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Abstract: The paper proposes an energy management strategy (EMS) for hybrid electric
vehicles (HEV) and plug-in hybrid electric vehicles (PHEV) taking into account battery health
through an additional soft constraint on battery internal temperature, considered as one of the
prime factors influencing battery aging. Battery cell temperature is modeled and considered as
a second state constraint with the state of energy (SOE) in the optimization problem solved
on-line using the equivalent consumption minimization strategy (ECMS). Simulation results are
presented to highlight the contribution of the strategy including battery thermal management
compared to the standard approach.

Keywords: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging,
thermal management, Pontryagin’s Minimum Principle.

1. INTRODUCTION

The interest for energy management strategy (EMS) of
Hybrid electric vehicles has been growing over the past
decade, Guzzella and Sciarretta (2007). It is commonly
acknowledged that supervisory control of HEV and PHEV
plays a critical part in the global performance of these
vehicles. Optimal control theory is often relied upon to
achieve this difficult task, off line (Dynamic Programming
(DP) Sunström et al. (2008), Pontryagin’s Minimum Prin-
ciple (PMP) Sciarretta et al. (2004)) as well as on line
(Equivalent Consumption Minimization Strategy (ECMS)
Chasse et al. (2010), Stochastic Dynamic Programming
(SDP) Moura et al. (2009)). Traditionally, the cost func-
tion to minimize is the fuel consumption (equivalent to
CO2 emissions) over a given trip.
The battery is often considered as the centerpiece of a
hybrid electric application, especially for PHEV, mainly
because of its substantial cost and the fact that its perfor-
mances fade over time. Matching the battery and vehicle
lifetimes is a crucial issue to improve the economic viability
of HEV. Again, the stake is even higher for PHEV which
rely significantly more on electric energy. If used properly,
the degree(s) of freedom offered by hybrid powertrains can
contribute to slowing down aging mechanisms by avoiding
as much as possible operating conditions harmful to the
battery. The contribution of the paper is to propose a
battery friendly energy management strategy by adding
an aging related cost to the criterion to be minimized.
While several authors have submitted interesting ideas to
take into account battery health in the EMS, Serrao et al.
(2011), Ebbesen et al. (2012), the issue remains to be dealt
with.

Battery aging is irreversible and results in two main fac-
tors: capacity fading and increasing internal resistance.
The first phenomenon tends to lessen storable energy,
and therefore reduces the electric range of the vehicle.
The second lowers maximum available power and battery
overall efficiency. Battery aging is monitored by the on-
board battery management system (BMS) and is com-
monly expressed as a non-dimensional parameter, the state
of health (SOH) Remmlinger et al. (2011), decreasing from
1 (brand new) to 0 (worn out) as the battery wears. The
aging process of Li-ion batteries is very intricate and is
currently the subject of many studies, Gyan et al. (2011).
Aging mechanisms will differ between the anode and cath-
ode, also depending on the material and structural fea-
tures of the cell. Furthermore, most of these processes are
interdependent. Readers interested in a thorough analysis
on Li-ion battery aging can refer to Vetter et al. (2005),
Broussely et al. (2005).
The primary factors enhancing battery aging are high
temperatures and high states of charge. As a consequence,
the strategy presented in this paper includes a penalty re-
garding undesired battery temperatures in the optimality
criterion. The objective is to combine energy and thermal
management and thus ensure a trade-off between power-
train efficiency and battery aging via a soft constraint on
cell temperature. While suboptimal, the proposed strategy
is on-line oriented and does not require the tuning of an
extra co-state. Therefore the complexity of the solution
remains equivalent to a standard ECMS. The case studied
in the paper is based on a Li-ion battery, more suitable
for PHEV. However, the methodology remains valid and
relevant for any technology, since high temperature is
always a factor contributing to battery aging, regardless



of its type.
The considered battery model has been designed so as
to be consistent with the information available from an
actual battery pack. It describes the dynamics of both the
cell temperature and the state of energy (SOE) Mamadou
et al. (2010), more suitable for PHEV than the classical
sate of charge (SOC). The battery model is presented in
Section 2. The optimization problem with the additional
battery temperature constraint is formulated in Section 3
and solved using Pontryagin’s Minimum Principle. The
on-line counterpart of the PMP, known as equivalent con-
sumption minimization strategy is implemented and the
simulation results yielded are presented and discussed in
Section 4.

2. BATTERY MODEL

2.1 Internal temperature

So as to implement a battery thermal management strat-
egy, a control-oriented model of the battery cells’ tem-
perature has to be designed. The zero-dimensional model
considered is based on the heat transfer equations between
a cell and the air surrounding the battery pack Muratori
et al. (2010). The main assumption is a homogeneous
temperature of the cells. A depiction of the model’s heat
transfers is given in Fig. 1. The prismatic cells are enclosed
in modules composing the battery pack. As a result, four
temperatures are considered: Tcell is the cell temperature,
Tsens is the temperature of the air confined in the module
which is given by a sensor on an actual battery pack, Tcas is
the temperature of the module casing and finally Tair is the
air temperature around the battery pack. The temperature
model presented in Lin et al. (2013) is based on a similar
approach but applied to cylindrical cells and using an ob-
server to consolidate the estimation. The battery thermal
model can be written as a state space model:

Ṫcell = k1
(
RI2bat − k4(Tcell − Tsens)

)
(1)

Ṫsens = k2 (k4(Tcell − Tsens)− k5(Tsens − Tcas)) (2)

Ṫcas = k3 (k5(Tsens − Tcas)− k6(Tcas − Tair)) , (3)

with the parameters:


k1 =

1

Cv1
, k2 =

1

Cv2
, k3 =

1

Cp3
,

k4 =
1

Req1
, k5 =

1

Req2
, k6 =

1

Req3
.

(4)

The cell’s internal resistance R is given here by a look-up
table, as a function of the state of charge (SOC) and cell
temperature Tcell:

R = f(SOC, Tcell). (5)

The battery current Ibat is available on-board, measured
by the battery management system. The equivalent ther-
mal resistances Reqi (K/W) correspond respectively to the
surface of the cell, sensor, and casing. The heat capacities
(J/K) Cv1 , Cv2 , and Cp3 refer to the cell, the air enclosed in
the module, and the module casing. These parameters have
been identified using data provided by an experiment on
a battery module mounted with specific thermal sensors.
Fig. 2 shows a comparison between the thermal model
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Fig. 1. Heat flow transfers with equivalent resistance
modeling

0 500 1000 1500 2000 2500 3000 3500
25

26

27

28

29

30

31

32

33

34

Te
m

pe
ra

tu
re

 (°
C

)

 

 meas Tcell

est Tcell

meas Tsens

est Tsens

meas Tcas

est Tcas

0 500 1000 1500 2000 2500 3000 3500

−0.4

−0.2

0

0.2

Er
ro

r (
°C

)

0 500 1000 1500 2000 2500 3000 3500
−200

−100

0

100

C
ur

re
nt

 (A
)

Time (s)

Fig. 2. Thermal model identification

values and experimental data. The model as well as the val-
idation process are explained in more detail in Debert et al.
(2013). Considering the sensor temperature in the model
is relevant for an on-line application where the sensor
temperature given by the actual battery pack allows the
implementation of a cell temperature observer, enhancing
the performances of the resulting closed-loop model Debert
et al. (2013). The cell temperature observer is essential to
ensure both a faithful estimation and robustness to cell
dispersion for on-board applications but is not used with
the battery model presented in this paper.

2.2 State of energy

In order for the energy management strategy to be consis-
tent with PHEV operations the state of energy approach
is favored over the classical state of charge calculation
Stockar et al. (2011). While the SOC is a fair representa-
tion of the energy remaining in the battery when consider-
ing charge sustaining operation, it is no longer the case for
high depletion conditions. For HEV, the SOC is sustained
around 50%, where the open circuit voltage (OCV) of the
battery is almost constant, therefore battery current and
power flow can be considered proportional. As for a PHEV,
the OCV decreases significantly with charge depletion,
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Fig. 3. SOE contained in each tenth of battery SOC

consequently current cannot be considered a faithful image
of power flow. Ultimately the charge remaining in the
battery is not an accurate estimation of the energy left,
which is an important piece of information to assess the
electric range of a PHEV. Fig. 3 shows the amount of
energy contained in each tenth of state of charge for a
Li-ion battery. The percentage of energy in each tenth
decreases as does the state of charge and therefore the
OCV. The main consequence is that considering the same
driving pattern, the vehicle will travel further depleting
the battery SOC from 100% to 90% than from 10% to 0%.
The SOE is defined by:

ζ(Pbat, SOC) =
ER(Pbat, SOC)

EN
(6)

=
Et0 −

∫ t
t0
OCV (SOC).Ibat(Pbat, SOC) dt

EN
,

with Ibat the battery current, often modeled by:

Ibat =
OCV (SOC) +

√
OCV 2(SOC)− 4Pbat.R

2.R
, (7)

Guzzella and Sciarretta (2007) and where ER is the energy
remaining in the battery, Pbat the reversible electric power
exchanged with the battery, and EN its nominal energy
capacity (when fully charged):

EN = OCVMax.QMax. (8)

The SOE dynamics can be written:

ζ̇(Pbat, SOC) =−OCV (SOC).Ibat(Pbat, SOC)

EN

=−Ibat(Pbat, SOC)

QMax
.
OCV (SOC)

OCVmax

= ˙SOC(Pbat, SOC).
OCV (SOC)

OCVMax
. (9)

Equation (9) highlights the fact that when considering
charge sustaining operation OCV (SOC) can be assumed
constant, therefore the dynamics of the SOC and SOE
are identical. However, this is not the case for charge
depleting conditions where OCV (SOC) induces a non-
linearity between the two dynamics. Fig. 3 also illustrates
this phenomenon, showing the near equivalence between
SOC and SOE at 50% SOC but not at low or high SOC.
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Fig. 4. Weighting factor κ versus cell temperature

3. ENERGY MANAGEMENT STRATEGY

The energy management strategy, based on optimal con-
trol theory, seeks to minimize a global criterion over the
total length of the trip. The criterion is defined by a cost
function, most commonly the fuel consumption only. It is
however possible to consider a more global cost function
made of several costs in order to implement additional
constraints, for example on drivability Debert et al. (2012),
pollutant emissions Michel et al. (2012), or powertrain
temperatures Lescot et al. (2010). In this paper, the pro-
posed cost function includes an additional cost on battery
temperature evolution in addition to the fuel consumption:

J =

∫ t2

t1

ṁf (u(t), Twheel(t)) + κ(Tcell)Ṫcell(u(t), Tcell) dt

+ Φ (ζ(t2)) + Ψ (Tcell(t2)) , (10)

with

Φ (ζ(t2)) =

{
0 if ζ(t2) ≥ SOEfinal
∞ else,

Ψ (Tcell(t2)) = 0.

(11)

Where ṁf is the instantaneous fuel consumption, u is the
control variable, Twheel is wheel torque request, imposed
by the driver or a driving cycle (speed profile). Ṫcell is the
cell temperature fluctuation and κ is a weighting param-
eter depending on the cell temperature, as represented in
Fig. 4. The chosen control variable u = Pbat, is the power
delivered by the battery, which has to be optimized by the
EMS to minimize the criterion J . Φ(ζ(t2)) is a function
ensuring a solution meeting the final requirement on the
SOE. The final SOE will be chosen equal to its initial value
for sustaining operation, but will be close to the minimal
SOE admissible by the battery for depleting operation.
The function Ψ(Tcell(t2)) is set to 0 since no constraint
is considered for the cell’s final temperature. The above
system has 2 state variables:

x =

{
ζ

Tcell

}
,

the SOE and battery cell temperature. Their dynam-
ics have been defined in Section 2 with respectively (9)
and (1).
The key idea behind this additional cost is to penalize the
commands causing the battery temperature to get further
away from its slow-aging operating range, and to favor the
ones that get the temperature closer. The weighting factor



κ will allow a trade-off between fuel consumption and safe
battery temperature. Set to 0 when the battery operates
in its slow-aging zone, there will be no additional cost and
only fuel consumption will be minimized. On the other
hand, κ increases when the temperature gets past the slow-
aging zone, the higher the temperature the higher the cost,
to prevent the temperature from rising further. On the
opposite, the negative cost caused by negative values of κ
when the temperature is too cold favors battery warming,
once again to get it closer to the slow-aging zone.
To minimize the global criterion (10), the Pontryagin’s
Minimum Principle states that the optimal control uopt(t)
has to minimize, for all t ∈ [t1, t2], the following Hamilto-
nian function:

H(u,x, Twheel, λζ , λTcell
) = ṁf (u, Twheel) +

κ(Tcell)Ṫcell(u) + λζ(t)ζ̇(u) + λTcell
(t)Ṫcell(u),

(12)

and

uopt(t) = argmin
Pbat

H(u,x, Twheel, λζ , λTcell
). (13)

Where λζ(t) is the SOE co-state defined by the Euler-
Lagrange equation:

λ̇ζ(t) = −∂H
∂ζ

= −λζ(t)
∂ζ̇(u)

∂ζ
' 0, (14)

this co-state is commonly considered constant since
∂ζ̇(Pbat, SOC)

∂ζ
' 0 for a large range of SOE Stockar et al.

(2011), thus:
λζ(t) = λζ . (15)

The dynamics of second co-state on cell temperature is
defined as:

λ̇Tcell
(t) = − ∂H

∂Tcell

= −∂(κ(Tcell)Ṫcell(u))

∂Tcell
− λTcell

(t)
∂Ṫcell(u)

∂Tcell

(16)

The partial derivative of (1) with respect to Tcell gives:

∂Ṫcell
∂Tcell

= −k1k4. (17)

Therefore:

λ̇Tcell
(t) = −∂κ(Tcell)

∂Tcell
Ṫcell(u) + k1k4(λTcell

(t) + κ(Tcell)).

(18)

In the identified model k1k4 is about 10−3, as a con-
sequence the assumption k1k4 ' 0 is made. The cell

temperature dynamic is very slow,
∣∣∣Ṫcell∣∣∣ ≤ 3.10−3 ' 0

and κ(Tcell) as chosen Fig. (4) gives

∣∣∣∣∂κ(Tcell)

∂Tcell

∣∣∣∣ < 15

and
∂κ(Tcell)

∂Tcell
= 0 in the slow-aging zone. As a result,

we suppose:

λ̇Tcell
(t) ' 0. (19)

Vehicle mass 1400 kg

Engine maximum power 85 kW

Electric motor maximum power 40 kW

Battery energy capacity 7 kWh

Table 1. Vehicle characteristics

The lack of constraint on the final cell temperature, giving
Ψ (Tcell(t2)) = 0, leads to

λTcell
(t2) = 0. (20)

Finally (19) and (20) imply:

λTcell
= 0 (21)

The Hamiltonian function (12) is ultimately simplified to:

H(u,x, Twheel, λζ) = ṁf (u, Twheel) +

λζ ζ̇(u) + κ(Tcell)Ṫcell(u). (22)

In practice, the command Pbat is discretized between the
minimum and maximum battery power tolerated by the
powertrain, and the value minimizing (22) is chosen as the
optimal command uopt(t). The process must be repeated
for each time step of the simulation.

4. SIMULATION RESULTS

Simulation results are based on a quasi-static model of the
vehicle and powertrain. The vehicle’s dynamics is given by
Newton’s second law. As for the hybrid powertrain, engine,
electrical machine and battery efficiencies are computed
using look up tables. The PHEV considered is provided
with a parallel hybrid powertrain, its main characteristics
are given in table 1. The results presented were obtained
considering an on-line optimization of λζ . It means that
a unique value of λζ(t1) is chosen, remaining the same
for each simulation. The co-state is then adjusted on-
line during simulation by a proportional-integral controller
in order to regulate the SOE to the desired value. This
approach does not yield strictly optimal results, but is
more representative of what could be implemented in an
actual vehicle. The following results are based on four
scenarios, considering different operating conditions and
external temperature. For each simulation, the initial bat-
tery temperature is set to the external temperature.
The first scenario discussed is based on nominal conditions
and charge sustaining operation. The ambient temperature
is set to 15◦C. The trip considered is made of a succession
of the Artemis road and Artemis urban cycles, the total
length of the trip is 58 km. Fig. 5 shows the evolution
of the cell temperature with the thermal constraint, to-
gether with the chosen speed profile. One can notice that
in these conditions the cell temperature remains in the
slow-aging zone, here set between 10 and 35◦C. Therefore
the weighting factor κ stays equal to 0 during the whole
trip. This means that the thermal constraint remains idle,
the optimization problem is identical to the regular fuel-
consumption-only criterion. In the end, no extra fuel con-
sumption is introduced.
For the second scenario, charge sustaining operation in

cold weather is considered, the external air temperature is
set to 0◦C. The driving cycle is the same as for the first
scenario. Fig. 6 displays the cell temperature along the
trip with and without battery thermal management. The
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ing conditions and followed driving cycle
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Fig. 6. Cell temperature and battery SOE with and with-
out thermal management during cold operation

temperature penalty favors the battery warm-up by over-
relying on electric energy until the temperature reaches the
slow-aging zone (around 1000s). Subsequently κ remains
equal to 0, as a result the temperature constraint is idle
for the rest of the trip. The second part of Fig. 6 shows
the SOE evolution, with battery thermal management the
engine is relied upon to charge the battery at the beginning
of the trip, causing the cell temperature to rise. The
extra electric energy gathered is then depleted to meet the
charge sustaining requirement. One may notice that the
SOE remains very close to 50% during the entire cycle,
this is due to the high energetic capacity of the battery
(7kWh) designed for PHEV applications. However, since
cell resistance is higher at low temperature, is it important
to ensure that battery current does not get too high, so
as to stay in the acceptable voltage range of the cells.
This requirement is commonly taken care of by the battery
management system. As expected, warming up the battery
leads to extra fuel consumption in order to compensate the
energy dissipated on purpose. For this specific scenario the
extra fuel consumption reaches 3%. Yet it is worth noting
that the relative extra consumption will strongly depend
on the total fuel required to complete the trip.
The third scenario assumes charge sustaining operation

and 30◦C for the external temperature. The trip consid-
ered is made of twice previous trip presented in a row,
thus 116 km total. For this specific scenario, the slow-
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Fig. 7. Cell temperature and total heat released for 3 levels
of temperature constraint

aging zone is set between 10 and 30◦C. Fig. 7 shows the
cell temperature for 3 cases: no temperature constraint,
moderate, and strong temperature constraint. This illus-
trates the fact that by tuning the parameter κ, one is
able to modulate the trade-off between fuel consumption
and battery thermal constraint. For this simulation, the
extra fuel consumption lead by the thermal management
is 0.7% and 1.1% respectively for the moderate and strong
constraint. As for the cell temperature, it is reduced by
respectively 2.6 and 3.6◦C at the end of the trip. The
lowest part of Fig. 7 shows the total heat released by the
battery (Wh) during the whole trip for the 3 constraints.
As expected, the stronger the constraint the lower the
heat dissipated, which explains how the strategy reduces
battery warming.
Finally, the fourth scenario considers a plug-in hybrid taxi
alternating between quick charges and the trip presented
in Fig. 5 for almost 7 hours. The external temperature is
set to 25◦C. The charging power is at first set to 35 kW
and then decreases in order for the battery to remain in its
admissible voltage range. When the charge is completed,
the battery has a resting period of 10 minutes. The trip is
carried out in charge depleting charge sustaining (CDCS)
mode. It means that the first part of the trip is done using
electrical energy as much as possible, close to an electric
vehicle. Once the battery is depleted the vehicle enters
charge sustaining mode until the next charge. Fig. 8 shows
the difference between cell temperature with and without
battery thermal management. The temperature constraint
manages to reduce the cell temperature of several degrees,
there is ultimately a 3◦C difference at the end of the
day. Although the difference may seem thin, the gain on
battery life lies on the long term, if repeated on a daily
basis. Moreover, as presented in Fig. 8, the temperature
reduction is obtained by avoiding high currents, also one of
the main factors contributing to battery aging. Since the
heat production of the cells is given by Pheat = RI2bat, the
EMS avoids currents above 70 A to moderate the temper-
ature increase. Therefore, the temperature management
is beneficial in two ways: lower temperature and lower
current. The extra fuel consumption introduced by the
thermal management is 1.4% for this scenario.
The simulation results presented above illustrate the fact

that the proposed strategy manages to restrain, or on the
opposite favor battery warming. However, during common
operating conditions the temperature constraint will be
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idle, allowing the minimization of fuel consumption only.
It is worth noting that the strategy avoids high currents
in order to reduce battery warming, which is also prof-
itable to limit battery aging. The trade-off between fuel
consumption and temperature constraint as well as the
desired battery temperature operating range are set by
tuning one parameter: κ(Tcell). Moreover, the strategy is
relevant for both HEV and PHEV. Finally, results tend to
show that the effect of battery temperature constraint on
fuel consumption remains moderate.

5. CONCLUSION

Battery temperature is known to be one of the main factors
contributing to battery aging, whatever the technology.
Therefore the EMS proposed is this paper considers a soft
constraint on battery temperature, as an additional cost
in the criterion to be minimized. The problem is solved
using Pontryagin’s Minimum Principle, with a subopti-
mal but on-line-oriented solution. The loss of optimality
is compensated by the fact that the proposed strategy
requires no extra co-state and is therefore easily appli-
cable to a standard optimal on-line EMS. The resulting
EMS combines powertrain efficiency and battery thermal
management, allowing for both an optimized fuel con-
sumption and battery health preservation. The strategy
applies to both HEV and PHEV, but might be more
relevant for vehicles provided with light or non-existent
battery thermal regulation. Simulation results highlight
the potential of the strategy for different scenarios, but
also the fact that the temperature constraint remains idle
during more lenient operations. A weighting factor allows
to choose the temperature range where the constraint will
remain idle, as well as the constraint’s intensity when the
battery temperature is out of bound. It is however very
difficult to express the actual amount of Ah-throughput,
that is battery lifetime, saved by the strategy. It will indeed
depend on numerous factors: battery technology, operat-
ing conditions (external temperature, current profile, SOC
range), for battery aging is a very complex phenomenon.
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