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Visual-inertial structure from motion: observability and resolvability

Agostino Martinelli

Abstract— This paper provides two novel contributions. The
former regards the observability of the visual-inertial structure
from motion. It is proven that, the information contained in
the data provided by a monocular camera which observes a
single point-feature and by an Inertial Measurement Unit (IMU)
allows estimating the absolute scale, the speed in the local frame,
the absolute roll and pitch angles, the biases which affect the
accelerometer’s and the gyroscope’s measurements, the magni-
tude of the gravitational acceleration and the extrinsic camera-
IMU calibration. The latter contribution is the derivation of
a new closed form solution to determine some of the previous
observable quantities by only using few camera measurements
collected during a short time interval and the data provided
by the IMU during the same time interval. This closed-solution
allows us to investigate the intrinsic properties of the visual-
inertial structure from motion and in particular to identify the
conditions under which the problem has a finite number of
solutions. Specifically, it is shown that the problem can have
a unique solution, two distinct solutions and infinite solutions
depending on the trajectory, on the number of point-features
and on their layout and on the number of camera images. The
proposed closed solution is finally used in conjunction with a
filter based approach in order to show its benefit.

I. INTRODUCTION

The structure from motion problem (SfM) consists in
determining the three-dimensional structure of the scene by
using the measurements provided by one or more sensors
over time (e.g. vision sensors, ego-motion sensors, range
sensors). In the case of visual measurements only, the SfM
problem has been solved up to a scale [3], [4], [10], [16],
[22] and a closed form solution has also been derived
[10], [16], [22], allowing the determination of the three-
dimensional structure of the scene, without the need for any
prior knowledge. The case of inertial and visual measure-
ments, i.e., the visual-inertial structure from motion problem
(from now on the Vi-SfM problem), has particular interest
and has been investigated by many disciplines, both in the
framework of computer science [2], [12], [13], [20], [23]
and in the framework of neuroscience (e.g., [1], [5], [8]).
Vision and inertial sensing have received great attention by
the mobile robotics community since they require no external
infrastructure and this is a key advantage for robots operating
in unknown environments where GPS signals are shadowed.

From a theoretical perspective, recent works on Vi-
SfM have focused on two separate issues: (i) understand-
ing the observability properties in several contexts and (ii)
determining the solution in closed form.

The first issue has been faced in [11], [12], [13], [14],
[15], [20], [21] and [24]. In [11], [14] and [15] the au-
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thors investigated the estimator inconsistency in the Vi-
SfM problem. In [11] the authors found that standard EKF-
based estimators lead to spurious information gain along
unobservable directions. They also suggested a modification
on the basic estimator in order to enforce the unobservable
directions and thus to reduce inconsistency. In [12], [13], [21]
and [24] the observability properties have been derived by
accounting an unknown transformation between the camera
and the IMU frames and an unknown magnitude of the
gravity. Additionally, in [13] and [24] also the case of biased
inertial measurements has been considered. We remark that
in [12], [13] and [24] the observability properties have
been derived starting from basic results in computer vision.
Specifically, in [12] and [13], starting from the results derived
in [3], a global frame has been fixed by constraining three
directions determined by three points on the image plane.
In [24], the camera is considered as a localization sensor up
to a scale. This is based on the assumption that the camera
is observing a number of features (at least five [22]) which
guarantees that its motion can be reconstructed up to a scale.
This significantly simplifies the observability analysis since,
the expression of the observation provided by the camera
consists of three components of the state which defines the
system. In [20] the observability properties have been derived
without using the previous mentioned results from computer
vision and this allowed us to deal with the case when a single
point feature is observed by the camera. The analysis was
based on the concept of continuous symmetry introduced in
[19]. Since under these conditions the camera observation
has an expression much more complex, the analysis in [20]
was limited to the case when the camera extrinsic calibration
in the IMU frame is a priori known. The first contribution
of this paper (in section III) is precisely the extension of the
observability analysis carried out in [20] in order to cope with
the case of unknown camera extrinsic calibration. In order
to achieve this objective, the theory introduced in [19] has
been extended by adding some new techniques which allow
us to significantly reduce the load of symbolic computation
required to perform the analysis and the derivation of the
system symmetries. For the sake of brevity, the details about
these new results (as the concept of quasi-projection) are
available in a separate technical report [17]. It is interesting
to note that, thanks to this new analysis, it is shown that
two points features are sufficient to fix a global frame where
the state which defines the Vi-SfM is observable (included
the bias, the magnitude of the gravity and the camera-IMU
transformation).

The second theoretical issue previously mentioned, namely
the determination of the Vi-SfM in closed form, has been



faced in [6], [18] and [20]. The interest of this research
comes from the fact that any approach to the Vi-SfM based
on a recursive filter or on a smoothing estimator needs
to initialize the estimated state. Due to the system non
linearities, an erroneous initialization can cause a divergence
of the estimation process. A deterministic solution, i.e., a
solution which analytically expresses the observable modes
in terms of the measurements provided by the sensors during
a short time-interval, will avoid this important inconvenient.
Closed form solutions to the Vi-SfM have been introduced
in [20]. In [6] also the case of an unknown camera-IMU
extrinsic calibration has been dealt and a deterministic algo-
rithm able to also determine the parameters characterizing
this transformation has been introduced. Here we present
a further closed solution to the basic Vi-SfM (section IV).
Compared with the solutions proposed in [20], this new
solution allows us to investigate the intrinsic properties of the
Vi-SfM problem and to identify the conditions under which
the problem can be solved in closed form. In particular, these
conditions regard the trajectory, the number of point-features
and their layout and the number of monocular images
where the same point-features are seen. These results are
obtained under the assumption of noiseless visual and inertial
measurements. Additionally, the measurements provided by
the IMU are assumed to be unbiased and the camera-
IMU extrinsic calibration is assumed known. On the other
hand, Monte Carlo simulations have also been performed by
relaxing all these assumptions and the closed form solution
is used in conjunction with a filtering approach in order to
show its benefit (section VI). For the sake of brevity, also
in this case we omit several proofs and several additional
properties. They can be found in [18], where also the case of
biased measurements from the accelerometers is considered.

II. THE CONSIDERED SYSTEM

We consider a system (from now on we call it the vehicle)
consisting of a monocular camera and an IMU. We introduce
a global frame in order to characterize the motion of the
vehicle moving in a 3D environment. Its z-axis points
vertically upwards. We will adopt lower-case letters to denote
vectors in this frame (e.g., the gravity is g = [0, 0, − g]T ,
where g is the magnitude of the gravitational acceleration).
We define the vehicle local frame as the IMU frame. We
will adopt upper-case letters to denote vectors in the vehicle
frame. The camera frame differs from the local frame. We
characterize the transformation between these two frames
through Rc and qc, where Rc ≡ [Xc, Y c, Zc]T is the
position of the camera optical center in the local frame and
qc ≡ qct + qcxi + qcyj + qczk is the unit quaternion which
characterizes the orientation of the camera frame in the local
frame. We assume that both Rc and qc are independent of
time and are unknown.

The IMU provides the vehicle angular speed and accel-
eration. We will denote the measured quantities by Ω and
A, respectively. These quantities differ from the true values,
Ωtrue and Atrue. Regarding the angular speed, the one
measured by the gyroscopes includes a bias and a zero-

mean error, i.e.: Ω = Ωtrue + Ωbias + nΩ. Regarding
the acceleration, the one measured by the accelerometers
includes the inertial acceleration (Ainertial), the gravitational
acceleration (G), a bias and a zero-mean error. In other
words: A = Ainertial + Abias − G + nA. Note that the
gravity comes with a minus since, when the vehicle does not
accelerate (i.e.Ainertial is zero), the accelerometers perceive
an acceleration which is the same of an object accelerated
upward in absence of gravity.

Our system is characterized by the state [r, v, q]T where
r = [rx, ry, rz]

T is the 3D vehicle position in the global
frame, v is its time derivative, i.e. the vehicle speed in the
global frame (v ≡ dr

dt ) and q ≡ qt + qxi+ qyj + qzk is the
unit quaternion which characterizes the vehicle orientation
in the global frame.

In the following we want to derive the analytical expres-
sion of the dynamics and the camera observations. For the
sake of simplicity, we consider the case of noiseless measure-
ments. The case with noise can be easily obtained with the
substitution A→ A+nA and Ω→ Ω+nΩ. The dynamics
of the previous state can be easily provided by expressing
all the 3D vectors as imaginary quaternions. In practice,
given a 3D vector w = [wx, wy, wz]

T we associate with it
the imaginary quaternion wq ≡ 0 + wxi + wyj + wzk. The
dynamics of the state [rq, vq, q]

T are:


ṙq = vq

v̇q = qAinertialq q∗ = qAqq
∗ + qAbiasq q∗ + gq

q̇ =
1

2
qΩq +

1

2
qΩbiasq

(1)

being q∗ the conjugate of q, q∗ = qt − iqx − jqy − kqz . By
considering the case of unknown biases, unknown magnitude
of the gravity and unknown transformation between the IMU
and the camera frames, the state which defines our system
becomes the following 24−dimensional vector:

X ≡
[
r, v, q, Abias, Ωbias, Rc, qc, g

]T
(2)

whose dynamics are given in (1) with the following trivial
additional equations:{

Ȧbias = Ω̇bias = Ṙc = [0 0 0]T

ġ = q̇c = 0
(3)

Note that this is the state which defines our system when a
single point feature is observed by the camera. In this case
the origin of the global frame can be chosen as coincident
with the observed feature. In the case of multiple features,
the state dimension becomes 24 + 3(Nf − 1) (Nf being
the number of observed features) and the coordinates of
the further Nf − 1 features are included in the state (see
[20] for more details). On the other hand, the state defined
in (2) is not a suitable choice to characterize our system.
Indeed, the expression of the camera observations in terms
of it involves the product of five quaternions: (qc)∗q∗rqqq

c.
This makes impossible to efficiently derive the observability
properties. In order to have a simple expression of the camera



observations it is much more convenient to adopt a new state.
Let us refer to the case of a single feature. The new state is:

Xn ≡
[
cF , V , q, Abias, Ωbias, Rc, qc, g

]T
(4)

where cF ≡ [cFx,
cFy,

cFz]
T is the position of the feature

in the camera frame and V is the vehicle speed in the local
frame (i.e., in the IMU frame). By using the equations in (1)
we obtain the following dynamics for the new state:



cḞ = M(cΩ)cF −Rqc [V + (Ω + Ωbias) ∧Rc]

V̇ = M(Ω + Ωbias)V +A+Abias +G

q̇ =
1

2
qΩq +

1

2
qΩbiasq

Ȧbias = Ω̇bias = Ṙc = [0 0 0]T

ġ = q̇c = 0
(5)

where:

• M(Ω) ≡

 0 Ωz −Ωy
−Ωz 0 Ωx
Ωy −Ωx 0

;

• cΩ is the angular speed in the camera frame, i.e., cΩq =
(qc)∗(Ωq + Ωbiasq )qc;

• Rqc is the rotation matrix associated with the quater-
nion qc (i.e., for a 3D vector w = [wx, wy, wz]

T ,
(Rqcw)q = (qc)∗wqq

c);
• the symbol ”∧” denotes the vectorial product.

Figure 1 displayes the three reference frames together with
some of the previous vectors.

Fig. 1. Global frame, local (IMU) frame and camera frame with the feature
position (cF ) in the camera frame and the vehicle speed (V ) and the camera
position (Rc) in the local frame.

The expression of the camera observations in terms of
the new state is trivial. Indeed, the camera provides the
direction of the observed feature in its own frame. Hence,
it provides the vector cF up to a scale, or, equivalently, the
two following ratios:

hcam(Xn) ≡ [hu, hv]
T =

[
cFx
cFz

,
cFy
cFz

]T
(6)

We have also to consider the two constraints q∗q = 1 and
(qc)∗qc = 1. These can be dealt as further observations:

hconst(Xn) ≡ [hq, hqc ]T = [q∗q, (qc)∗qc]
T (7)

Finally, the case of multiple features can be characterized
by including in the state the position of each feature in
the camera frame, i.e., cF → cF i, i = 1, 2, · · · , Nf . The
resulting state has dimension 24 + 3(Nf − 1).

III. OBSERVABILITY PROPERTIES

In [20] we investigated the observability properties of
the Vi-SfM in several contexts which include the case of a
single and multiple features, the case of known and unknown
magnitude of the gravity, the case of biased and unbiased in-
ertial measurements. In all the considered cases, the extrinsic
camera-IMU transformation was assumed known. In the case
of a single feature, the state adopted to characterize the case
of biased inertial measurements and unknown magnitude
of the gravity was

[
r, v, q, Abias, Ωbias, g

]T
, whose

dimension is 17. The results of the observability analysis
carried out in [20] were obtained by using the method
of continuous symmetries developed in [19] and can be
summarized as follows:

Theorem 1 (Known extrinsic calibration) Let us consider
the Vi-SfM with biased inertial measurements, unknown mag-
nitude of the gravity and known camera-IMU transformation.
All the independent observable modes are: the positions in
the local frame of all the observed features, the 3 components
of the speed of the vehicle in the local frame, the two biases
affecting the accelerometer and gyroscope measurements, the
roll and the pitch angle and the magnitude of the gravity.

The derivation of this result required to analytically com-
pute the Lie derivatives up to the third order. In general,
the complexity of the computation of the Lie derivatives
and the determination of their dependence or independence
dramatically depends on the state dimension.

Let us consider now the case when the extrinsic camera-
IMU transformation is unknown. In order to solve the struc-
ture from motion we also need to estimate the parameters
which characterize this transformation. In other words, the
state which defines our system, is the one given in (2) or in
(4), for the case of a single feature. In this case, even by using
the state in (4), we found prohibitive to analytically deal
with second-order Lie derivatives. Specifically, by using the
symbolic computation tool of Matlab running on a 2.7GHz
dual-core Intel Core i7 processor with 4MB shared L3
cache, the time demanded to compute the rank of the matrix
whose lines are the gradients of all the Lie derivatives up
to the second order, is equal to 101734s and the analytical
determination of its null space required 127683s. In order
to apply the theory developed in [19] we derived some new
theoretical results (see properties 2 and 3 and the operation
of quasi-projection in [17]). By using these new results we
were able to deal with third-order Lie derivatives and the
total time of computation requested to determine the number
of independent Lie derivatives up to the third order does



not exceed 200s (see [17] for all the details). The result of
this analysis allows us to extend the result in theorem 1 to
the case of unknown camera-IMU calibration. We have the
following new result1:

Theorem 2 (Unknown extrinsic calibration) Let us con-
sider the Vi-SfM with biased inertial measurements, unknown
magnitude of the gravity and unknown camera-IMU trans-
formation. All the independent observable modes are: the
positions in the local frame of all the observed features, the
3 components of the speed of the vehicle in the local frame,
the two biases affecting the accelerometer and gyroscope
measurements, the roll and the pitch angle, the magnitude of
the gravity and the transformation between the camera and
IMU frames.

IV. THE CLOSED FORM SOLUTION

In the following we assume that the camera and the IMU
frames coincide and that the IMU biases and the magnitude
of the gravity are known. These assumptions will be relaxed
in section VI. Since the local frame is time dependent, we
will adopt the following notation: W t(τ) will be the vector
with global coordinates w(τ) in the local frame at time
t. Additionally, we will denote with Ct2t1 the matrix which
characterizes the rotation occurred during the time interval
(t1, t2) and with Ct1t2 its inverse (i.e., (Ct2t1 )−1 = Ct1t2 ). Let us
refer to vectors which are independent of the origin of the
reference frame (e.g., speed, acceleration, etc.). For these
vectors we have: W t1(τ) = Ct2t1W t2(τ). Finally, Ct will
denote the rotation matrix between the global frame and the
local frame at time t, i.e.,w(τ) = CtW t(τ). We assume that
the camera is observing one or more point-features during
the time interval [Tin, Tfin]. Our goal is to express in closed-
form the observable modes at a given time Tin only in terms
of the visual and inertial measurements obtained in the time
interval [Tin, Tfin].

The position of the vehicle r at any time t ∈ [Tin, Tfin]
satisfies the equation r(t) = r(Tin) + v(Tin)∆t +∫ t
Tin

∫ τ
Tin
a(ξ)dξdτ . The last term contains a double integral

over time, which can be simplified in a single integral by
integrating by parts. We obtain:

r(t) = r(Tin) + v(Tin)∆t+

∫ t

Tin

(t− τ)a(τ)dτ (8)

where a ≡ dv
dt and ∆t ≡ t− Tin. We write equation (8) by

highlighting the vectorAτ (τ) provided by the accelerometer:

r(t) = r(Tin) + v(Tin)∆t+ g
∆t2

2
+ CTinSTin

(t) (9)

where:

STin
(t) ≡

∫ t

Tin

(t− τ)CτTin
Aτ (τ)dτ

1We realized that this result has independently been proven very recently
in [9], by following a completely different methodology.

The matrix CτTin
can be obtained from the angular speed

during the interval [Tin, τ ] provided by the gyroscopes [7].
Hence, the vector STin(t) can be obtained by integrating
the data provided by the gyroscopes and the accelerometers
delivered during the interval [Tin, t].

Let us suppose that Nf point-features are observed, simul-
taneously. Their position in the local frame are F it(t) and,
in the global frame f i.

f i = r(t) + CTinCtTin
F it(t) (10)

We write this equation at time t = Tin obtaining:

f i − r(Tin) = CTinF iTin
(Tin) (11)

By inserting the expression of r(t) provided in (9) into
equation (10), by using (11) and by pre multiplying by
the rotation matrix (CTin)−1 (we remind the reader that,
according to our notation, v(Tin) = CTinV Tin

(Tin) and
g = CTinGTin ) we finally obtain the following equation:

CtTin
F it(t) = F iTin

(Tin)− V Tin(Tin)∆t−GTin

∆t2

2
+

(12)
− STin

(t); i = 1, 2, ..., Nf

A single image provides the bearing angles of all the point-
features in the local frame. In other words, an image taken
at time t provides all the vectors F it(t) up to a scale. Since
the data provided by the gyroscopes during the interval
(Tin, Tfin) allow us to build the matrix CtTin

, having the
vectors F it(t) up to a scale, allows us to also know the
vectors CtTin

F it(t) up to a scale.
We assume that the camera provides ni images of the same

Nf point-features at the consecutive times: t1 = Tin < t2 <
... < tni

= Tfin. From now on, for the sake of simplicity,
we adopt the following notation:

• F ij ≡ C
tj
Tin
F itj (tj), i = 1, 2, ..., Nf ; j = 1, 2, ..., ni

• F i ≡ F iTin
(Tin), i = 1, 2, ..., Nf

• V ≡ V Tin
(Tin)

• G ≡ GTin

• Sj ≡ STin(tj), j = 1, 2, ..., ni

We remark that the difference F ij−F
i
1, i = 1, 2, ..., N, j =

2, ..., ni, is independent of i (see equation (12), where, by
definition, CtjTin

F itj (tj) = F ij). Hence, we will set χj ≡
F ij − F

i
1. This quantity characterizes the motion of the

vehicle. We will denote with µij the unit vector with the
same direction of F ij and we introduce the unknowns λij
such that F ij = λijµ

i
j . Finally, without loss of generality, we

can set Tin = 0, i.e., ∆t = t. Our sensors provide µij and
Sj for i = 1, 2, ..., Nf ; j = 1, 2, ..., ni. Equation (12)
can be written as follows:

F i − V tj −G
t2j
2
− λijµij = Sj (13)

The Vi-SfM problem is the determination of the vectors: F i,
(i = 1, 2, ..., Nf ), V , G. We can use the equations in (13)



to determine these vectors. On the other hand, the use of (13)
requires to also determine the quantities λij . By considering
j = 1 in (13), i.e. tj = t1 = Tin = 0, we easily obtain:
F i = λi1µ

i
1. Then, we write the linear system in (13) as

follows: [
−G t2j

2 − V tj + λ1
1µ

1
1 − λ1

jµ
1
j = Sj

λ1
1µ

1
1 − λ1

jµ
1
j − λi1µi1 + λijµ

i
j = 03

(14)

where j = 2, ..., ni, i = 2, ..., Nf and 03 is the 3 × 1 zero
vector. This linear system consists of 3(ni−1)Nf equations
in Nfni+6 unknowns. Let us define the two column vectors
X and S:

X ≡ [GT , V T , λ1
1, ..., λ

Nf

1 , ..., λ1
ni
, ..., λ

Nf
ni ]T

and

S ≡ [ST2 , 03, ..., 03, S
T
3 , 03, ..., 03, ..., S

T
ni
, 03, ..., 03]T

and the matrix Ξ (see equation (15) at the next page), where
Tj ≡ −

t2j
2 I3, Sj ≡ −tjI3 and I3 is the identity 3×3 matrix;

033 is the 3×3 zero matrix (note that the third set of columns
disappear in absence of bias). The linear system in (14) can
be written in the following compact format:

ΞX = S (16)

The sensor information is completely contained in the above
linear system. Additionally, we assume that the magnitude
of the gravitational acceleration is a priori known. This extra
information is obtained by adding to our linear system the
following quadratic equation: |G| = g. By introducing the
following 3 × (Nfni + 6) matrix, Π ≡ [I3, 03 ... 03], this
quadratic constraint can be written in terms of X as follows:

|ΠX|2 = g2 (17)

The Vi-SfM problem can be solved by finding the vector X ,
which satisfies (16) and (17).

V. EXISTENCE AND NUMBER OF DISTINCT SOLUTIONS

We are interested in understanding how the existence and
the number of solutions of the Vi-SfM problem depend on
the motion, on the number of observed point-features, on the
point-features layout and on the number of camera images.
The resolvability of the Vi-SfM problem can be investigated
by computing the null space of the matrix Ξ in (15). Let us
denote with N (Ξ) this space. In [18] we prove the following
theorem, which allows us to obtain all the properties of the
Vi-SfM problem by investigating the null space of Ξ:

Theorem 3 (Number of Solutions) The Vi-SfM problem
has a unique solution if and only if N (Ξ) is empty. It has
two solutions, if and only if N (Ξ) has dimension 1 and, for
any n ∈ N (Ξ), |Πn| 6= 0. It has infinite solutions in all the
other cases.

In [17] we also prove the following important property:

Property 1 When ni ≤ 2 the dimension of N (Ξ) is at
least 3. When ni = 3 the dimension of N (Ξ) is at least
1. Finally, when ni ≥ 4 and the vehicle moves with constant
acceleration the dimension of N (Ξ) is at least 1.

Regarding the cases ni = 3 and ni ≥ 4 with constant
acceleration, the proof is obtained by showing that there is
at least one 3D−vector α0 and one 3D−vector ν0 such that
the following vector always belongs to N (Ξ):

n0 = [α0, ν0, n̄
1
1, ..n̄

i
1.., ..n̄

1
j .., ..n̄

i
j ..]

T (18)

where n̄1
1 = −1, n̄1

j = 1, n̄i1 = 1, n̄ij = −1 (j = 2, 3;
i = 2, ..., Nf ). In the case of constant acceleration, α0 is
precisely its value. In the following, we discuss the number
of solutions of the Vi-SfM problem depending on the number
of camera images (ni).

A. ni ≤ 2

From property 1 we know that the dimension of N (Ξ) is
at least 3 and, consequently, by using theorem 3, we conclude
that the Vi-SfM has always infinite solutions.

B. ni = 3

From property 1 we know that the dimension of N (Ξ)
is at least 1, independently of the number of point-features.
When Nf = 1, Ξ is a 6×9 matrix. Hence, the dimension of
N (Ξ) is at least 3. Let us consider the case when Nf = 2.
In this case Ξ is a 12 × 12 matrix. In [18] we prove the
following properties:

Property 2 (ni = 3, Nf = 2) The dimension of N (Ξ) is
1 if and only if the following two conditions are met:

1) for a given j (e.g., for j = 2), the three vectors F 1
1,

F 2
1 and χj span the entire 3D−space;

2) for the other value of j (e.g., for j = 3) F ij is not
proportional to F kj , ∀i, k = 1, 2, ..., Nf .

From now on, we will say that a condition is satisfied in
general when the probability that it is not satisfied is zero.
We remark that both conditions (i) and (ii) are met in general.
For Nf ≥ 2 we have:

Property 3 (ni = 3, Nf ≥ 2) When ni = 3 and Nf ≥ 2
the Vi-SfM problem has in general two distinct solutions. In
some special cases it has infinite solutions.

C. ni ≥ 4

When ni ≥ 4 the number of equations is larger than the
number of unknowns, except when ni = 4 and Nf = 1. In
this case the matrix Ξ is 9×10 and the dimension of its null
space is at least 1. We have the following property (see [18]
for its proof):

Property 4 (ni = 4, Nf = 1) The dimension of N (Ξ) is
1 if and only if the four vectors F 1

1, χ2, χ3 and χ4 span
the entire 3D−space.



Ξ ≡



T2 S2 µ1
1 03 03 −µ1

2 03 03 03 03 03

033 033 µ1
1 −µ2

1 03 −µ1
2 µ2

2 03 03 03 03

... ... ... ... ... ... ... ... ... ... ...

033 033 µ1
1 03 −µNf

1 −µ1
2 03 µ

Nf

2 03 03 03

... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...
Tni Sni µ1
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We do not derive necessary and sufficient conditions for any
value of ni and Nf . The following property holds (see [18]
for its proof):

Property 5 (ni ≥ 4) When ni = 4 and Nf = 1 the Vi-
SfM problem has in general two distinct solutions. If ni =
4, Nf ≥ 2 or if ni ≥ 5, ∀Nf it has in general a unique
solution.

D. Constant acceleration and constant speed

From property 1 we know that when the vehicle moves
with constant acceleration, the dimension of N (Ξ) is at
least 1. In [18] we also provide a sufficient condition which
guarantees that the dimension of N (Ξ) is exactly 1. Hence,
the Vi-SfM has two distinct solutions. A special case of
constant acceleration occurs when the vector α0 vanishes,
i.e., when the vehicle moves with constant speed. Since
|Πn0| = |α0| = 0, according to theorem 3, the Vi-SfM has
infinite solutions. In [18] we also prove that in this case the
roll and pitch angles can be uniquely determined. Hence, we
have:

Property 6 (Constant speed) Let us suppose that the ve-
hicle moves with constant speed. The Vi-SfM has infinite
solutions. Additionally, the orientation of the vehicle with
respect to the horizontal plane can be uniquely determined.

Table I summarizes the results of this section by providing
the number of solutions case by case. Note that this table
does not account the point-features layout. Specifically, the
motion and the point-features are not supposed to be either
coplanar or collinear. Regarding these cases, necessary con-
ditions are provided in [18] where the previous analysis is
also extended in order to cope the case of biased accelerom-
eter’s measurements.

VI. CLOSE SOLUTION IN CONJUCTION WITH AN EKF

In this section we show the benefit of using the closed
solution for initializing a filter based approach to solve
the Vi-SfM problem. Specifically, we generate noisy visual
and inertial measurements through Monte Carlo simulations.
Additionally, we corrupt the measurements provided by the
accelerometers and the gyroscopes with a time dependent
bias and we consider the case when the transformation be-
tween the visual and inertial sensors is not perfectly known.

Cases Number of Solutions
Varying Acceleration Unique Solution

ni = 4, Nf ≥ 2 ; ni ≥ 5, ∀Nf

Varying Acceleration Two Solutions
ni = 3, Nf ≥ 2; ni = 4, Nf = 1
Constant and non null Acceleration Two Solutions
ni = 3, Nf ≥ 2; ni ≥ 4, ∀Nf

Constant Speed Infinite Solutions
∀ni, ∀Nf

Any Motion Infinite Solutions
ni ≤ 2, ∀Nf ; ni = 3, Nf = 1

TABLE I
NUMBER OF DISTINCT SOLUTIONS FOR THE VI-SFM PROBLEM.

In section IV we formulated the Vi-SfM problem as the
problem of determining the vectors: F i, (i = 1, 2, ..., Nf )
and V , G. For the sake of clarity, in this section we choose
to display the results in a global frame. For this reason, we
need to consider at least two point-features. Indeed, two is
the minimum number of point-features to uniquely define
a global frame, provided that they do not lie on the same
vertical axis (defined by the gravity). We define the global
frame as follows: first, we define one of the point-feature
as the origin of the frame. The z-axis coincides with the
gravity axis but with opposite direction. Finally, the x-axis
is defined by requiring that the second point-feature belongs
to the xz-plane. In other words, the second point-feature
has zero y−coordinate. In these settings, the Vi-SfM can be
defined as the estimation of the vehicle configuration and the
estimation of the x and the z coordinate of the second point-
feature (from now on, px and pz , respectively). By adding
more point-features, the state to be estimated also includes
all the three coordinates of each point-feature. We adopt an
Extended Kalman Filter (EKF ) to perform this estimation.
The state to be estimated is:

xe ≡ [r, v, q, px, pz, A
bias, Ωbias, f3, ..., fNf ]T

By collecting the sensor measurements during the time-
interval [Tin, Tfin], the closed solution discussed in the
previous sections allows us to determine the vectors F i,
(i = 1, 2, ..., Nf ), V and G at the time Tin. Note that,
when Nf ≥ 2, having the vectors F i, V and G at the
time Tin, allows us to build the state xe at time Tin (with



the exception of Abias and Ωbias). Since our simulated
measurements are corrupted by noise and also include a
bias on the IMU and an error on the extrinsic camera-IMU
calibration, the values obtained with the closed solution will
differ from the true values.

In this section, we investigate how the performance of the
EKF depends on its initialization and how this performance
can be improved by using the closed solution to initialize the
state. Since the closed solution does not provide the initial
Abias and Ωbias, their initial values will be set to zero.

1) Simulated Trajectories: All the trajectories are ran-
domly generated starting from the following initial true state:

r(Tin) = [0.5, 0.5, 0.5]m; v(Tin) = [0.1, 0.1, 0.1]ms−1;

q(Tin) = 1, which corresponds to the vehicle attitude roll =
pitch = yaw = 0 deg; Abias(Tin) = 0.05 µ̂ m s−2,
Ωbias(Tin) = 0.5 µ̂ deg s−1 where µ̂ is the unit vector
pointing in the direction [1, 1, 1]; px = 2m and pz =
1m. Both the biases are time-dependent. Specifically, they
are modelled as independent random walks (for all the
three components of both), whose mean values are the
initial ones and their variances increase linearly with time.
For the gyroscopes, the three variances are set equal to
(50 deg/h)2 at 100 s and for the accelerometers are set
equal to (1 m/h2)2 at 100 s (see [25]). We assume that
the camera and the IMU frame coincide (i.e., they have
the same origin and the same orientation). We characterize
an error in the extrinsic calibration by setting the actual
position of the origin of the camera frame in the IMU frame
to [0.002, − 0.003, 0.004]m and the actual orientation
qcam = 1 − 2.3 10−5 + (3.5i − 5.2j + 2.6k) 10−3, which
corresponds to the attitude roll = 0.4 deg, pitch = −0.6 deg
and yaw = 0.3 deg.

We also considered the case of more than two point-
features (Nf ≥ 3), obtaining similar results in terms of
performance and, for the sake of brevity, in the following
we only refer to the case of Nf = 2.

The trajectories are generated by randomly generating the
linear and angular acceleration of the vehicle at 100 Hz.
In particular, at each time step, the three components of the
linear acceleration and the angular speed are generated as
zero-mean Gaussian independent variables whose covariance
matrices are equal to (1ms−2)2I3 and (10 deg s−1)2I3,
respectively.

2) Simulated Sensors: Starting from the accomplished tra-
jectory, the true angular speed and the linear acceleration are
computed at each time step of 0.01s (respectively, at the jth

time step, we denote them with Ωtrue
j and Atrue

j ). Starting
from them, the IMU sensors are simulated by randomly
generating the angular speed and the linear acceleration at
each step according to the following:

Ωj = N
(
Ωtrue

j −Ωbias(tj), PΩ

)

Aj = N
(
Atrue

j −G(tj)−Abias(tj), PA

)

where:
• N(., .) indicates the Normal distribution whose first

entry is the mean value and the second its covariance
matrix;

• PΩ and PA are the covariance matrices characterizing
the accuracy of the IMU .

In all the simulations we set both the matrices PΩ and
PA diagonal and in particular: PΩ = (1 deg s−1)2 I3 and
PA = (1 cm s−2)2 I3.

Regarding the camera, the provided readings are generated
in the following way. By knowing the true trajectory and the
true camera-IMU transformation, the true bearing angles of
the two point-features in the camera frame are computed.
They are computed each 0.1s. Then, the camera readings are
generated by adding to the true values zero-mean Gaussian
errors whose variance is equal to (1 deg)2 for all the
readings.

3) Simulation Results: We first investigate the conver-
gence of the EKF vs the initialization of the state. In all
the considered initializations we set the initial accelerometer
and gyroscope biases to zero. In general, the EKF diverges
when: (a) the initial scale factor error exceeds 20%; (b)
the initial attitude error exceeds 4 deg. These conclusions
on the EKF convergence have been obtained by running
many simulations with the settings specified in VI-.1 and
VI-.2. As an illustration, we display here the results obtained
with a particular trial. Figures 2a−d display the trajectories
estimated by the EKF when the initial state differs from the
true state because of an error on the absolute scale and on the
attitude (as said, the initial state is also affected by an error on
the inertial sensors’ biases since they are always initialized
to zero). Figure 2a displays the true trajectory (blue) together
with the one estimated by only using inertial measurements
(black) and the one estimated by the EKF with an initial
absolute scale set to 1.1 times the true value and an error of
1 deg on the roll, pitch and yaw angles. Figure 2b displays
the trajectories estimated by the EKF with an initial state
affected by an error on the attitude (same error on the roll,
pitch and yaw) and correct absolute scale. Figures 2c and d
display the trajectories estimated by the EKF with an initial
state affected by an error on the absolute scale and correct
attitude.
By using the first 6 camera observations (i.e. by considering
the time interval [Tin = 0, Tfin = 0.6]s) we obtain the
initial position [0.4961, 0.4975, 0.5017]m, the initial speed
[0.1024, 0.1028, 0.1222]m s−1 and the initial attitude q =
1−4.3 10−6 +(1.0i−2.3j+1.6k) 10−3, which corresponds
to the attitude roll = 0.11 deg, pitch = −0.26 deg and
yaw = 0.18 deg. By running many simulations, we found
that the initial state determined through the closed solution
is never affected by an error larger than 8% regarding the
absolute scale and than 0.7 deg regarding the attitude.

VII. CONCLUSION

In this paper we introduced two novel contributions in the
framework of the Vi-SfM . The first contribution extends the
results of the state of the art about the Vi-SfM observability.



Fig. 2. Fig a displays the true trajectory (blue), the trajectory estimated
by the EKF (red) with initial errors (10% on the scale and 1 deg on the
attitude) and the trajectory estimated by only using inertial measurements
(black). Figs b, c and d display the trajectories estimated by the EKF when
the initial state is affected by an error on the attitude (b) and on the absolute
scale (larger and smaller than the true one, in c and d, respectively).

Specifically, it has been proven that, even in the case of a
single point feature, the visual and inertial sensor provide
the necessary information to determine the scale, the vehicle
speed, the absolute roll and pitch, the inertial biases, the
magnitude of the gravity and the camera extrinsic calibration
in the IMU frame. To achieve this result, new techniques able
to perform an observability analysis have been introduced.
It is remarkable to note that, by using these techniques, it is
possible to check the independence of the Lie derivatives up
to the third order in less than 200 seconds while, on the same
processor and for the same problem, the computational time
required to check the independence of the Lie derivatives up
to the second order is larger than 105 seconds without using
these techniques. The second contribution is the derivation of
a simple and intuitive closed solution to the Vi-SfM problem.
We used this derivation to investigate the intrinsic properties
of the Vi-SfM problem and to identify the conditions under
which the problem can be solved in closed form. In particu-
lar, we showed that the problem can have a unique solution
or two distinct solutions or infinite solutions depending on
the trajectory, on the number of point-features and their
layout and on the number of monocular images where the
same point-features are seen. The most useful applications
of the closed-form solution here derived will be in all the
applicative domains which need to solve the structure from
motion problem with low-cost sensors and which do not
demand any infrastructure (e.g., in GPS denied environment).
Additionally, our results could also play an important role in
the framework of neuroscience by providing a new insight
on the process of vestibular and visual integration for depth
perception and self-motion perception.
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