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MULTIPLICATE INVERSE FORMS OF TERMINATING

HYPERGEOMETRIC SERIES

CHRISTIAN LAVAULT

Abstract. The multiplicate form of Gould–Hsu’s inverse series relations enables to investi-
gate the dual relations of the Chu–Vandermonde–Gauß’s, the Pfaff–Saalschütz’s summation
theorems and the binomial convolution formula due to Hagen and Rothe. Several identitity
and reciprocal relations are thus established for terminating hypergeometric series. By virtue
of the duplicate inversions, we establish several dual formulae of Chu–Vandermonde–Gauß’s
and Pfaff–Saalschütz’s summation theorems in Section 3 and 4, respectively. Finally, the last
section is devoted to deriving several identities and reciprocal relations for terminating bal-
anced hypergeometric series from Hagen–Rothe’s convolution identity in accordance with the
duplicate, triplicate and multiplicate inversions.

Key words and phrases: Generalized hypergeometric serie; Gould–Hsu inverse series relations;
Multiplicate inversions; Chu–Vandermonde–Gauß’s summation formula; Pfaff–Saalschütz’s
summation theorem; Hagen–Rothe’s convolution identity.

1. Introduction and motivations

The problem of how to invert a combinatorial sum has a long history. Several approaches
have been tried, from ingenuity to generating functions, from umbral calculus to hypergeometric
series. The following fundamental result was obtained in 1973 by Gould and Hsu [10]. Let (ak)
and (bk) (k ≥ 0) be two sequences of complex numbers such that the polynomials

φ(x; 0) := 1 and φ(x;n) :=

n−1
∏

k=0

(ak + xbk)

are distinct from zero for all nonnegative integers x, n. Then, the pair of reciprocal formulas
holds

f(n) =

n
∑

k=0

(−1)k

(

n

k

)

φ(k;n)g(k),

g(n) =
n
∑

k=0

(−1)k

(

n

k

)

ak + kbk

φ(n; k + 1)
f(k).

The applications of these Gould–Hsu inverse series relations to terminating series identities
have been explored in full details by Chu in [3, 4]. Further, the duplicate form of these reciprocal
formulas is devised by Chu in [5], where a large class of identities is established for terminating

5F4(1) series, which are closely related to the evaluation of plane partitions. As stated in the
latter paper: in the competition of identity proving, the inversion technique would open up ‘la
Terza Via’ (the “third approach”) between the classical series transformation (Pfaff method) and
the modern technological WZ-method (by Wilf and Zeilberger). Pursuing this approach, thirty
closed formulae for the terminating 3F2(4/3) series were obtained very recently by Chen and Chu
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2 CHRISTIAN LAVAULT

in [2] by applying the Gould–Hsu’s inversions to Pfaff–Saalschütz’s summation theorem along
with four transformations for terminating “almost” balanced series and two contiguous relations.

The goal of the present paper is to push the approach forward and investigate terminating hy-
pergeometric series identities. In the next section, the multiplicate form of Gould–Hsu reciprocal
series relations is stated and a rigorous proof is provided. By virtue of the duplicate inversions,
we establish quite a lot of dual formulae of Chu–Vandermonde–Gauß’s and Pfaff–Saalschütz’s
summation theorems [1], in Section 3 and Section 4 respectively. Finally, in the fifth section
several identities and reciprocal relations for terminating balanced hypergeometric series are de-
rived from the dual relations of Hagen–Rothe’s convolution identity [7, 9] in accordance with the
duplicate, triplicate and multiplicate inversions.

Following Bailey [1, §2.1], the generalized hypergeometric series (or function) is characterized
by upper and lower complex parameters and a single argument. It is defined as a power series

(1) pFq

[

a1, a2, . . . , ap

b1, b2, · · · , bq
; z

]

=
∑

k≥0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
,

where aj ∈ C and bj ∈ C \ Z≤0, so that the series is well defined, and (x)0 := 1, (x)n :=

x(x + 1) · · · (x + n − 1) for n ∈ Z>0 (the Pochhammer symbol or “rising factorial” xn). The
notation for pFq in (1) is commonly simplified to pFq [a1, a2, · · · , ap; b1, b2, · · · , bq; z], primarily
for p, q ≤ 4 and its product and fractional forms will respectively abbreviate to

[α, β, . . . , γ]n := (α)n(β)n · · · (γ)n and

[

α, β, . . . , γ
A,B, . . . , C

]

n

:=
(α)n(β)n · · · (γ)n

(A)n(B)n · · · (C)n
.

When p ≤ q, the pFq-function is entire and the series converges everywhere. When p > q+1, the
series converges only for z = 0, it is therefore significant only when it terminate. In the case when
p = q + 1—which we are concerned with in this paper—the q+1Fq-series converges for |z| < 1,

and also when z = 1 provided that ℜ

(

q+1
∑

k=1

ak −

q
∑

k=1

bk

)

< 0, and when z = −1 provided that

ℜ

(

q+1
∑

k=1

ak −

q
∑

k=1

bk

)

< 1. (Outside of the unit disk, the series may be defined through analytic

continuation.) For brevety, when z = 1 the argument z will simply be omitted in the notation.

2. Multiplicate form of Gould–Hsu inverse series relations

Let ℓ be a nonnegative integer. Given two sequences {Ai,j} and {Bi,j} of (ℓ + 1) complex
terms each (i = 0, 1, . . . , ℓ and j ∈ Z≥0), the corresponding polynomials are now defined as

Φ(x;n) =

ℓ
∏

i=0

φi

(

x;

[

i+ n

ℓ+ 1

])

,

where [x] stands for the integer part of a real number x and n (mod ℓ + 1) is the remainder of
n modulo (ℓ+ 1) (the values of which are ranging from 0 to ℓ) and the polynomials φi(x;n) are
given, for 0 ≤ i ≤ ℓ, by

φi(x, 0) := 1 and φi(x;n) :=

n−1
∏

k=0

(Ai,k + xBi,k) for n ∈ Z>0.

Let λ(k) denote the linear factor Aℓ−k(mod ℓ+1),[ k
ℓ+1 ] + xBℓ−k(mod ℓ+1),[ k

ℓ+1 ]. Owing to the fact

that n =
∑

0≤i≤ℓ

[

i+ n

ℓ+ 1

]

, all the Φ(x;n)s are polynomials of degree n in x. Now, dividing the
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linear factors ak +xbk into ℓ+1 classes in the Gould–Hsu pair of inverse series relations, we have
the tools to show Theorem 2.1.

Theorem 2.1. (Multiplicate inverse series relations)

F (n) =

n
∑

k=0

(−1)k

(

n

k

)

Φ(k;n)G(k),(2a)

G(n) =

n
∑

k=0

(−1)k

(

n

k

)

λ(k)

Φ(n; k + 1)
F (k).(2b)

Proof. For each one identity of the form (2a) or (2b) in the above inverse pair Eq. (2a)–Eq.(2b),
there exists one companion dual identity. In other words, one system of equations with F (n) in
terms of G(k) can be considered as the (unique) solution of another system with G(n) in terms
of F (k), and vive versa. Therefore, showing the two-way transformations (2a) ⇆ (2b) amounts
to verify one of them two: supposing that the relations of G(n) in terms of F (k) are valid, we
have to verify only the relations of F (n) in terms of G(k).

Now, substitute for the expression of G(k) in terms of F (k) (Eq. (2b)) into Eq. (2a). According
to the well-known binomial identity (the “trinomial revision”)

(

n

k

)

×

(

k

i

)

=

(

n

i

)

×

(

n− i

k − i

)

(i, k integers)

the expression of F (n) (Eq. (2a)) simplifies to the double sum

F (n) =
∑

0≤k≤n

(−1)k

(

n

k

)

Φ(k;n)G(k)

=
n
∑

k=0

(−1)k

(

n

k

)

Φ(k;n)
k
∑

i=0

(−1)i

(

k

i

)

λ(i)

Φ(k; i+ 1)
F (i)

F (n) =

n
∑

i=0

(

n

i

)

λ(i)F (i)

n
∑

k=i

(−1)k−i

(

n− i

k − i

)

Φ(k;n)

Φ(k; i+ 1)
.(3)

When n = (ℓ + 1)p + q with 0 ≤ q ≤ ℓ, then λ(n) = Aℓ−q,p + nBℓ−q,p. On the other hand, if
i = n we get the relation

Φ(n;n)

Φ(n;n+ 1)
=

ℓ
∏

i=0

φi

(

n;
[

p+ q+i
ℓ+1

])

φi

(

n;
[

p+ q+i+1
ℓ+1

]) =
φℓ−q(n; p)

φℓ−q(n; p+ 1)
=

1

λ(n)
,

after simplification by cancellation of respective factors of the numerator and the denominator
within the fractional product; except if i = ℓ− q, in which case there remains only one factor in
the denominator. Hence, the double sum reduces to F (n) for any nonnegative integer i = n.

Finally, let S(i, n) denote the last inner sum with respect to k in Eq. (3):

S(i, n) =

n
∑

k=i

(−1)k−i

(

n− i

k − i

)

Φ(k;n)

Φ(k; i+ 1)
.

In all cases of i 6= n, there remains to show that S(i, n) = 0 for 0 ≤ i < n to prove that F (n)
and Eq. (3) are equal. The latter result can be established by means of the finite difference
method. Indeed, since the fraction Φ(k;n)/Φ(k; i + 1) is a polynomial of degree n− i − 1 in k,
the differences of order n− i vanish. This completes the proof of Theorem 2.1. �



4 CHRISTIAN LAVAULT

3. The Chu–Vandermonde–Gauß’s summation formula

When ℓ = 1, the factors ak + xbk are divided into two distinct classes in the Gould–Hsu
inversion theorem. Then, the duplicate inverse relations (2a)–(2b) in Theorem 2.1 is as follows.
Let (ak), (bk), (ck), (dk) (k ≥ 0) be four sequences of real or complex numbers such that the
polynomials defined by

φ(x; 0) := 1 and φ(x;n) :=
n−1
∏

k=0

(ak + xbk) for n ∈ Z>0

ψ(x; 0) := 1 and ψ(x;n) :=
n−1
∏

k=0

(ck + xdk) for n ∈ Z>0

differ from zero for all nonnegative integers x, n. Then, the identities (or the system of equations)

(4) F(n) =
∑

0≤k≤n

(−1)k

(

n

k

)

φ
(

k;
[n

2

])

ψ

(

k;

[

n+ 1

2

])

G(k)

is equivalent to the system

(5)

G(n) =
∑

k≥0

(

n

2k

)

ck + 2kdk

φ(n; k)ψ(n; k + 1)
F(2k) −

∑

k≥0

(

n

2k + 1

)

ak + (2k + 1)bk

φ(n; k + 1)ψ(n; k + 1)
F(2k + 1).

Recall the Chu–Vandermonde–Gauß’s formula 2F1[−n, a; c; 1] =
(c− a)n

(c)n
(see e.g. Bailey [1,

§1.3]). By applying the duplicate inversions to the dual relations of the formula, several reciprocal
relations can be established for terminating hypergeometric series of higher order. Though each
of the q+1Fq-series (with 3 ≤ q ≤ 5) obtained in Subsections 3.1 to 3.4 is zero-balance without
closed form, their pairwise combination obviously has. This is the reason why each of the
theorems may be regarded in itself as a reciprocal relation by providing a pair of terminating
hypergeometric series (see [12]).

3.1. First type of reciprocal relations for terminating balanced series.

Consider the following alternative form of Chu–Vandermonde–Gauß formula,

2F1

[

− n, c− a; c− [n/2]; 1
]

=

(

a− [n/2]
)

n
(

c− [n/2])
)

n

=

[

1 − a
1 − c

]

[n/2]

[

a
c

]

[ n+1

2 ]
.

It can be expressed as the binomial sum

∑

0≤k≤n

(−1)k

(

n

k

)

(1 − c− k)[n/2]
(c− a)k

(c)k
=

(1 − a)[n/2](a)[ n+1

2 ]

(c)[ n+1

2 ]
.

Now, specifying φ(x;n) to (1 − c−x)n and ψ(x;n) to 1 in Eq. (4), the latter formula and Eq. (4)
are equivalent. The dual relation corresponding to (5) can be written

(c− a)n

(c)n
=
∑

k≥0

(

n

2k

)

(1 − a)k(a)k

(1 − c− n)k(c)k
+
∑

k≥0

(

n

2k + 1

)

(c+ k)(1 − a)k(a)k+1

(1 − c− n)k+1(c)k+1
,

and it is reformulated in terms of hypergeometric series as



MULTIPLICATE INVERSE FORMS OF TERMINATING HYPERGEOMETRIC SERIES 5

Theorem 3.1. (Reciprocal relation)

(c− a)n

(c)n
= 4F3

[

−n/2, 1−n
2 , a, 1 − a

1/2, c, 1 − c− n

]

+
na

1 − c− n
4F3

[

1−n
2 , 2−n

2 , 1 + a, 1 − a
3/2, c, 2 − c− n

]

.

Both following identities are proved by Chu and Xei in [8] by means of Legendre inversions.

Corollary 3.1.

4F3

[

−n/2, 1−n
2 , a, 1 − a

1/2, c, 1 − c− n

]

=
(c− a)n

2(c)n
.

Proof. Change the sign of a in Theorem 3.1. Upon combining the two relations
(c± a)n

(c)n
obtained

that way, the first identity on terminating balanced series in Chu–Wei [8, Eq. 5.1a] is recovered.
�

Corollary 3.2.

4F3

[

−n/2, 1−n
2 , a, 1 − a

1/2, c, 1 − c− n

]

=
(c− a)n+1 − (c+ a− 1)n+1

(n+ 1)(1 − 2a)(c)n
.

Proof. Similarly, by changing the parameter a into 1 − a and shifting n to n + 1, the two
equations displayed from Theorem 3.1 yield the other identity on terminating balanced series
in [8, Eq. 5.1b]. �

3.2. Second type of reciprocal relations for terminating balanced series.

Next, consider the other equivalent form of the Chu–Vandermonde–Gauß’s summation for-
mula,

2F1

[

−n, c− a; c−

[

n+ 1

2

]

; 1

]

=

(

a−
[

n+1
2

]

)

n
(

c−
[

n+1
2

]

)

n

=

[

1 − a
1 − c

]

[

n+1

2

]

[

a
c

]

[n/2]

.

It can be reformulated as another similar binomial sum

∑

0≤k≤n

(−1)k

(

n

k

)

(1 − c− k)[ n+1

2 ]
(c− a)k

(c)k
=

(a)[n/2](1 − a)[ n+1

2 ]

(c)[n/2]
.

Upon interchanging the values of φ(x;n) and ψ(x;n) in Subsection 3.1 (i.e. φ(x;n) := 1 and
ψ(x;n) := (1 − c− x)n), the dual relation corresponding to (5) writes

(c− a)n

(c)n
=
∑

k≥0

(

n

2k

)

(1 − c− k)(1 − a)k(a)k

(1 − c− n)k+1(c)k
−
∑

k≥0

(

n

2k + 1

)

(1 − a)k+1(a)k

(1 − c− n)k+1(c)k
,

which can express as the following hypergeometric series relation.

Theorem 3.2. (Reciprocal relation)

(c− a)n

(c)n
=

1 − c

1 − c− n
4F3

[

−n/2, 1−n
2 , a, 1 − a

1/2, c− 1, 2 − c− n

]

−
n(1 − a)

1 − c− n
4F3

[

1−n
2 , 2−n

2 , a, 2 − a
3/2, c, 2 − c− n

]

.

Corollary 3.3. (Balanced series identities, n > 0)

5F4

[

−n/2, 1−n
2 , 1 − an

2a+2c+n−2 , a, −a

1/2, −an
2a+2c+n−2 , c, 2 − c− n

]

=
(c− a)n−1

(c)n−1
.
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Proof. Change a into a+1 in Theorem 3.2. Combining the new relation with Theorem 3.1 yields
the expected identity of the corollary. �

Corollary 3.4. (Balanced series identities)

5F4

[

−n/2, 1−n
2 , 1 + c+n−an

2a+2c+n−1 , a, 1 − a

3/2, c+n−an
2a+2c+n−1 , c+ 1, 1 − c− n

]

=
c+ n

c+ n− an

(c+ 1 − a)n

(c+ 1)n
.

Proof. Similarly, change c into c+ 1 in Theorem 3.2 and combine with Theorem 3.1. The proof
of the corollary is completed. �

3.3. Third type of reciprocal relations for terminating balanced series.

The Chu–Vandermonde–Gauß’s summation formula can also be rewritten as

(6) 2F1[−n, c− a+ [n/2]; c; 1] =

(

a− [n/2]
)

n

(c)n
= (−1)[n/2]

(1 − a)[n/2](a)[ n+1

2 ]

(c)n
,

which reformulates as the binomial sum

∑

0≤k≤n

(−1)k

(

n

k

)

(c− a+ k)[n/2]
(c− a)k

(c)k
= (−1)[n/2]

(1 − a)[n/2](c− a)[n/2](a)[ n+1

2 ]

(c)n
.

Specify φ(x;n) to (c − a + x)n and ψ(x;n) to 1 in Eq. (4). The new identity coincides with
Eq. (4) and the dual relation corresponding to (5) can be written now as

(c− a)n

(c)n
=
∑

k≥0

(

n

2k

)

(−1)k(1 − a)k(c− a)k(a)k

(c− a+ n)k(c)k

−
∑

k≥0

(

n

2k + 1

)

(−1)k(1 − c− a+ 3k)(1 − a)k(c− a)k(a)k+1

(c− a+ n)k+1(c)2k+1
.

This equation yields the following hypergeometric series relations.

Theorem 3.3. (Reciprocal relation)

(c− a)n

(c)n
= 5F4

[

−n/2, 1−n
2 , c− a, a, 1 − a

c/2, c+1
2 , 1/2, c− a+ n

;
−1

4

]

−
na(c− a+ 1)

c(c− a+ n)
6F5

[

1−n
2 , 2−n

2 , 1 + 1+c−a
3 , c− a, 1 + a, 1 − a

c+1
2 , c+2

2 , 3/2, 1+c−a
3 , c+ 1 − a+ n

;
−1

4

]

.

Consider again the Chu–Vandermonde–Gauß’s summation formula (6). From the variant

2F1

[

−n, c− a+

[

n+ 1

2

]

; c; 1

]

=

(

a−
[

n+1
2

] )

n

(c)n
= (−1)

[

n+1

2

] (a)[n/2](1 − a)[n+1

2

]

(c)n
,

the same above procedure results in another hypergeometric series identity.

Theorem 3.4. Reciprocal relation)

(c+ 1 − a)n

(c)n
= 6F5

[

−n/2, 1−n
2 , 1 + c−a

3 , c− a, a, 1 − a
c/2, c+1

2 , 1/2, c−a
3 , c+ 1 − a+ n

;
−1

4

]

−
n(1 − a)

c
5F4

[

1−n
2 , 2−n

2 , c+ 1 − a, a, 2 − a
c+1

2 , c+2
2 , 3/2, c+ 1 − a+ n

;
−1

4

]

.
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3.4. Fourth type of reciprocal relations for terminating balanced series.

According to Chu–Vandermonde–Gauß summation formula

2F1

[

−n, c− a+ [n/2]; c−

[

n+ 1

2

]

; 1

]

=
(a− n)n

(

c−
[

n+1
2

]

)

n

= (−1)[n/2] (1 − a)n

(c)[n/2](1 − c)[n+1

2

]

,

we have the binomial sum

∑

0≤k≤n

(−1)k

(

n

k

)

(c− a+ k)[n/2](1 − c− k)[ n+1

2 ]
(c− a)k

(c)k
= (−1)[n/2](1 − a)n

(c− a)[n/2]

(c)[n/2]
.

This equation is equivalent to Eq .(4) upon specifying φ(x;n) to (c − a + x)n and ψ(x;n) to
(1 − c− x)n; the dual relation corresponding to (5) is given by

(c− a)n

(c)n
=
∑

k≥0

(

n

2k

)

(−1)k(1 − c− k)(1 − a)2k(c− a)k

(c− a+ n)k(1 − c− n)k+1(c)k

−
∑

k≥0

(

n

2k + 1

)

(−1)k(1 + c− a+ 3k)(1 − a)2k+1(c− a)k

(c− a+ n)k+1(1 − c− n)k+1(c)k
,

which yields the following hypergeometric series identity.

Theorem 3.5. (Reciprocal relation)

(c− a)n

(c) − 1n
= 5F4

[

−n/2, 1−n
2 , 1−a

2 , 2−a
2 , c− a

1/2, c− 1, 2 − c− n, c− a+ n
; −4

]

−
n(1 − a)(c− a+ 1)

(1 − c)(c− a+ n)
6F5

[

1 + 1+c−a
3 , 1−n

2 , 2−n
2 , 2−a

2 , 3−a
2 , c− a

3/2, 1+c−a
3 , c, 2 − c− n, c+ 1 − a+ n

; −4

]

.

Finally, from the Chu–Vandermonde–Gauß’s convolution formula

2F1

[

−n, c− a+

[

n+ 1

2

]

; c− [n/2]; 1

]

=
(a− n)n

(c− [n/2])n
= (−1)

[

n+1

2

]

(1 − a)n

(1 − c)[n/2](c)[n+1

2

]

,

we have in similarly the following hypergeometric reciprocal relations

Theorem 3.6.

(c− a+ 1)n

(c)n
= 6F5

[

1 + c−a
3 , −n/2, 1−n

2 , 1−a
2 , 2−a

2 , c− a
1/2, c−a

3 , c, 1 − c− n, c+ 1 − a+ n
; −4

]

−
n(1 − a)

1 − c− n
5F4

[

1−n
2 , 2−n

2 , 2−a
2 , 3−a

2 , 1 + c− a
3/2, c, 2 − c− n, c+ 1 − a+ n

; −4

]

.

4. The Pfaff–Saalschütz’s summation theorem

Recall the Pfaff–Saalschütz’s summation formula (see e.g. Bailey [1, §2.2]

3F2[−n, a, b; c, 1 + a+ b− c− n; 1] =

[

c− a, c− b
c, c− a− b

]

n

.

Along the same lines as in Subsections 3.1 to 3.4, the duplicate inversions applied to the dual
relations of the formula leads to four reciprocal relations for terminating hypergeometric series
of higher order.
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4.1. First type of reciprocal relations for terminating balanced series.

The following equivalent form of Pfaff–Saalschütz’s summation formula is easy to check,

3F2

[

−n, c− a, a− b; c− [n/2], 1 − b −

[

n+ 1

2

]

; 1

]

=
(a− [n/2])n(b + c− a− [n/2])n

(b− [n/2])n(c− [n/2])n

=

[

1 − a, 1 + a− b − c
1 − b, 1 − c

]

[n/2]

[

a, b+ c− a
b, c

]

[ n+1

2 ]
.

This formula can be restated as the binomial sum

∑

0≤k≤n

(−1)k

(

n

k

)

(1 − c− k)[n/2](b− k)[ n+1

2 ]

[

c− a, a− b
c, 1 − b

]

k

=

[

1 − a, 1 + a− b − c
1 − b

]

[n/2]

[

a, b+ c− a
c

]

[ n+1

2 ]
,

which is equivalent to Eq .(4) by specifying φ(x;n) to (1 − c− x)n and ψ(x;n) to (b− x)n. The
dual relation corresponding to (5) results then in

[

c− a, a− b
c, 1 − b

]

n

=
∑

k≥0

(

n

2k

)

(b − k)(1 − a)k(a)k

(1 − c− n)k(b− n)k+1

(a− b− c+ 1)k(b+ c− a)k

(1 − b)k(c)k

+
∑

k≥0

(

n

2k + 1

)

(c+ k)(1 − a)k(a)k+1

(1 − c− n)k+1(b − n)k+1

(a− b − c+ 1)k(b+ c− a)k+1

(1 − b)k(c)k+1
.

In terms of hypergeometric series, the relation writes

Theorem 4.1. (Reciprocal relation)
[

c− a, a− b
c, −b

]

n

= 6F5

[

−n/2, 1−n
2 , a, 1 − a, b + c− a, a− b− c+ 1

1/2, c, 1 − c− n, b − n+ 1, −b

]

−
na(b+ c− a)

b(c+ n− 1)
6F5

[

1−n
2 , 2−n

2 , a+ 1, 1 − a, b+ c− a+ 1, a− b− c+ 1
3/2, c, 2 − c− n, b− n+ 1, 1 − b

]

.

4.2. Second type of reciprocal relations for terminating balanced series.

The Pfaff–Saalschütz’s summation theorem can also be restated in the form

3F2

[

−n, c− a+ [n/2], a− b; c−

[

n+ 1

2

]

, 1 − b; 1

]

=
(1 − a)n

(

b+ c− a−
[

n+1
2

])

n

(1 − b)n

(

c−
[

n+1
2

])

n

=

[

1 − a
1 − b

]

n

[

b+ c− a
c

]

[n/2]

[

a− b− c+ 1
1 − c

]

[ n+1

2 ]
,

which in turns is rewritten as the binomial sum

∑

0≤k≤n

(−1)k

(

n

k

)

(c− a+ k)[n/2](1 − c− k)[ n+1

2 ]

[

c− a, a− b
c, 1 − b

]

k

=

[

1 − a
1 − b

]

n

[

b+ c− a
c

]

[n/2]

(c− a)[n/2] (a− b− c+ 1)[ n+1

2 ].

As in Subsection 3.3, take now φ(x;n) = (c− a+ x)n and ψ(x;n) = (1 − c− x)n. Comparing
with Eq .(4), we have the dual relation related to (5),
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[

c− a, a− b
c, 1 − b

]

n

=
∑

k≥0

(

n

2k

)

(1 − c− k)(a− b− c+ 1)k

(c− a+ n)k(1 − c− n)k+1

[

1 − a
1 − b

]

2k

[c− a, b+ c− a]k
(c)k

+
∑

k≥0

(

n

2k + 1

)

(c− a+ 3k + 1)(a− b− c+ 1)k+1

(c− a+ n)k+1(1 − c− n)k+1

[

1 − a
1 − b

]

2k+1

[c− a, b+ c− a]k
(c)k

,

which results in

Theorem 4.2. (Reciprocal relation)
[

c− a, a− b
c− 1, 1 − b

]

n

= 7F6

[

−n/2, 1−n
2 , 1−a

2 , 2−a
2 , c− a, b+ c− a, a− b− c+ 1

1/2, 1−b
2 , 2−b

2 , c− 1, 2 − c− n, c− a+ n

]

−
n(1 − a)(c− a+ 1)(a− b− c+ 1)

(1 − b)(1 − c)(c− a+ n)

× 8F7

[

1−n
2 , 2−n

2 , 1 + c−a+1
3 , 2−a

2 , 3−a
2 , c− a, b+ c− a, a− b − c+ 2

3/2, c−a+1
3 , 2−b

2 , 3−b
2 , c, 2 − c− n, c− a+ n+ 1

]

.

Alternatively, the next form of the Pfaff–Saalschütz’s summation formula

3F2

[

−n, c− a+

[

n+ 1

2

]

, a− b; c− [n/2], 1 − b; 1

]

=
(1 − a)n(b+ c− a− [n/2])n

(1 − b)n(c− [n/2])n

=

[

1 − a
1 − b

]

n

[

a− b − c+ 1
1 − c

]

[n/2]

[

b+ c− a
c

]

[ n+1

2 ]

yields another identity through the same process,

Theorem 4.3. (Reciprocal relation)
[

1 + c− a, a− b
c, 1 − b

]

n

= 8F7

[

−n
2 , 1−n

2 , 1 + c−a
3 , 1−a

2 , 2−a
2 , c− a, b+ c− a, a− b− c+ 1

1/2, c−a
3 , 1−b

2 , 2−n
2 , c, 1 − c− n, c− a+ n+ 1

]

+
n(1 − a)(b + c− a)

(1 − b)(1 − c− n))
7F6

[

1−n
2 , 2−n

2 , 2−a
2 , 3−a

2 , c− a+ 1, b+ c− a+ 1, a− b− c+ 1
3/2, 2−b

2 , 3−b
2 , c, 2 − c− n, c− a+ n+ 1

]

.

4.3. Third type of reciprocal relations for terminating balanced series.

Finally, the Pfaff–Saalschütz’s summation formula may also take the form

3F2

[

−n, c− a+ [n/2], a− b+

[

n+ 1

2

]

; c, 1 − b

]

=
(a− [n/2])n

(

b+ c− a−
[

n+1
2

])

n

(b − n)n(c)n

=
[1 − a, b+ c− a][n/2] [a, a− b− c+ 1][ n+1

2 ]

(1 − b)n(c)n
,

which can be again expressed as the binomial sum

∑

0≤k≤n

(−1)k

(

n

k

)

(c− a+ k)[n/2](a− b− k)[ n+1

2 ]

[

c− a, a− b
c, 1 − b

]

k

=
[c− a, 1 − a, b+ c− a][n/2] [a− b, a, a− b− c+ 1][ n+1

2 ]

(1 − b)n(c)n
.

Comparing with Eq .(4) yields the dual relation corresponding to (5),



10 CHRISTIAN LAVAULT

[

c− a, a− b
c, 1 − b

]

n

=
∑

k≥0

(

n

2k

)

(a− k + 3k)(1 − a)k(a)k

(a− b+ n)k+1(c− a+ n)k

[a− b, c− a, b+ c− a, a− b− c+ 1]k
(1 − b)2k(c)2k

−
∑

k≥0

(

n

2k + 1

)

(1 + c− a+ 3k)(1 − a)k(a)k+1

(a− b+ n)k+1(c− a+ n)k+1

[c− a, b− c− a]k [a− b, a− b− c+ 1]k+1

(c)2k+1(1 − b)2k+1
.

This gives the following hypergeometric series relation.

Theorem 4.4. (Reciprocal relation)
[

c− a, a− b+ 1
c, 1 − b

]

n

= 9F8

[

−n
2 , 1−n

2 , 1 + a−b
3 , a− b, c− a, a, 1 − a, b+ c− a, a− b− c+ 1

1/2, a−b
3 , 1−b

2 , 2−b
2 , c/2, c+1

2 , c− a+ n, 1 + a− b+ n
;

1

16

]

−
na(c− a+ 1)(a− b− c+ 1)

(1 − b)c(c− a+ n)
×

9F8

[

1−n
2 , 2−n

2 , 1 + c−a+1
3 , a+ 1, a− b+ 1, c− a, 1 − a, b+ c− a, a− b− c+ 2

3/2, c−a+1
3 , 2−b

2 , 3−b
2 , c+1

2 , c+2
2 , c− a+ n+ 1, a− b− c+ 1

;
1

16

]

.

5. The Hagen–Rothe’s convolution identity

In this section, in addition to the duplicate inversions, we make also use of the triplicate
inversions corresponding to the case of ℓ = 2 in the multiplicate inverse relations (2a)–(2b) of
Theorem 2.1.

Let (ak), (bk), (ck), (dk), (ek), (fk) (k ≥ 0) be six sequences of complex numbers such that
the polynomials defined by

φ(x; 0) := 1 and φ(x;n) :=

n−1
∏

k=0

(ak + xbk) for n ∈ Z>0

ψ(x; 0) := 1 and ψ(x;n) :=

n−1
∏

k=0

(ck + xdk) for n ∈ Z>0

χ(x; 0) := 1 and χ(x;n) :=

n−1
∏

k=0

(ek + xfk) for n ∈ Z>0

differ from zero for all nonnegative integers x, n. Then, the relations

(7) F(n) =
∑

0≤k≤n

(−1)k

(

n

k

)

φ
(

k;
[n

3

])

ψ

(

k;

[

n+ 1

3

])

χ

(

k;

[

n+ 2

3

])

G(k)

are equivalent to the system of equations

G(n) =
∑

k≥0

(

n

3k

)

ek + 3fk

φ(n; k)ψ(n; k + 1)χ(n; k + 1)
F(3k)

−
∑

k≥0

(

n

3k + 1

)

ck + (3k + 1)dk

φ(n; k)ψ(n; k + 1)χ(n; k + 1)
F(3k + 1)

+
∑

k≥0

(

n

3k + 2

)

ak + (3k + 2)bk

φ(n; k + 1)ψ(n; k + 1)χ(n; k + 1)
F(3k + 2).(8)

The following identities for terminating hypergeometric series are derived in the next three
subsections by making use of the duplicate, triplicate and multiplicate inversions to the binomial
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convolution formula due to Haguen and Rothe. This formula is a generalization of the Chu–
Vandermonde’s convolution identity (see e.g. [7, Eq. 2], [9] and [11, §5.4, Eq. 2.62]).

(9)
∑

k≥0

a

a+ bk

(

a+ bk

k

)(

c− bk

n− k

)

=

(

a+ c

n

)

.

5.1. First type of reciprocal relations for terminating balanced series.

Substitute c+
[

n+1
2

]

for c into Eq. (9) and plug the relation into the trinomial revision identity
of Theorem 2.1. We have

(

c+
[

n+1
2

]

− bk

n− k

)

= (−1)[n/2]
(bk − k − c)[n/2](c− bk + 1)[ n+1

2 ]

(n− 1)! (c− bk + 1)k
.

This yields an alternative formula to Hagen–Rothe’s identity in Eq. (9),

∑

0≤k≤n

(−1)k

(

n

k

)

(bk − k − c)[n/2](c− bk + 1)[ n+1

2 ] ω(k) = (−1)[n/2]
(

a+ c+ 1 − [n/2]
)

n
,

where ω(k) :=
a

a+ bk − k

(1 − a− bk)k

(c− bk + 1)k
.

Take φ(x;n) = (bx − x − c)n and ψ(x;n) = (c+ 1 − bx)n. The latter identity coincides with
Eq. (4) and the dual relation corresponding to (5) is

ω(n) =
∑

k≥0

(

n

2k

)

(c− 2bk + k + 1)(a+ c+ 1)k(−a− c)k

(bn− n− c)k(c− bn+ 1)k+1

+
∑

k≥0

(

n

2k + 1

)

(c− 2bk − b+ k + 1)(a+ c+ 1)k+1(−a− c)k

(bn− n− c)k+1(c− bn+ 1)k+1
.

Upon replacing the parameters a + b by −1 − a and c + 2 + n/2 by c + 1, the last equality
writes in terms of hypergeometric series.

Theorem 5.1. (Reciprocal relation)

c+ a+ bn

c+ a

(c+ a)n

(c)n
=

c+ bn

c
5F4

[

−n/2, 1−n
2 , 1 + c+bn

1+2b , −a, a+ 1

1/2, c+bn
1−2b , c+ 1, 1 − c− n

]

=
na(bn− b+ c)

c(c− 1 + n)
5F4

[ 1−n
2 , 2−n

2 , 1 + c+bn−b
1−2b , 1 − a, a+ 1

3/2, c+bn−b
1−2b , c+ 1, 2 − c− n

]

.

Proposition 5.1. (Terminating balanced series identity)

5F4

[

−n/2, 1−n
2 , 1 + c+bn

1−2b , −a, a

1/2, c+bn
1−2b , c+ 1, 1 − c− n

]

=
c(c+ a+ bn)

2(c+ bn)(a+ c)

(c+ a)n

(c)n
+

c(c− a+ bn)

2(c+ bn)(c− a)

(c− a)n

(c)n
.

Proof. Changing the sign of a in Theorem 5.1 and adding the two identities thus obtained, we
get the desired proposition on terminating balanced series identity with a free parameter b. �

For particular values of b, Proposition 5.1 provides several other identities of interest as special
cases. If we let b = 0, Corollary 3.1 in Subsection 3.1 is recovered again. Next Corollary 5.1
exemplifies three corollaries involving 4F3-series. They derive from Proposition 5.1 readily for
three specific values of b.
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Corollary 5.1.

(i) If we let b = 2c+1
2(1−n) in Proposition 5.1, then

4F3

[

−n/2, 1−n
2 , −a, a

−1/2, c+ 1, 1 − c− n

]

=
c(2c+ 2a− 2na+ n)

2(2c+ n)(c+ a)

(c+ a)n

(c)n
+

c(2c− 2a+ 2na+ n)

2(2c+ n)(c− a)

(c− a)n

(c)n
.

(ii) If we let b = a−c
2a+n in Proposition 5.1 (see [8, Eq. 5.2a]), then

4F3

[

−n/2, 1−n
2 , −a, a+ 1

1/2, c+ 1, 1 − c− n

]

=
c

(2c+ n)

(c+ a+ 1)n + (c− a)n

(c)n
.

(iii) If we let b → 1/2 in Proposition 5.1 (see [8, Eq. 5.3a]), then

4F3

[

−n/2, 1−n
2 , −a, a

1/2, c+ 1, 1 − c− n

]

=
c(2c+ 2a+ n)

2(2c+ n)(c+ a)

(c+ a)n

(c)n
+

c(2c− 2a+ n)

2(2c+ n)(c− a)

(c− a)n

(c)n
.

Proposition 5.2. (Terminating balanced series identity)

5F4

[

−n/2, 1−n
2 , 1 + c+bn

1−2b , −a, a+ 1

3/2, c+bn
1−2b , c+ 1, 1 − c− n

]

=
c(c+ a+ bn+ b)

(n+ 1)(2a+ 1)(c+ bn)

(c+ a+ 1)n

(c)n
−

c(c− a− 1 + bn+ b)

(n+ 1)(2a+ 1)(c+ bn)

(c− a)n

(c)n
.

Proof. Combine Theorem 5.1 with its variant under the parameter replacement that changes a
into −1−a and then shift n to n+1. This gives yet another terminating balanced series identity
where b remains a free parameter, which completes the proof of the proposition. �

Proposition 5.2 is an extension of several known identities. If we let b = 0, Corollary 3.2 in
Subsection 3.1 is recovered again. Similarly, the next Corollary 5.2 displays two identities on

4F3-series which can be established for two other particular values of b.

Corollary 5.2.

(i) If we let b = a−c+1
2a+n+2 in Proposition 5.2) (see [8, Eq. 5.2b]), then

4F3

[

−n/2, 1−n
2 , −a, 2 + a

3/2, c+ 1, 1 − c− n

]

=
c

2c+ n)

(c+ a+ 1)n+1 − (c− a− 1)n+1

(n+ 1)(a+ 1)(c)n
.

(ii) If we let b → 1/2 in Proposition 5.2) (see [8, Eq. 5.3b]), then

4F3

[

−n/2, 1−n
2 , −a, a+ 1

3/2, c+ 1, 1 − c− n

]

=
c(2c+ 2a+ n+ 1)

(n+ 1)(2a+ 1)(2c+ n)

(c+ a+ 1)n

(c)n
−

c(2c− 2a+ n− 1)

(n+ 1)(2a+ 1)(2c+ n)

(c− a)n

(c)n
.

5.2. Second type of reciprocal relations for terminating balanced series.

Substitute c+
[

2n+2
3

]

for c in Eq. (9) and, again, apply the trinomial revision relation. There-
fore,
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(

c+
[

2n+2
3

]

− bk

n− k

)

= (−1)[n/2] 2[ 2n+2

3 ] (bk − k − c)[n/3]

(n− k)! (c− bk + 1)k

×

(

c− bk + 2

2

)

[ n+1

3 ]

(

c− bk + 1

2

)

[ n+2

3 ]
.

Consequently, the Hagen–Rothe’s formula can then express as

∑

0≤k≤n

(−1)k

(

n

k

)

(bk − k − c)[n/3]

(

c− bk + 2

2

)

[ n+1

3 ]

(

c− bk + 1

2

)

[ n+2

3 ]
ω(k)

= (−1)[n/2] 2−[ 2n+2

3 ] (a+ c+ 1 − [n/3]
)

n
.

Specify now φ, ψ and χ to φ(x;n) := (bx−x−c)n , ψ(x;n) :=
(

1
2 (c+ 2 − bx)

)

n
and χ(x;n) :=

(

1
2 (c− bx+ 1)

)

n
, respectively. The dual equation corresponding to Eq. (7)-Eq. (8) is

ω(n) =
∑

k≥0

(

n

3k

)

2−2k

(

c+1−3bk
2 + k

)

(a+ c+ 1 − k)3k

(bn− n− c)k

(

1
2 (c+ 2 − bn)

)

k

(

1
2 (c+ 1 − bn)

)

k+1

−
∑

k≥0

(

n

3k + 1

)

2−(2k+1)

(

c−b+2−3bk
2 + k

)

(a+ c+ 1 − k)3k+1

(bn− n− c)k

(

c+1−bn
2

)

k+1

(

c+2−bn
2

)

k+1

+
∑

k≥0

(

n

3k + 2

)

2−(2k+2) (3bk + 2b− c− 2 − 2k)(a+ c+ 1 − k)3k+2

(bn− n− c)k+1

(

c+1−bn
2

)

k+1

(

c+2−bn
2

)

k+1

.

Changing a + c into −1 − a and c+ 2 − bn into c + 1 yields the next reformulation in terms
of 7F6-series, neither of which can be factorized into a closed form.

Theorem 5.2. (Reciprocal relation)

c+ a+ bn

c+ a

(c+ a)n

(c)n
=

c+ bn

c
7F6

[

−n/3, 1−n
3 , 2−n

3 , 1 + c+bn
2−3b , −a/2, 1−a

2 , a+ 1

1/3, 2/3, c+bn
2−3b ,

c+1
2 , c+2

2 , 1 − c− n

]

+
na(c+ 1 + bn− b)

c(c+ 1)
7F6

[ 1−n
3 , 2−n

3 , 3−n
3 , 1 + c+1+bn−b

2−3b , 1−a
2 , 2−a

2 , a+ 1

2/3, 4/3, c+1+bn−b
2−3b , c+2

2 , c+3
2 , 1 − c− n

]

+
na(n− 1)(a− 1)(c+ 1 + bn− 2b)

2c(c+ 1)(c− 1 + n)
7F6

[ 2−n
2 , 3−n

2 , 4−n
2 , 1 + c+1+bn−2b

2−3b , 2−a
2 , 3−a

2 , a+ 1

4/3, 5/3, c+1+bn−2b
2−3b , c+2

2 , c+3
2 , 2 − c− n

]

.

5.3. Third type of reciprocal relations for terminating balanced series.

More generally, by replacing c by c +
[

(n+1)ℓ
2

]

for any nonnegative integer ℓ in Eq. (9) and

making use of the trinomial revision identity, we obtain

(

c+
[

n+1
2

]

− bk

n− k

)

= ℓ[
ℓ

ℓ+1
(n+1)]

(bk − k − c)[ n
ℓ+1 ]

(n− k)! (c+ 1 − bk)k

× (−1)[
n

ℓ+1 ]
∏

1≤j≤ℓ

(

j + c− bk

ℓ

)

[ n+1+ℓ−j

ℓ+1 ]
.

Therefore, the other next alternative to the Hagen–Rothe’s formula in Eq. (9) is
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∑

0≤k≤n

(−1)k

(

n

k

)

(bk − k − c)[ n
ℓ+1 ]

∏

1≤j≤ℓ

(

j + c− bk

ℓ

)

[ n+1+ℓ−j

ℓ+1 ]
ω(k)

= (−1)[
n

ℓ+1 ] ℓ−[ ℓ
ℓ+1

(n+1)]
(

a+ c+ 1 −

[

n

ℓ+ 1

])

n

.

Specify now φ0(x;n) to (bx− x− c)n and φj(x;n) to

(

ℓ− j + c− bx+ 1

ℓ

)

n

with 1 ≤ j ≤ ℓ,

the identity coincides with Eq. (4); and the dual relation corresponding to (5) is

ω(n) =
∑

k≥0

(

n

(ℓ + 1)k + ℓ

)

(−1)kℓ+ℓ

ℓkℓ+ℓ

(a+ c+ 1 − k)(ℓ+1)k+ℓ

(bn− n− c)k+1

k + (b− 1)
(

(ℓ + 1)k + ℓ
)

− c
∏

1≤j≤ℓ

(

ℓ− j + c− bn+ 1

ℓ

)

k+1

−
ℓ
∑

i=1

∑

k≥0

(

n

(ℓ+ 1)k + i− 1

)

(a+ c+ 1 − k)(ℓ+1)k+i−1

(bn− n− c)k

×
(−1)kℓ+i

ℓkℓ+[ iℓ
ℓ+1 ]+1

kℓ+ i+ c− b
(

(ℓ+ 1)k + i− 1
)

∏

1≤j≤ℓ

(

ℓ− j + c− bn+ 1

ℓ

)

k+[ i+j

ℓ+1 ]

.

Finally, change again the parameters a + c into −1 − a and c − bn + 2 into c + 1. After a
few simplification (e.g. such as (1)ℓ = ℓ! or (−x)ℓ = (ℓ− x− 1)ℓ) the equality writes in terms of
hypergeometric series as

Theorem 5.3. (Reciprocal relation)

c+ a+ bn

c+ a

(c+ a)n

(c)n
=

(−n)ℓ(−a)ℓ

ℓ! (1 − c− n)

(b− 1)ℓ− c− bn+ 1
∏

1≤j≤ℓ

(ℓ− j + c)
×

2ℓ+3F2ℓ+2







a+ 1, 1 + c+bn−(b−1)ℓ−1
ℓ−b(ℓ+1) ,

{

ℓ+j−n
ℓ+1

}ℓ

j=0
,
{

ℓ+j−a−1
ℓ

}ℓ

j=1

2 − c− n, c+bn−(b−1)ℓ−1
ℓ−b(ℓ+1) ,

{

ℓ+j+1
ℓ+1

}ℓ

j=1
,
{

2ℓ−j+c
ℓ

}ℓ

j=1







+

ℓ
∑

i=1

(−n)i−1

(i− 1)!

(−a)i−1

(

c+ bn− (b− 1)(i − 1)
)

∏

1≤j≤ℓ

∏

1≤k≤[ i+j
ℓ+1 ]

(kℓ− j + c)
×

2ℓ+4F2ℓ+3







1, a+ 1, 1 + c+bn−(b−1)(i−1)
ℓ−b(ℓ+1) ,

{

i+j−n−1
ℓ+1

}ℓ

j=0
,
{

i+j−a−2
ℓ

}ℓ

j=1

1 − c− n, c+bn−(b−1)(i−1)
ℓ−b(ℓ+1) ,

{

i+j
ℓ+1

}ℓ

j=0
,

{

ℓ−j+c
ℓ +

[

i+j
ℓ+1

]}ℓ

j=1






.

6. Perspective

Following the same lines as in the paper, the triplicate and multiplicate inversions performed
from the Chu–Vandermonde–Gauß’s, the Pfaff–Saalschütz’s and the Hagen–Rothe’s summation
formulae can also enable to produce still more reciprocal relations on terminating hypergeomet-
ric series. Such new identities will take more and more involved forms, e.g. especially space
consuming. However, generalizing to any value of the parameters—such as ℓ in Theorem 5.3—,
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should enhance the relevance of the multiplicate inversions of the “third approach” and enlarge
the viewpoint of the present purpose.
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