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In this paper, we present a model aimed at predicting the rheological response of a 3D dry granular system to
nonstationary mechanical solicitations, subjected or not to vibrations. This model is based on a phenomenological
two-state approach related to the inherent bimodal behavior of chain forces in granular packing. It is set up from
a kinetic equation describing the dynamics of the contact network. To allow experimental assessment, the kinetic
equation is transformed into a differential constitutive equation, relating stress to strain, from which rheological
properties can be derived. Its integration allows predicting and describing several rheological behaviors, in
stationary and nonstationary conditions, including viscous (Newtonian) and frictional (Coulombian) regimes, as
well as elastic linear (Hookean and Maxwellian) and nonlinear behaviors. Despite its simplicity, since it involves
only three independent parameters, the model is in very close agreement with experiments. Moreover, within
experimental errors, the values of these parameters are independent of the type of test used to determine them,
evidence of the self-consistency of the model.

DOI: 10.1103/PhysRevE.88.012207 PACS number(s): 83.80.Fg, 47.57.Gc, 47.57.Qk

I. INTRODUCTION

Understanding granular packing stability is of major im-
portance in numerous natural and industrial situations. For
instance, packing stability plays a crucial role in the triggering
of avalanches or landslides or in the blocking of industrial
silos. Despite intrinsic differences linked to the non-Brownian
nature of granular materials, their rheological behavior is by
many aspects rather similar to that of complex colloidal media
(polymers, surfactants, dispersions...). In particular, granular
media behave either as solids or liquids, depending on the
mechanical solicitations to which they are subjected. Still,
recently developed mesoscopic models, such as SGR, STZ, or
MCT [1–4], that capture some of the flow and deformation
features of amorphous materials are not able to account for
all experimentally observed rheological behaviors of flowing
granular matter [5–8]. This is certainly linked to the discrete,
macroscopic nature of granular materials. Indeed, in response
to some change in external forces, the macroscopic behavior
of a granular system is related to the evolving structure of
its contact network [9–11] and to the nature of the contacts
themselves (frictional interactions, sliding or not) [12,13].

Recent experimental [14,15] and simulation [13,16] works
have shown that it was relevant to describe 3D granular
packings as the combination of two contact networks, a weak
one and a strong one, that evolve independently from each
other in response to external solicitations. Strong contacts
ensure cohesion, momentum transport, and linear elastic
properties, whereas weak contacts dominate nonlinear effects.
Therefore, the way stress propagates through the network
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of intergranular contacts strongly depends on sample density
and on the spatial configuration adopted by the grains, after
sample conditioning inside characterization devices [17–19].
As a consequence, to perform representative measurements
that are not sensitive to the particular topology of a stack, it
is crucial to obtain information that is averaged over all the
accessible configurations. Unfortunately, granular media being
macroscopic athermal systems, their initial configurations do
not evolve spontaneously. A way to overcome this problem
could be to use vibrations. Indeed, it has recently been
shown that vibrations (even of small amplitude) influence the
rheology and the dynamics of grains in granular packings
[20–32]. Furthermore, D’Anna et al. [26,27,33–35] have
discovered that the motion of a torsion oscillator immersed
in an externally vibrated granular medium of glass spheres
is Brownian-like. In the case of granular materials, using
mechanical energy is analogous to the use of thermal energy
for Brownian systems.

In that context, we have developed a powder rheometer
prototype equipped with a vibrating cell [23,24,36]. Using
such a setup, we have been able to carry out detailed studies of
the rheological features of vibrated powders under stationary
solicitations [20–24]. At low stationary stress, the viscosity
exhibits a Newtonian behavior controlled by the energy
injected by vibrations, whereas the behavior remains frictional
and independent of vibrations at higher stress. It has further
been shown in Marchal et al. [23,24] that the Newtonian
behavior could be predicted on the basis of a rheological
model assuming a Maxwell-Boltzmann distribution of free
volumes in vibrated granular matter [37–40]. In the present
paper, we develop a simple phenomenological model, based
on the dynamics of the contact network, to predict the
rheological response of a 3D vibrated dry granular packing
subjected to nonstationary solicitations, thus extending our
previous analyses. We show that a simple two-state model
related to the inherent bimodal behavior of chain forces in

012207-11539-3755/2013/88(1)/012207(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.012207


MARCHAL, HANOTIN, MICHOT, AND DE RICHTER PHYSICAL REVIEW E 88, 012207 (2013)

granular packing associated with a detailed balanced equation
describing transition rules between these two states can
predict, in part, the rheological behavior of vibrated and
sheared granular matter in both stationary and nonstationary
conditions.

II. MODEL

A. A toy experiment: the “stick stuck” effect

A well-known simple experiment, the “stick stuck” experi-
ment [41], will serve as a starting point for modeling (Fig. 1).

In this experiment, a wooden stick is introduced [Fig. 1(a)]
in a container filled with compacted granular medium (such
as sand or powdered sugar). After a slight compaction of the
sample, the stick is pulled vertically so that the grains tend to
move slightly with respect to each other. Under the principle of
Reynolds dilatancy [42,43], a compacted granular medium can
only be deformed by increasing its volume: grains must move
away from each other to exit from the interstices formed by
their nearest neighbors. In a medium confined by rigid walls,
dilatancy results in a compression of the grains against each
other, leading to the formation of arches between the stick and
the container [Fig. 1(b)]. Therefore, a consolidation stress is
induced between the grains up to a value related to the weight
of the sample. If the stress exerted via the stick is higher than
the consolidation stress, a critical deformation γc is exceeded,
resulting in a rupture of the arches and the drop of the container
[Figs. 1(c) and 1(d)]. Conversely, as long as this stress does not
exceed the consolidation stress, the arches are strong enough
to allow the rising of the container and its contents upon
the rise of the stick [Fig. 1(e)]. However, when the system
is subjected to slight vibrations, a liquefaction phenomenon
occurs, arches are destabilized, and the container falls
[Figs. 1(f) and 1(g)]. This experiment shows that the grains
form a contact network consolidated by shear in the limit

FIG. 1. (Color online) The “stick stuck” experiment.

of small deformations (γ < γc) but destabilized by the same
shear at large strains (γ > γc). Vibrations clearly destabilize
the network through a liquefaction process, since it is im-
possible to lift the container with the stick when the sample
is subjected to vibrations. This experiment shows that in a
vibrated granular medium under shear, at a given time t , some
grains are in contact and are able to ensure stress transmission
while others are disconnected and unable to provide such a
transmission. It then appears that a given grain can only be
in two distinct states: a consolidated state (C) that ensures
momentum transport and a mobile state (M) disconnected.
The granular medium, thus, reduces to a two-level system [44],
the transition between these states being ensured by vibrations
and shear.

B. A two-state model for vibrated granular matter

Since only the grains in the state (C) ensure momentum
transport, we use as a variable of state the fraction of grains
PC = NC/Np, where NC is the number of grains in the
state (C) and Np the total number of grains. In other words,
PC is the occupation probability of state (C) as PM + PC = 1,
where PM is the occupation probability of state (M) (Fig. 2).

The temporal evolution ṖC(t) = dPC (t)
dt

of the fraction of
grains in the state (C) is equal to the fraction of grains evolving
from (M) to (C) minus the fraction of grains making the reverse
transition per unit of time:

ṖC(t) = ωCM (t)PM (t) − ωMC(t)PC(t)

= ωCM (t)[1 − PC(t)] − ωMC(t)PC(t). (1)

Equation (1) is a balance equation related to the average
probability PM and PC of occupation of states (M) and (C).
Consequently, the kinetic constants ωCM and ωMC are the
frequencies or probabilities of transition per unit time between
states (M) and (C).

The “stick stuck” experiment shows that on average C → M

transitions, which correspond to the rupture of the contacts
network, are induced by both shear and vibrations. On the one
hand, the probability of transition induced by vibrations is, by
definition, equal to the Brownian reorganization frequency fb

of the grains [23,24]. On the other hand, the probability of
reorganization induced by shear is equal to the frequency at
which the grains are disconnected when the critical strain γc is
exceeded. It is then proportional to shear rate γ̇ . As these two
processes are uncorrelated, the total transition frequency ωMC

FIG. 2. (Color online) The two-state model used to describe the
rheological behavior of granular matter subjected to vibrations and
shear. PC(t) and PM (t) are, respectively, the probability of occupation
of state (C) and (M) at time t .
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is simply equal to the sum of the frequencies of reorganization
corresponding to each process (addition law). In contrast,
M → C transitions are only due to shear. Therefore, the
frequency ωCM at which the grains are put in contact with
each other is also proportional to γ̇ . It follows that

ωMC = c1γ̇ + fb and ωCM = c2γ̇ . (2)

With γc = 1/(c1 + c2), Eq. (1) can be written

ṖC(t) = c2γ̇ (t)[1 − PC(t)] − [c1γ̇ (t) + fb]PC(t)

⇐⇒ ṖC(t) +
[
γ̇ (t)

γc

+ fb

]
PC(t) = c2γ̇ (t). (3)

In practice, the structural variable PC is not experimentally
measurable. It is then necessary to relate it to an observable
rheological variable for transforming kinetic Eq. (3) into a
rheological equation accessible to experiment. If one considers
the stress as a diffusive flux of momentum and by assuming that
it is transported by channels constituted by the “strong contacts
network,” it appears that the number of channels increases
with the number of consolidated grains. According to such a
hypothesis, a heuristic way to turn Eq. (3) into a constitutive
rheological equation is to assume that the stress is proportional
to the fraction of grains in state (C). The consequence of
such a choice will be tested, a posteriori, against experiments
in the following. Indeed, writing σ (t) = aPC(t) in Eq. (3)
leads to

σ̇ (t) +
[
γ̇ (t)

γc

+ fb

]
σ (t)

= Gγ̇ (t) ⇐⇒ γ̇ (t) = γc

σ̇ (t) + fbσ (t)

Gγc − σ (t)
. (4)

Where G = ac2 = cte (∀γ̇ ).
The evolution of a macroscopic system, induced by a

random process [45], can be modeled by a kinetic equation
like Eq. (3) if the system loses the memory of its previous
microscopic states. Such memory loss must occur over a
period much shorter than the macroscopic characteristic time
of its macroscopic evolution [46]. At the microscopic scale,
the transitions between different states of the system are
due to the formation and breaking of intergranular contacts.
The characteristic time corresponding to such a phenomenon
refers to the duration of rearrangements between grains. The
dimensional analysis of dense granular flows has revealed that,
at the microscopic scale, the only relevant microscopic time for
rigid grains of diameter dp and density ρp is the confinement
time tcf = dp

√
ρp/P [6,7]. It corresponds to the time a

destabilized particle takes to fall into a neighboring gap of size
dp under the confining pressure P = φρpgz, corresponding
to the normal stress exerted on the grains, ρ = φρp being
the mass density of a sample of volume fraction φ and z the
depth at which the grain is located within the sample. For
glass beads of diameter 500 μm at a volume fraction φ of 0.6,
considering ρp ≈ 2500 kg m−3, z ≈ 10−2 m, and P ≈ 150 Pa,
one obtains tcf ≈ 2×10−3 s. It must be pointed out that, at the
microscopic scale, the Hertzian contact time thz should also be
considered. This time is related to the time tel corresponding
to the dissipation of the mechanical energy via elastic waves
propagation through the material. For instance, for glass beads

such as G ≈ 7×1010 Pa, one obtains [47]: thz = (
d2

pρp

Gγ̇ 1/2 )2/5 ≈
2×10−6 s for γ̇ = 1 s−1. thz being approximately three
orders of magnitude lower than tcf , analyzing the systems
over time periods that are large with regard to tcf , ensures a
proper separation of time scales. In such conditions, granular
reorganization can likely be described using a Markovian
approach and should, therefore, be reasonably described using
a kinetic equation such as Eq. (3). We will in the following test
such an assumption by comparing experimental rheological
measurements with predictions derived from Eq. (4). We focus
in the present case on the response of the vibrated samples
to nonstationary solicitations, i.e., stress steps or sinusoidal
stresses. This significantly extends the analysis carried out
in Ref. [24] that was restricted to stationary situations
only.

III. EXPERIMENTAL RESULTS

A. Material and methods

Glass beads samples (Total mass m = 130 g, mean
diameter 530 μm with a standard deviation of 90 μm) were
analyzed by both creep tests (steps of stresses) and me-
chanical spectroscopy (sinusoidal stresses). All experiments
were carried out using a stress-imposed rheometer (AR2000,
TA Instruments) equipped with a “powder cell,” able to
generate granular reorganizations into the powder. This cell
includes a four blades vane device plunging into a baffled
cylindrical cup, which prevents sample slipping. The device
is connected to a vibration exciter (Mini-shaker, Bruel and
Kjær) controlled by a function generator and an accelerometer
(Fig. 3). Vibrations are sinusoidal and the energy Ev supplied
to the granular medium is Ev = m(2πf )2A2/2, where m is
the sample mass and f and A, the frequency and amplitude
of the vibrations. Ev/m is a key factor that has been shown to
control the dynamics of the intergranular contact network [24].
It is proportional to the energy injected among the grains
and it can be assimilated to a granular temperature since
it follows similar laws as true temperature associated with
Boltzmann’s statistics. Accordingly, fb is an increasing func-
tion of Ev as shown in Ref. [24] and in Appendix A, in the same
way as Brownian collision frequency between microscopic
particles is an increasing function of kT in molecular or
colloidal systems.

Creep tests were carried out for various stresses and
for different values of the vibration energy Ev . Mechanical
spectroscopy experiments were also carried out for different
vibration energies, but in the following, for concision reasons,
we will only show results obtained for a given frequency and
energy (f = 50 Hz, A = 0.16 mm, Ev = 164 μJ). So, we focus
here on the transient regime via creep tests and mechanical
spectroscopy at a given frequency (f = 50 Hz, A = 0.16 mm,
Ev = 164 μJ). The experimental results obtained for dif-
ferent values of the vibration energy are summarized in
Appendix A.

Prior to each rheological test, the samples were submitted to
vibrations over periods long enough to ensure stationary states
of compaction. Rheological parameters (σ , γ , γ̇ ) are obtained
from the evolution of torque (C) versus angular rate (θ̇) data
via a calibration procedure leading to the determination of two
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FIG. 3. (a) Experimental setup. (b) Microscopic snapshot of glass beads of the sample. (c) Measurements principle.

geometrical factors Kσ and Kγ̇ , such as σ = KσC and γ̇ =
Kγ̇ θ̇ . Considering the measuring cell as a Couette device, Kσ

and Kγ̇ are determined by solving the equation of motion with
boundary conditions imposed by the geometrical dimensions
of the inner and outer cylinders, in the case of a generalized
Newtonian fluid obeying a power law model. Such a choice
is not restrictive since any generalized Newtonian fluid can
be asymptotically assimilated to a power law fluid. A more
detailed description of the equipment and of the calibration
procedure can be found in Ref. [24].

B. Rheological behavior of the samples

1. Response to a stress step

In the case of a stress step defined as σ (t) = 0 for t < 0 and
σ (t) = σ for t >0 [Fig. 3(c)], the integration of Eq. (4) yields
(Appendix B)

γ (t) = γc

fbt
Gγc

σ
− 1

− γcln
1

γc

(
Gγc

σ
− 1

)
+ γcln

(
G

σ

)

= γc

[
fbt

Gγc

σ
− 1

− ln

(
1 − σ

Gγc

)]
. (5)

Differentiating Eq. (5), one obtains the expression of the shear
rate γ̇ (t) as a function of the amplitude of the shear stress σ :

γ̇ (t) = γcfb

Gγc

σ
− 1

= γ̇

⇐⇒ η = σ

γ̇
= η0

1 + γ̇

γcfb

= σf

γcfb + γ̇
, (6)

with η0 = G/fb and σf = η0γcfb = Gγc.
As fb is an increasing function of Ev , Eq. (6) shows

that viscosity decreases when vibration energy increases (via
the frequency f and/or the amplitude A) or equivalently
when granular temperature increases. This suggests that the
sample should behave as a molecular condensed fluid [24]. In
addition, Eq. (6) shows that the rheological behavior expected
is viscous non-Newtonian, shear thinning. Furthermore, it
reveals the existence of a Newtonian viscous regime at low
shear rate (η → η0 when γ̇ →0) followed by a Coulombian

frictional regime at high shear rate (σ → σf when γ̇ →
+∞). See Ref. [24] for a more extensive analysis. Before
any experimental confrontation, the consistency of Eqs. (5)
and (6) can be evaluated by examining extreme situations
corresponding to two limiting cases:

(i) In the limit of small stresses, for σ (t) � Gγc or
equivalently for γ̇ (t)/γc � fb, Eq. (4) becomes

σ̇ (t) + fbσ (t) = Gγ̇ (t). (7)

Equation (7) is formally analogous to the Maxwell equation,
usually written as σ (t) + λ(t)σ̇ (t) = η0γ̇ (t) with λ = 1/fb and
η0 = G/fb. Consequently, all classical results of the theory
of linear viscoelasticity associated with this model are, in
principle, applicable to the case of vibrated granular media
(cf § B.2). Equation (5) gives

γ (t) = γc

[
fbt
Gγc

σ

+ σ

Gγc

]
= σ

G
(1 + fbt) and γ̇ (t) = fbσ

G
,

(8)

with ln(1 − σ/Gγc) ∼= −σ/Gγc, since σ is much smaller than
Gγc.

By definition, in the limit of small stresses, the response
to a step stress is used to determine the creep function
J (t) = γ (t)/σ . Equation (8) shows that the expected response
is such that J (t) = (1/G)(1 + fbt). Such a creep function is
characteristic of a linear viscoelastic Maxwellian behavior, in
agreement with Eq. (7). Furthermore, in full agreement with
the properties of a Maxwellian fluid, Eq.(8) reveals that the
granular system should behave as a Hookean solid at short
times in such a way that γ (t) = σ/G = γ and as a Newtonian
fluid at long times so that γ̇ (t) = σ/η0, where η0 = G/fb is
the Newtonian viscosity.

(ii) In the absence of vibrations (fb = 0) or for fb �
γ̇ (t)/γc, Eq. (4) becomes

γ̇ (t) = γc

σ̇ (t)

Gγc − σ (t)
, (9)
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which, by integration with respect to γ (t) yields

γ (t) − γ (t0) = −γcln

[
1 − σ (t)

Gγc

]
+ γcln

[
1 − σ (t0)

Gγc

]

= −γcln

[
1 − σ (t)

Gγc

1 − σ (t0)
Gγc

]
. (10)

Equation (10) is only defined for σ (t) � Gγc. In other words,
Eq. (10) and the differential Eq. (4) from which it originated
imply that there is a maximum stress σmax = Gγc that cannot
be exceeded, whatever the shear rate γ̇ . It can be shown [23,24]
that this maximum stress can be identified to a frictional stress
σf in agreement with Coulomb’s law σf = μf σn = σmax,
where μf is the coefficient of friction and σn the normal stress.
Equation (5) can be written as

γ (t) = −γcln

(
1 − σ

Gγc

)
= γ. (11)

When the frequency of reorganization fb is zero, the granular
medium is static and must behave like a solid. Equation (11)
well captures such a feature and shows that the system behaves
as an nonlinear elastic solid for which deformation increases
“instantaneously” with the stress. In the limit of very low
stresses, a first-order Taylor expansion of Eq. (11) gives γ (t) ∼=
σ/G, i.e., Hooke’s equation that characterizes a linear elastic
behavior, consistent with the Maxwellian limit of Eq. (4).

In the following, the consistency of the model was evaluated
by fitting the equations derived from the integration of Eq. (4)
to experimental data and by comparing the values obtained
for the parameters G, η0, γc, and σf via the different tests.
Figure 4 displays for a vibrated sample, the evolution with
time of γ (t) for applied stresses of 1, 3, 10, and 30 Pa. A linear
deformation is observed in agreement with the prediction of
Eqs. (5) and (8). As an illustration, for σ = 10 Pa, the fit
of Eq. (8) yields σ/η0 = 0.0181 s−1 and η0 = 552 Pa s,
where η0 = G/fb.

Figure 5 displays for nonvibrated samples subjected to
stress steps of 1, 3, 10, 20, 30, 40, and 50 Pa, the evolution
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FIG. 4. (Color online) Temporal evolution of the strain γ (t) for
stress step of 1, 3, 10, and 30 Pa, under vibrations (f = 50 Hz and
Ev = 164 μJ). The solid line materializes the fit of Eq. (8) to the
experimental points.
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FIG. 5. Evolution of the deformation (γ ) as a function of the
stress (σ ), in the absence of vibration (f = 0 Hz and Ev = 0 μJ). The
solid line materializes the fit of Eq. (11) to the experimental points.
The dotted line shows the Hookean limit of the behavior of the sample
at low stresses.

of the average strain value (γ ) as a function of the imposed
stress (σ ). The solid line corresponds to the fit of Eq. (11)
to the experimental data. The fit yields γc = 6.88 × 10−5 and
Gγc = 51.3 Pa ⇒ G = 7.45×105 Pa. The agreement between
experimental data and the fitted curve related to Eq. (11)
reveals that the model provides an excellent description of
the static behavior of the samples up to stress values around
50 Pa. For higher values, stick-slip instabilities perturbing the
rheometer loop control start occurring resulting in measure-
ment fluctuations. But when the stress rises above 148 Pa,
a steady, frictional flow appears. Since the shear rate is now
constant, an effective viscosity can now be calculated, and
this viscosity is shown in Fig 6. It is worth noting that the
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FIG. 6. (Color online) Evolution of the viscosity (η) in steady-
state regime as a function of the shear rate (γ̇ ): (a) without vibrations
(f = 0 Hz and Ev = 0 μJ), (b) under vibration (f = 50 Hz and
Ev = 164 μJ). The solid lines materialize the fit of Eq. (6) to the
experimental points. Inset, the same data were plotted against the
shear stress.
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experiment of Fig. 5 corresponds to a static regime, until the
frictional stress is reached leading to the frictional flow regime
observed in Fig. 6(a). Stick-slip instabilities mark the transition
between these two regimes. It also appears that in the low
stress limit (σ < 20 Pa), a Hookean behavior is obtained in
agreement with Eq. (11).

As previously mentioned, step stress experiments can be
used to extract the evolution of viscosity η = σ/γ̇ , as a
function of shear rate. Figure 6 displays the results of such a
measurement, with and without vibrations, in steady-state flow
regime, contrary to the previous experiment. In this figure the
solid line corresponds to the fit of Eq. (6) to the experimental
data. The fit of Eq. (6) to curve (b) yields to η0 = G/fb =
592 Pa s and γ̇c = γcfb = 0.25 s−1 ⇒ σf = η0γ̇c = Gγc =
148 Pa. This value of σf matches the value found by fitting
Eq. (6) to curve (a) since curves (a) and (b) collapse beyond
γ̇ = 10 s−1. The value of η0 thus determined (592 Pa s) is,
considering experimental errors, very close to that determined
from creep tests (552 Pa s). This figure is also evidence of
the existence of a Newtonian regime at low stress and of a
nonlinear Coulombian one at high stress, features that agree
with Eq. (6). The difference between the values of σf extracted
from Fig. 5 (51.3 Pa) and from Fig. 6 (148 Pa) comes from the
fact that both experiments have been performed in two different
regimes: a flow regime and a static one. It is worth noting
that it is experimentally challenging to extract σf , which is a
dynamical quantity, from a static experiment via the relation
σf = Gγc. Additionally, the divergence of the curve in the
vicinity of σf hinders a precise numerical determination of
its value. Despite these difficulties, both values remain of the
same order of magnitude.

2. Response to a sinusoidal stress

In the case of a sinusoidal stress defined as σ (t) =
σocos(ωt) and σ̇ (t) = −ωσosin(ωt) (Fig. 7), with σo the
oscillation amplitude and ω the pulsation, useful information
can be obtained without a full integration of Eq. (4). Letting
tanδ = fb/ω, Eq (4) yields

γ̇ (t) = γc

σ̇ (t) + fbσ (t)

Gγc − σ (t)
= −γc

ωsin(ωt) − fbcos(ωt)
Gγc

σo
− cos(ωt)

= −γc

(
ω2 + f 2

b

)1/2
sin(ωt − δ)

Gγc

σo
− cos(ωt)

. (12)

FIG. 7. Measurement principle in oscillatory regime (mechanical
spectroscopy).

In the limit of small stresses (σo � Gγc) and under vibrations,
Eq. (12) yields

γ̇ (t) = −σo

G

(
ω2 + f 2

b

)1/2
sin(ωt − δ)

⇒ γ (t) = σo

ωG

(
ω2 + f 2

b

)1/2
cos(ωt − δ). (13)

Equation (13) could have been obtained directly by solving
Maxwell’s equation, δ being the phase angle between σ (t)
and γ (t) (Fig. 7) and tanδ = fb/ω = 1/(λω), where λ = 1/fb.
According to this result, the system should behave as a linear
viscoelastic one as long as the denominator of Eq. (12) does
not diverge, i.e., for σo not too close to Gγc, i.e., as long
as the system does not enter the frictional regime. Letting
σ (t) = Re{σ̃ (t) = σoe

iωt } and γ (t) = Re{γ̃ (t) = γoe
i(ωt−δ)},

the resolution of the complex form of Eq. (7) gives, classically,

G∗(ω) = σ̃ (t)

γ̃ (t)
= σo

γo

eiδ

= Gω2λ2

1 + ω2λ2
+ i

Gωλ

1 + ω2λ2
= G′ + iG′′, (14)

with

G′ = G
ω2λ2

1 + ω2λ2
and G′′ = G

ωλ

1 + ω2λ2
. (15)

G′ = σo

γo
cosδ being the elastic modulus and G′′ = σo

γo
sinδ the

viscous modulus. Noting that fb ∈ [0; +∞[ and ω ∈ [0; +∞[
⇒ tanδ ∈ [0; +∞[, one has δ ∈ [0; π/2], in agreement with
Hookean (δ = 0) and Newtonian (δ = π/2) limits.

To test the model, we first carried out a stress sweep test, in
which the stress amplitude σo was varied at a fixed frequency
(ω = 1 rad s−1), under vibrations (f = 50 Hz and Ev =
164 μJ). Such an experiment provides values for σo, γo and
the phase angle δ (Fig. 7) that can be directly compared to
the predictions of Eq. (12). As in the experimental conditions
used (Fig. 4), 75◦ � δ � 90◦, then sin(ωt − δ) ∼= −cos(ωt).
Consequently, Eq. (12) can be written as

γ̇o = max{γ̇ (t)} ∼= γc

(
ω2 + f 2

b

)1/2

Gγc

σo
− 1

. (16)

Figure 8 displays the evolution of the maximum amplitude
of the strain rate γ̇o = ωγo as a function of σo. As shown
by the solid line plotted in Fig. 8, Eq. (16) accurately fits
the experimental data and yields γc(ω2 + f 2

b )1/2 = 0.357 s−1

and Gγc = σf = 201 Pa. This latter value for the frictional
stress is close to the value previously obtained σf = 148 Pa
in steady-state regime (Fig. 6). Furthermore, low-stress data
exhibit a linear dependence on σo, whereas for higher stress
a clear divergence is observed in agreement with Eq. (16).
Figure 8 shows that the linear viscoelastic domain appears
to extend up to a critical shear rate value γ̇c ≈ 0.1 s−1

that corresponds to a critical strain γc = γ̇c/ω ≈ 0.1, as
ω = 1 rad s−1 in the corresponding experiment. It leads to
G = σf /γc ≈ 2000 Pa.

Figure 9 corresponds to a frequency sweep test carried out
on the same sample under the same vibration energy. In this
experiment, the values of G′ and G′′ are measured for various
frequencies ω at a fixed amplitude stress σo, the value of which
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FIG. 8. (Color online) Evolution of the maximum amplitude of
the strain rate (γ̇o) as a function of the maximum amplitude of the
stress (σo) for ω = 1 rad s−1, under vibrations (f = 50 Hz and
Ev = 164 μJ). The solid line materializes the fit of Eq. (16) to the
experimental points.

(10 Pa) was chosen in the linear viscoelastic domain. The solid
lines in Fig. 9 correspond to a fit according to Eq. (15) that
yields G = 1792 Pa and λ = 0.31 s. It must be pointed out that
the value of G, thus determined, is close to that derived from
stress sweep test (≈2000 Pa). Furthermore, these values allow
determining fb = 1/λ = 3.23 s−1 and η0 = G/fb = 555 Pa s.
The fact that this latter value is very close to that determined
previously from creep experiments illustrates the robustness
of the model we propose.

Closer examination of Fig. 9 reveals additional trends. It
appears that Eq. (15) captures well the mechanical properties
of the system at low ω values, i.e., when the viscous behavior
dominates (G′′ > G′). In this region, G′ evolves as ω2 and G′′
as ω in agreement with a Maxwellian behavior. In contrast, data

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

ω (rad.s−1)

G′
G″

10 10 10
10

10

10

10slope=1

slope=2

G
or

G
(P

a)

FIG. 9. (Color online) Evolution of the elastic modulus (G′)
and the viscous modulus (G′′) as a function of pulsation (ω) for a
maximum stress amplitude σo = 10 Pa, under vibrations (f = 50 Hz
and Ev = 164 μJ). Solid lines materialize the fit of Eqs. (15) and (17)
(inset) to the experimental points.

at higher ω values, past the G′/G′′ crossover, are not properly
described by Eq. (15). Such a discrepancy between model
and experiment can be assigned to the fact that our model only
considers one mechanism for relaxation processes, whereas, in
fact, as in molecular media, two mechanisms should be taken
into account: α-relaxation and β-relaxation. The α-process
corresponds to the diffusion of grains out of the cage formed
by their nearest neighbors. Such a process allows sample
flow. It dominates the viscous rheological behavior at low ω

values (Fig. 9). The β-process corresponds to the diffusion of
grains within the cage formed by their nearest neighbors. The
characteristic time tβ corresponding to this latter process is
obviously shorter than that of the α-relaxation (tα) and it may
then start playing a role for high pulsations. In order to take
into account these two processes, it is possible to introduce
two relaxation times, λ1 and λ2, and two weighing factors, G1

and G2, in the Maxwell model, such as

G′ = G1
ω2λ2

1

1 + ω2λ2
1

+ G2
ω2λ2

2

1 + ω2λ2
2 (17)

G′′ = G1
ωλ1

1 + ω2λ2
1

+ G2
ωλ2

1 + ω2λ2
2

.

Letting λ1 = tα , λ2 = tβ and remembering that f = 50 Hz and
that fb was estimated to 3.23 s−1 in the low ω region yields
λ1 = tα = f −1

b = 0.31 s and λ2 = tβ = f −1 = 0.02 s. Using
such values of λ1 and λ2 in Eq. (17) leads to G1 = 1400 Pa and
G2 = 6000 Pa. As shown in Fig. 9, considering two relaxation
processes significantly improves the agreement between model
and experiments. Considering two characteristic times was,
however, not required for the modeling of creep experiments.
This is likely due to the fact that creep tests provide accurate
rheological information for long times only. Due to inertial
effects in the rheometer and to the times associated to signal
acquisition, creep tests cannot be used reliably to investigate
processes with short characteristic times.

In order to provide an overview of the results of the different
experiments, Table I displays the numerical values of the model
parameters determined by adjustment to experimental points,
without vibrations and with vibrations for a vibration energy
Ev = 164 μJ. The dependence of the model parameters, i.e.,
the shear modulus (G), the critical strain (γc), and the Brownian
frequency reorganization of the grains (fb) with the vibration
energy (Ev) is shown in Appendix A.

IV. CONCLUSIONS AND PERSPECTIVES

On the basis of simple experimental procedures, and using
a few reasonable assumptions, we have been able to derive an
elementary differential equation that is able to capture various
rheological behaviors (in transient or steady-state regimes
and in the presence and absence of vibrations) using three
independent parameters only (G, γc, fb). The exact solution
of the model takes the form of a constitutive equation relating
stress to strain from which all rheological properties can be de-
rived. The solution predicts viscous (Newtonian) and frictional
(Coulombian) regimes, as well as elastic linear (Hookean) and
nonlinear behaviors that are qualitatively and quantitatively
in agreement with experiments. Within experimental errors,
parameters values are independent of the type of test used
(linear, nonlinear, permanent, transient, or oscillatory).
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TABLE I. Numerical values of the model parameters, with vibrations (up) and without vibrations (down). Numbers in brackets have been
obtained on the basis of the value γc = 0.1, determined in oscillatory regime.

f = 50 Hz G fb γc η0 = G/fb σf = Gγc γ̇c = γcfb

Ev = 164 μJ (Pa) (s−1) (-) (Pa s) (Pa) (s−1)

Creep tests
(Figs. 4 ∗ and 6‡) (1480) (2.50) (0.1) 552∗–592‡ 148 0.25
Oscillatory tests
(Figs. 8¶ and 9�) 2000¶–1792� 3.23 0.1 555 179¶–201� 0.323

f = 0 Hz G fb γc η0 = G/fb σf = Gγc γ̇c = γcfb

Ev = 0 μJ (Pa) (s−1) (-) (Pa s) (Pa) (s−1)

Creep tests
(Figs. 5� and 6‡) 7.45 × 10 5 0 6.88 × 10 −5 ∞ 51.3�–148‡ 0

These results strongly suggest that the rheological response
of vibrated granular media, subjected to nonstationary stress,
can be described by a simple “two-states model” related to
the inherent bimodal behavior of chain forces [13–16]. They
also tend to show that the dynamics of vibrated granular
materials can be viewed as a kinetic process based on
transitions from a “strong state,” which ensures momentum
transport, to a flowing state. Hopping rates then depend on the
intensity of both shear and vibration. We have shown that the
high-frequency (short-time) behavior could be described by
introducing two relaxation times in the Maxwell model related
to the α and β relaxation processes commonly observed in
granular matter [48,49].

A particularly noteworthy aspect of the present study is
related to the fact that the model is able to capture both flow
experiments and mechanical spectroscopy ones. This is gen-
erally not achieved in the rheological modeling of molecular
or colloidal systems. Most common rheological models, such
as SGR or STZ, fail to include local flow and plastic events
in a coarse-grained variable in a continuous field. Another
loophole in most existing models lies in the introduction
of an effective temperature, the meaning of which is often
rather obscure. This effective temperature, associated to the
noise level in the medium, controls the degrees of freedom
whose changes cause the system to move from one energy
minimum to another in a continuous energy landscape. Such
difficulty is ironed out in the present paper for granular matter
subjected to vibrations. In this case, granular reorganization is
controlled by applied vibrations at low stress that correspond to
an external temperature as discussed by D’Anna et al. [33]. Our
model describes the macroscopic behavior of granular matter
regardless of nonlocal flows effects mentioned in the literature
[50–52]. The main reason is that a potential localization of the
flow also leads to a frictional behavior, which is captured by the
model. Moreover, our results suggest that these nonlocal flow
effects vanish in the regime controlled by vibrations where the
flow remains Newtonian.

In the near future, it would be of interest to try to extend
this model to saturated granular suspensions. In such systems,
understanding the viscoelastic behavior will require taking
into account, in addition to vibrations, effects related to
the viscosity of the interstitial fluid. We recently evidenced
coupling between these two parameters [53] and it would be
particularly relevant to see if the viscosity of the suspending
fluid could be introduced in a kinetic equation [Eq. (3)],

to derive for granular suspensions a similar self-consistent
approach as that derived for dry granular systems.

APPENDIX A: EVOLUTION OF THE MODEL
PARAMETERS (G, γc, fb) AS A FUNCTION OF THE

VIBRATION ENERGY Ev

Creep tests and mechanical spectroscopy experiments were
also carried out for different values of vibration energies,
ranging from 0 to 742 μJ. For each applied energy, the
adjustment of the model to the experimental data allows us
to obtain G, γc, and fb. Figure 10 shows the evolution of these
parameters as a function of the vibration energy.
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FIG. 10. (Color online) Evolution of the model parameters, i.e.,
(a) the shear modulus (G), (b) the critical strain, and (c) the Brownian
reorganization frequency of the grains (fb), as a function of the
vibration energy (Ev). In the inset, symbols represent the evolution
of fb/f , with f the vibration frequency, as a function of Ev , and the
solid line represents the fit of Eq. (A1) to the experimental points.
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FIG. 11. Substitution of a stress step by an exponential function.

Under vibrations (Ev > 0 μJ), the shear modulus G

[Fig. 10(a)] and the critical strain γc [Fig. 1(b)] are constant
and are nearby equal to 2000 and 0.1 Pa, respectively.
The application of vibrations, even of low energy, change
dramatically the values of G and γc. Indeed, G falls from
7.45 × 10 5 Pa without vibrations to around 2000 Pa with
vibrations and γc increases from 6.88 × 10 −5 Pa without
vibrations to around 0.1 Pa with vibrations. This effect has
already been highlighted by Marchal et al. [24], by showing
that any finite amplitude vibration suppressed the yield stress
and led to a viscosity plateau.

Contrary to G and γc, the reorganization frequency fb is not
constant under vibrations (Ev > 0 μJ) and increases with Ev ,
as mentioned in Sec. III A and as shown by Marchal et al. [24].
Knowing that fb = G/η0, the combination of Eqs. (11) and
(31) presented in Ref. [24] leads to

fb = f exp

[
−ε2

Ev + ε3
(φm−φrcp

φm

)
]

, (A1)

where ε2 and ε3 are constants, f is the vibration frequency,
φm is the maximum packing fraction (=0.74), and φrcp is the
random close packing fraction (=0.62).

In the inset of Fig. 10(c), the experimental data are correctly
fitted to Eq. (A1) with ε2 = 794 μJ and ε3 = 893 μJ, which
proves the robustness of the model presented in Ref. [24].

APPENDIX B: DERIVATION OF EQUATION (5)

In the case of a stress step defined as σ (t) = 0 for t < 0
and σ (t) = σ for t > 0 (Fig. 11), the choice of the initial
value σ (t = 0) is arbitrary and the derivative σ̇ (t = 0) is
discontinuous. In linear situations, these signals are easily
treated by Laplace transform and integration of Eq.(4), which
reduces to Maxwell equation, is no problem. In contrast,
the incorporation of the term γ̇ (t)/γc introduces nonlinearity,
which invalidates the application of these methods.

In this case, the differential Eq. (4) can be integrated
using functions more regular, continuous, and unambiguously

defined at t = 0 tending toward a step when a temporal
parameter θ tends to zero. In the present situation, the stress
step can be replaced by an exponential function such as
σ (t) = 0 for t � 0 and σ (t) = σ (1 − e−t/θ ) for t � 0. By
incorporating the exponential function σ (t) = σ (1 − e−t/θ ) in
Eq. (4) one obtains

γ̇ (t) = γc

σ̇ (t) + fbσ (t)

Gγc − σ (t)
= γc

σ
θ
e−t/θ + fbσ (1 − e−t/θ )

Gγc − σ (1 − e−t/θ )

= γc

(
σ
θ

− fbσ
)
e−t/θ + fbσ

(Gγc − σ ) + σe−t/θ

= γc

(
1
θ

− fb

)
e−t/θ(

Gγc

σ
− 1

) + e−t/θ
+ γc

fb(
Gγc

σ
− 1

) + e−t/θ
. (B1)

Noting that
∫

ecx

a+becx dx = 1
bc

ln(a + becx) and
∫

dx
a+becx =

x
a

− 1
ac

ln(a + becx), it follows that

γ (t) = γc

fbt(
Gγc

σ
− 1

) − θ ln

[
1

γc

(
Gγc

σ
− 1

)
+ 1

γc

e−t/θ

]

×
[
γc

(
1

θ
− fb

)
− γc

fb(
Gγc

σ
− 1

)
]

+ cte

= γc

fbt(
Gγc

σ
− 1

) − ln

[
1

γc

(
Gγc

σ
− 1

)
+ 1

γc

e−t/θ

]

×
[
γc(1 − θfb) − γc

θfb(
Gγc

σ
− 1

)
]

+ cte. (B2)

Letting γ (0) = 0, one obtains

cte = ln
G

σ

[
γc(1 − θfb) − γc

θfb(
Gγc

σ
− 1

)
]

. (B3)

Differentiating γ (t) before letting θ tending toward 0, it can be
verified that Eq. (B2) is indeed a solution of Eq. (4) with σ (t) =
σ (1 − e−t/θ ). When θ → 0, σ (t) tends toward a step function
such as σ (t) = σ for t > 0, as a result cte → γcln(G/σ )
and

γ (t) = γc

fbt(
Gγc

σ
− 1

) − γcln
1

γc

(
Gγc

σ
− 1

)
+ γcln

(
G

σ

)

= γc

[
fbt

Gγc

σ
− 1

− ln

(
1 − σ

Gγc

)]
+ cte. (B4)
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