2008), and also in
A. millepora at the Palm Island Group, Great Barrier Reef,
Australia (Moothien-Pillay et al., 2005). This suggests that
the range of Symbiodinium density is relatively consistent
within the Acropora genus, even for highly divergent host
species and symbiont clades, and from different biogeographic
regions or environmental conditions.

At the colony scale, results showed homogeneity of
Symbiodinium densities between inner and outer branches

Fig. 4. Spatial variation of: (A) light intensity (relative photosynthetic photon flux rPPF); (B) sedimentation (dry sediment weight, mg.cm22.d21); (C) water
motion (diffusion factor) over the nine stations. Error bars represent standard deviations.
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in A. globiceps at the Vaipahu site, regardless of the depth con-
sidered. This outcome seems in contradiction with results of
previous surveys on other Acropora species (Oliver, 1984;
Moothien-Pillay et al., 2005) and suggests that intra-colony
variation in Symbiodinium density in reef-building corals
could be species-specific. At Moorea, this absence of intra-
colony differences in Symbiodinium density could also be
due to high light intensity (.200 mmol.m22.s21) and water
motion (.3.5; Figure 4) observed at all study sites and/or to
the presence of only small differences in these parameters
between internal and external branches, especially when con-
sidering the upper part of the branches, which usually contain
less Symbiodinium (Allemand et al., 2011). These hypotheses
could be addressed through intra-colony measurements of
light intensity and water motion on different species of the
Acropora genus.

At the station scale, no differences were observed among
colonies in the density of Symbiodinium. This homogeneity
within a particular habitat indicates the preponderance of
extrinsic vs intrinsic factors, and suggests environmental
factors are probably homogeneous enough at this scale not
to induce significant variability in Symbiodinium density.
At the location scale, a marked and consistent increase in
Symbiodinium density with increasing depth was observed

at all three locations. At the reef scale, significant differences
in Symbiodinium density have been observed among the
nine stations, but not among the three locations (Figure 3).
This shows that variability in Symbiodinium density is
mostly driven by depth and associated parameters such as
light, rather than by location. This depth pattern is probably
related to the strong negative correlation observed between
light intensity and Symbiodinium density, and underlines
the importance played by light in the coral–algal symbiosis
(Falkowski et al., 1984). A similar depth/light pattern in
Symbiodinium density was demonstrated in other cnidarians,
such as other scleractinian corals (Drew, 1972; Dustan, 1979)
or the sea anemone Aiptasia tagetes (Steele, 1976). Reduced
light intensity is known to induce an increase of
Symbiodinium density and photosynthetic pigments concen-
tration under experimental conditions (Titlyanov et al.,
2001) or in the field, in relation with depth (Li et al., 2008)
or cloud cover (Titlyanov et al., 2001; Sunagawa et al.,
2008). Titlyanov et al. (1980) have also established a relation-
ship between the increase of Symbiodinium density and the
decrease of light. These patterns are linked with acclimatiz-
ation to low light, which involves maximization of the light
harvesting capacity by increasing photosynthetic pigment
concentration in Symbiodinium, and Symbiodinium popu-
lation density in coral branches. Another mechanism for
corals to acclimatize to low light may be to change their
Symbiodinium clades (Rowan & Knowlton, 1995; Toller et al.,
2001; Bongaerts et al., 2010), in a similar way to that sometimes
observed with acclimatization to high temperature (Stat et al.,
2006). The different clades present variable volume and circum-
ference (Wilkerson et al., 1988), and deeper corals generally
harbour smaller Symbiodinium (Wilkerson et al., 1988).
Moreover, there is a relation between the size and density of
symbionts and the host tissue volume (space availability for
symbionts; Jones & Yellowlees, 1997). In the present study,
we did not detect any visible difference in Symbiodinium
size, and we can thus assume that variability in size of
Symbiodinium, in order to counterbalance higher density, is
probably limited. However, it would be of particular interest
to examine this hypothesis in further studies aiming to precisely
quantify and qualify the size and the clade of Symbiodinium
extracted from Acropora globiceps sampled at different depth.

The observed higher Symbiodinium density at deep
stations can also be one of the causes of spatial variability in
corals response to high temperature observed during the

Table 2. Kruskal–Wallis tests among stations (N ¼ 9 stations), among
locations (N ¼ 3 locations) and among depths (N ¼ 3 depths) on light
(photosynthetic photon flux), sedimentation (dry sediment weight), and
water motion (diffusion factor). a1 (without Bonferroni correction) ¼

0.0500; a2 (with Bonferroni correction) ¼ 0.0167.

Light H P sig. with a1 sig. with a2

Station 556.996 ,0.0001 ∗ ∗

Location 2.540 0.2808 NS NS
Depth 552.520 ,0.0001 ∗ ∗

Sedimentation H P sig. with a1 sig. with a2

Station 42.670 ,0.0001 ∗ ∗

Location 18.662 ,0.0001 ∗ ∗

Depth 2.902 0.2343 NS NS

Water motion H P sig. with a1 sig. with a2

Station 569.013 ,0.0001 ∗ ∗

Location 319.882 ,0.0001 ∗ ∗

Depth 238.675 ,0.0001 ∗ ∗

Fig. 5. Relationships between variation of Symbiodinium density (zoox.cm22) and environmental factors among the nine stations: (A) light intensity (relative
photosynthetic photon flux); (B) sedimentation (dry sediment weight, mg.cm22.d21); (C) water motion (diffusion factor). rho is the Spearman’s rank
correlation coefficient.
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bleaching event that occurred at Moorea a few weeks after this
study. During this bleaching event, corals at deeper stations
displayed a higher bleaching response than the shallower
ones (Penin et al., 2013). Coral bleaching is clearly linked to
photodamages faced by Symbiodinium under thermal stress
(Venn et al., 2008). These damages cause overproduction of
reactive oxygen species (ROS) leading to coral bleaching via
a complex cellular cascade (Weis, 2008). As a consequence,
corals from deeper stations, with high Symbiodinium density
and high concentration of photosynthetic pigments might
suffer from higher oxidative stress during temperature
anomalies than corals at shallower stations, characterized by
lower Symbiodinium and pigment densities (Stat et al., 2006).

Results of this study demonstrate that Symbiodinium
density in Acropora globiceps is strongly influenced by light
intensity, as it is the case for photophysiological and symbiotic
mechanisms in reef-building coral species (Venn et al., 2008;
Mass et al., 2010). Homogeneity in Symbiodinium density at
the colony (i.e. between branches of the same colony) and
station scales (i.e. between colonies of the same habitat)
allows considering Symbiodinium density in A. globiceps as a
potential biomarker of coral health in monitoring surveys,
since Symbiodinium density seems typical of a particular
habitat. In the present study, Symbiodinium density was
measured in non-disturbed conditions (i.e. in the absence of
major perturbations), just before the season when bleaching
events generally occur (Penin et al., 2007, 2013), and at
various depths and locations. Therefore, it provides a valuable
baseline that could be used in the future as a reference, to be
compared with measures realized in disturbed conditions,
such as during a bleaching event. In this perspective,
Symbiodinium density can represent an inexpensive and easy
to implement biomarker of coral–Symbiodinium symbiosis
health, and complement other tools used in studies investi-
gating the effects of bleaching events on coral reef health.
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