Christian Lavault
email: lavault@lipn.univ-paris13.fr

A note on Pr'úfer-like coding and counting forests of uniform hypertrees

Keywords: Hypergraph, Forest of (labelled rooted) hypertrees, Prüfer code, Encoding-decoding, b-uniform, Enumeration

This note presents an encoding and a decoding algorithms for a forest of (labelled) rooted uniform hypertrees and hypercycles in linear time, by using as few as n -2 integers in the range [1, n]. It is a simple extension of the classical Prüfer code for (labelled) rooted trees to an encoding for forests of (labelled) rooted uniform hypertrees and hypercycles, which allows to count them up according to their number of vertices, hyperedges and hypertrees. In passing, we also find Cayley's formula for the number of (labelled) rooted trees as well as its generalisation to the number of hypercycles found by Selivanov in the early 70's.

Notations and definitions

A hypergraph H is a pair H = (V, E), where V = {1, 2, . . . , n} denotes the set of vertices and E is a family of subsets of V each of size ≥ 2 called hyperedges (see e.g. [START_REF] Berge | Graphs and Hypergraphs[END_REF]). Two vertices are neighbours if they belong to the same hyperedge. The degree of a vertex is the number of its neighbours. A leaf is a set of b -1 non-distinguished vertices of degree (b -1) belonging to the same hyperedge. A hyperpath (path) between two vertices u and v is a finite sequence of hyperedges e 1 , . . . , e k , such that e i ∩ e i+1 = ∅ for any 1 ≤ i ≤ k -1, with u ∈ e 1 and v ∈ e k .

A hypergraph H is connected if there exists a path between any two vertices of H. A connected hypergraph is also called a connected component, or simply a component.

A hypergraph is called b-uniform (or uniform) if every hyperedge e ∈ E contains exactly b vertices (2 ≤ b ≤ n) [START_REF] Karonski | The number of sparsely edged uniform hypergraphs[END_REF][START_REF] Ravelomanana | Creation and Growth of Components in a Random Hypergraph Process[END_REF]. For example, 2-uniform hypergraphs are simply graphs. In the present note, only connected b-uniform hypergraphs (2 ≤ b ≤ n) are considered.

The excess of a connected hypergraph H = (V, E) is defined as

exc(H) = e∈E (|e| -1) -|V|
(see e.g. [START_REF] Karonski | The number of sparsely edged uniform hypergraphs[END_REF][START_REF] Ravelomanana | Creation and Growth of Components in a Random Hypergraph Process[END_REF]). Thus, if H is b-uniform, its excess is (b -1)|E| -|V|. A hypertree is a component of excess -1, which is the smallest excess possible for a connected hypergraph H, and hence, exc(H) ≥ -1 for any H (see the above definition). A component is rooted if one of its vertices is distinguished from all others. A hypergraph is called a forest if all its components have excess -1 (i.e. are hypertrees), and similarly a hypercycle has excess 0.

2 Bijective enumeration of a forest of hypertrees

State of the art and motivations

Concerning connected graphs (2-uniform hypergraphs), there exist several methods for counting trees (see e.g. [START_REF] Caminiti | On coding labelled trees[END_REF][START_REF] Cayley | A Theorem on Trees[END_REF][START_REF] Chen | An efficient algorithm for generating Prüfer codes from labelled trees[END_REF][START_REF]Une théorie combinatoire des séries formelles[END_REF][START_REF] Knuth | The Art of Computer Programing[END_REF][START_REF] Labelle | Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange[END_REF][START_REF] Moon | Various proofs of Cayley's Formula for Counting Trees[END_REF]), including of course the Prüfer code. Prüfer sequences were first introduced by Heinz Prüfer to prove Cayley's enumeration formula in 1918 [START_REF] Prüfer | Neuer Beweis eines Satzes über Permutationen[END_REF]. In his very elegant proof1 , Prüfer verified Caley's Theorem [START_REF] Cayley | A Theorem on Trees[END_REF] by establishing a one-to-one correspondence between labelled free trees of order n and all sequences of n -2 positive integers from 1 to n. The Prüfer codes can thus be generated by a simple iterative algorithm (see also [9, vol. 1, chap. 2] and [START_REF] Flajolet | Analytic Combinatorics[END_REF]).

Remark 1. To compute the Prüfer sequence Seq(T) for a labelled tree T , iteratively delete the leaf with smallest label and append the label of its neighbor to the sequence. After n -2 iterations a single edge remains and we have produced a sequence Seq(T) of length n -2.

Since the introduction of Prüfer codes, a linear time algorithm for its computation was given for the first time only in the 70's [START_REF] Nijenhuis | Combinatorial Algorithms[END_REF][START_REF] Rényi | The Prüfer code for k-trees[END_REF], and has been later rediscovered several times in various forms [START_REF] Caminiti | On coding labelled trees[END_REF][START_REF] Chen | An efficient algorithm for generating Prüfer codes from labelled trees[END_REF][START_REF] Edelson | Modified Prüfer code: O(n) implementation[END_REF]. Recently for example, the sequential encoding and decoding schemes presented in [START_REF] Caminiti | On coding labelled trees[END_REF]. Both require an optimal Θ(n) time when applied to rooted n-node trees, and provide the first optimal linear time decoding algorithm for Neville's codes [START_REF] Caminiti | On coding labelled trees[END_REF].

Amongst the most recent results, "Prüfer-like" encoding-decoding algorithms are generalizing the Prüfer code to the case of hypertrees (uniform or arbitrary). In 2009, S. Shannigrahi, S.P. Pal have shown in [START_REF] Shannigrahi | Efficient Prüfer-Like Coding and Counting Labelled Hypertrees[END_REF] that uniform hypertrees can be Prüfer-like encoded (and decoded) in optimal linear time Θ(n), using only n -2 integers in the range [1, n] (see Prüfer's Theorem in [START_REF] Prüfer | Neuer Beweis eines Satzes über Permutationen[END_REF]).

In the case when hypertrees are arbitrary (non uniform), the same authors' encoding and decoding algorithms in [START_REF] Shannigrahi | Efficient Prüfer-Like Coding and Counting Labelled Hypertrees[END_REF] require codes of length (n -2) + p, where p is the number of vertices belonging to more than one hyperedge, or pivots. Since the number p of pivots is bounded by |E|, at most (n -2) + |E| integers are needed to encode a general hypertree. Therefore, the design of efficient Prüfer-like encoding and decoding algorithms can be extended to arbitrary hypertrees where each hyperedge has at least two vertices. Up until now, no better bounds are known for the length of Prüfer-like codes for arbitrary hypertrees. By contrast, the exact number of distinct hypertrees is known to be

n-1 i=0 n -1 i n i-1
, where p q denotes the Stirling numbers of the second kind [START_REF] Knuth | The Art of Computer Programing[END_REF].

The main motivation of the present note comes from analytic and bijective combinatorics of hypergraphs, including the enumeration of (labelled) rooted forests of uniform hypertrees and hypercycles [START_REF] Ravelomanana | Creation and Growth of Components in a Random Hypergraph Process[END_REF]. These enumeration results are actually tightly linked to Prüfer-like coding and decoding of such combinatorial structures.

The following two algorithms code and decode forests of rooted uniform hypertrees, which in turns allows to enumerate these structures bijectively by using a generalization of the Prüfer sequences. The knowledge of the number of forests of rooted uniform hypertrees provides a concise and simple description of the structures, e.g. by using a recursive pruning of the leaves in the forests.

Encoding and decoding algorithms for a forest of (labelled) rooted hypertrees

Definition 1. The forests F composed of (k + 1) (labelled) rooted b-uniform hypertrees, with n vertices and s hyperedges, is coded with a 4-tuple (R, r, P, N) defined as follows:

• R is a set of (k + 1) vertices (roots) with distinct labels in

[n] ≡ {1, . . . , n}, • r ∈ R is one the (k + 1) roots, • P is a partition of [n] \ R into s subsets, each of size (b -1) and • N is an (s -1)-tuple in [n] s-1 .
Note that the above positive integers n ≡ n(s), s and k meet the condition

n = s(b -1) + k + 1,
and since F is b-uniform, exc(F) = s(b -1) -n. So, |E| = s and |V| = n.
Algorithm 1 is coding a given forest F of k + 1 (labelled) rooted uniform hypertrees as input, and returns the 4-tuple (R, r, P, N) coding F as output. The 4-tuple (R, r, P, N) is obtained from the coding in Definition 1 of a forest F (Algorithm 1) as follows.

1. the number of its components (i.e. the number |R| of its roots), Algorithm 1 Encoding a forest of rooted hypertrees. Add the set of vertices corresponding to the smallest leaf (with respect to the lexicographical order) to the partition P.

Input: A forest F of k + 1 (labelled)

4.

Put the vertex linking that set into the (s -1)-tuple N .

5.

Take F as the "new" forest not having the vertices corresponding to the smallest leaf. 6. Until there is no hyperedge remaining in F. 7. The last vertex in N is necessarily a root and r is redefined as this last vertex. 8. Return (R, r, P, N).

2. the unique root vertex r attached to the leaf of the last hyperedge in the pruning process, 3. the number of hyperedges |N | + 1, and finally, 4. the number of hypertrees that are not reduced to their roots, namely the number of distinct roots in the pair (N, r).

Example.

The forest F = (V, E) of rooted uniform hypertrees depicted in Fig. 1 Next, the following Algorithm 2 decodes a given 4-tuple (R, r, P, N) as input, and returns a forest of (labelled) rooted b-uniform hypertrees as output. Within the loop of Algorithm 2, the forest F is found with no ambiguity by choosing the smallest leaf in the lexicographical order. Remark 2. Encoding Algorithm 1 and decoding Algorithm 2 are both running in optimal linear time, by using as few as n -2 integers in the range [1, n]. This complexity result is a direct consequence of the Prüfer-like encoding algorithm designed in [START_REF] Shannigrahi | Efficient Prüfer-Like Coding and Counting Labelled Hypertrees[END_REF] (see Prüfer's Theorem in [START_REF] Prüfer | Neuer Beweis eines Satzes über Permutationen[END_REF]). The algorithm computes the hyperedge partial order on the hyperedges

Enumeration of forests, hypertrees and trees

From Algorithm 1, we obtain the enumeration of forests with (k + 1) (labelled) rooted uniform hypertrees and s hyperedges.

Theorem 1. The number of forests having (k + 1) (labelled) rooted b-uniform hypertrees and s hyperedges is

n k + 1 (k + 1) (n -k -1)! s! (b -1)! s n s-1 = n! k! n s-1 s! (b -1)! s , (1)
where the number of vertices is n ≡ n(s) = s(b -1) + k + 1.

Proof. The proof stems directly from the one-to-one correspondence constructed in Algorithm 1, which codes forests F with the set of 4-tuples (R, r, P, N) defined as in Definition 1. Indeed, the number of forests of (k + 1) (labelled Build one hyperedge with the first vertex in the (s -1)-tuple N and the vertices of the first set of P (w.r. to the lexicographic order) having no vertex still in the remaining set N .

)

3.

Remove the above set from P and delete the first vertex from the (s -1)-tuple N . 4. Until the set N is empty. 5. Build the (s -1)-th hyperedge with the last subset of P and the vertex r. 6. Return the forest F obtained.

Corollary 1. The number of (labelled) rooted b-uniform hypertrees with s hyperedges is

(n -1)! s! (b -1)! s n s ,
where the number of vertices is n ≡ n(s) = s(b -1) + 1.

Note that, whenever b = 2 (and thus s = n -1), Corollary 1 is a generalization of Cayley's Theorem enumerating rooted trees of n vertices: for any n ≥ 1, the number of (nonplane labelled) rooted trees of n vertices is n n-1 [START_REF] Cayley | A Theorem on Trees[END_REF].

One of the advantages offered by a bijective construction proof is also the possibility of performing a random generation and learn some characteristic properties of the structures in F [START_REF] Ravelomanana | Creation and Growth of Components in a Random Hypergraph Process[END_REF].

A generalization of Subsection 2.3 also gives an explicit expression of the number of uniform hypercycles and obtain an alternative proof of Selivanov's 1972 enumeration result.

Enumeration of uniform hypercycles

Together with hypertrees, hypercycles are the simplest structures and they have excess 0. Along the same lines as in Theorem 1, the following bijective proof gives the enumeration formula (first given by Selivanov in [START_REF] Selivanov | Perechislenie odnorodnyckh hipergrafov c protstoȋ ciklovoȋ strukturoȋ[END_REF]) of the uniform hypercycles in a forest F. Theorem 2. [START_REF] Selivanov | Perechislenie odnorodnyckh hipergrafov c protstoȋ ciklovoȋ strukturoȋ[END_REF] The number of b-uniform hypercycles with s hyperedges is

(b -1)n! n s-1 2 (b -1)! s s j=2 j s j (s -j)! = (b -1)n! n s-1 2 (b -1)! s 1 s(s -2)! ,
where the number of vertices is n ≡ n(s) = s(b -1).

Proof. A hypercycle having a cycle length j corresponds to a forest F of j(b -1) rooted hypertrees, up to an arrangment of the hypertrees in all distinct ways of forming a cycle. F has (s -j) hyperedges and j(b -1) components to be arranged into a cycle. The number of b-uniform hypercycles having a cycle length j (2 ≤ j ≤ s) and with s hyperedges is thus

  n j(b -1) j(b -1) (s -j)(b -1) ! (s -j)! (b -1)! s-j     1 2 j(b -1) ! (b -2)! j   , (2)
where n ≡ n(s) = s(b -1).

In the above Eq. (2) indeed, the left-hand factor (between brackets) counts the number of forests of rooted b-uniform hypertrees, while the right-hand one counts the number of smooth hypercycles labelled with the set {1, . . . , j(b -1)}. j distinct hyperedges, and thus labelled with the set {1, . . . , j(b -1)}. Now, (b -1)! -s+j (b -2)! -j = (b -1)! j (b -1)! -s and, since n = s(b -1), we have

(s -j)(b -1) = n -j(b -1). So, Eq. (2) simplifies to n!(b -1) 2 (b -1)! s (b -1)! j (s -j)!
, with j ranging from 2 to s.

Finally, substituting n s-1 /s j for (b -1)! j and summing on 2 ≤ j ≤ s, gives the finite sum in Theorem 2:

s j=2 j s j (s -j)! = 1 s(s -2)!
, and the result follows.

Conclusions and further results

In the above proof of Theorem 2 we are led to distinghish hypercycles according to the lengths of the cycles. Therefore, a question arises: for a given number n = s(b -1) of vertices, what is the cycle length j of the class that contributes most to the number of such hypercycles?

It is shown in [START_REF] Shannigrahi | Efficient Prüfer-Like Coding and Counting Labelled Hypertrees[END_REF] that there exists at most

n n-2 -f (n, b) (b -1) (b-2)(n-1)/(b-1) distinct labelled b-uniform hypertrees, where f (n, b) is a lower bound on the number of labelled trees of maximal (vertex) degree exceeding ∆ = (b -1) + n -1 b -1 -2.
In view of extending this result, can we determine a lower bound on the number of labelled trees with no constraint on their maximal (vertex) degree-or, at least, with maximal degree exceeding some ∆ < ∆? This, for example, by designing some generalized counting techniques based on a bijective or analytic enumeration of b-uniform hypertrees. (See also [START_REF] Rényi | The Prüfer code for k-trees[END_REF][START_REF] Shannigrahi | Efficient Prüfer-Like Coding and Counting Labelled Hypertrees[END_REF]).

In the spirit of [START_REF] Flajolet | Analytic Combinatorics[END_REF], some potential applications of Prüfer-like code may also arise as fruitful directions of research.

Encoding algorithms (such as the present one or the algorithm designed in [START_REF] Shannigrahi | Efficient Prüfer-Like Coding and Counting Labelled Hypertrees[END_REF]) can be used to generate unique identities (IDs) or PINs. By generating distinct hypertrees with combinatorial enumeration methods, it is possible to compute distinct codes for each of these hypertrees using such encoding algorithms. All codes generated this way would be distinct and can provide unique IDs. The advantage of the scheme is that no check for repetitions is needed, since IDs generated from distinct hypertrees are unique. Besides, the generation of such codes requires time proportional to the length of the code.

Coding schemes can also be useful for allocating IDs to different users in a system where disjoint sets of users form different groups. Each group is associated with a distinct hypertree, whereas the users within a group are allocated distinct codes of the same hypertree associated with the group. Subgroups can be realized by another level of Prüfer-like encoding. The actual implementation of such group management schemes is an open direction of research (see [START_REF] Shannigrahi | Efficient Prüfer-Like Coding and Counting Labelled Hypertrees[END_REF]).

 rooted b-uniform hypertrees, with s hyperedges and n = s(b -1) + k + 1 vertices. Output: The coding (R, r, P, N) of F as in Definition 1. 1. (R, r, P, N) ← ({root}, r, { }, ()) 2. Repeat 3.

Figure 1 :

 1 Figure 1: A forest of 4 (labelled) rooted hypertrees.

 rooted b-uniform hypertrees and s hyperedges is equal to |R| × #roots × |P| × |N |. Now, we have |R| = n k + 1 , the number of roots is (k + 1) , |P| = (n -k -1)! s! (b -1)! s and |N | = n s-1 . So, after simplifications, Theorem 1 follows. Setting k = 0 in the above Eq. (1) (Theorem 1) yields n! n s-1 s!(b -1)! s . Whence the following Algorithm 2 Decoding to a forest of rooted hypertrees. Input: Integers n, k and s meeting the condition n = s(b -1) + k + 1 and the coding (R, r, P, N) of F, as in Definition 1. Output: Forest F of rooted b-uniform hypertrees, whose k + 1 roots are the vertices of R. 1. Repeat 2.

Prüfer's Theorem is as follows. There are n n-2 sequences (called Prüfer sequence or Prüfer codes) of length n -2 with entries being from natural numbers; we establish a bijection between the set of trees and this set of sequences.