Xiequan Fan 
email: fanxiequan@hotmail.com
  
Ion Grama 
email: ion.grama@univ-ubs.fr
  
Quansheng Liu 
email: quansheng.liu@univ-ubs.fr
  
Large deviation exponential inequalities for supermartingales *

Keywords: Large deviation, martingales, exponential inequality, Bernstein type inequality AMS 2010 Subject Classification: 60F10, 60G42, 60E15

Let (Xi, Fi) i≥1 be a sequence of supermartingale differences and let S k = k i=1 Xi. We give an exponential moment condition under which P(max 1≤k≤n S k ≥ n) = O(exp{-C1n α }), n → ∞, where α ∈ (0, 1) is given and C1 > 0 is a constant. We also show that the power α is optimal under the given moment condition.

Introduction

Let (X i , F i ) i≥1 be a sequence of martingale differences and let S k = k i=1 X i , k ≥ 1. Under the Cramér condition sup i Ee |Xi| < ∞, Lesigne and Volný [START_REF] Lesigne | Large deviations for martingales[END_REF] proved that

P(S n ≥ n) = O(exp{-C 1 n 1 3 }), n → ∞, (1.1) 
for some constant C 1 > 0. Here and throughout the paper, for two functions f and g, we write f (n) = O(g(n)) if there exists a constant C > 0 such that |f (n)| ≤ C|g(n)| for all n ≥ 1. Lesigne and Volný [START_REF] Lesigne | Large deviations for martingales[END_REF] also showed that the power 1 3 in (1.1) is optimal even for stationary and ergodic sequence of martingale differences, in the sense that there exists a stationary and ergodic sequence of martingale differences (X i , F i ) i≥1 such that Ee |X1| < ∞ and P(S n ≥ n) ≥ exp{-C 2 n 1 3 } for some constant C 2 > 0 and infinitely many n's. Liu and Watbled [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF] proved that the power 1 3 in (1.1) can be improved to 1 under the conditional Cramér condition sup i E(e |Xi| |F i-1 ) ≤ C 3 , for some constant C 3 . It is natural to ask under what condition

P(S n ≥ n) = O(exp{-C 1 n α }), n → ∞, (1.2)
where α ∈ (0, 1) is given and C 1 > 0 is a constant. In this paper, we give some sufficient conditions in order that (1.2) holds for supermartingales (S k , F k ) k≥1 .

The paper is organized as follows. In Section 2, we present the main results. In Sections 3-5, we give the proofs of the main results.

Main Results

Our first result is an extension of the bound (1.1) of Lesigne and Volný [START_REF] Lesigne | Large deviations for martingales[END_REF].

Theorem 2.1. Let α ∈ (0, 1). Assume that (X i , F i ) i≥1 is a sequence of supermartingale differences satisfying sup i E exp{|X i | 2α 1-α } ≤ C 1 for some constant C 1 ∈ (0, ∞). Then, for all x > 0, P max 1≤k≤n S k ≥ nx ≤ C(α, x) exp - x 4 2α n α , (2.1) 
where

C(α, x) = 2 + 35C 1 1 x 2α 16 1-α + 1 x 2 3(1 -α) 2α 1-α α
does not depend on n. In particular, with x = 1, it holds

P max 1≤k≤n S k ≥ n = O exp{- 1 16 n α } , n → ∞. (2.2)
Moreover, the power α in (2.2) is optimal in the class of martingale differences: for each α ∈ (0, 1), there exists a sequence of martingale differences (X i ,

F i ) i≥1 satisfying sup i E exp{|X i | 2α 1-α } < ∞ and P max 1≤k≤n S k ≥ n ≥ exp{-3n α }, (2.3) 
for all n large enough.

In fact, we shall prove that the power α in (2.2) is optimal even for stationary martingale difference sequences.

It is clear that when α = 1 3 , the bound (2.2) implies the bound (1.1) of Lesigne and Volný.

Our second result shows that the moment condition

sup i E exp{|X i | 2α 1-α } < ∞ in Theorem 2.1 can be relaxed to sup i E exp{(X + i ) α 1-α } < ∞, where X + i = max{X i , 0}, if
we add a constraint on the sum of conditional variances

S k = k i=1 E(X 2 i |F i-1 ). Theorem 2.2. Let α ∈ (0, 1). Assume that (X i , F i ) i≥1 is a sequence of supermartingale differences satisfying sup i E exp{(X + i ) α 1-α } ≤ C 1 for some constant C 1 ∈ (0, ∞).
Then, for all x, v > 0,

P S k ≥ x and S k ≤ v 2 for some k ∈ [1, n] ≤ exp - x 2 2(v 2 + 1 3 x 2-α ) + nC 1 exp{-x α }. (2.4)
For bounded random variables, some inequalities closely related to (2.4) can be found in Freedman [START_REF] Freedman | On tail probabilities for martingales[END_REF], Dedecker [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random fields[END_REF], Dzhaparidze and van Zanten [START_REF] Dzhaparidze | On Bernstein-type inequalities for martingales[END_REF], Merlevède, Peligrad and Rio [START_REF] Merlevède | Bernstein inequality and moderate deviations under strong mixing conditions[END_REF] and Delyon [START_REF] Delyon | Exponential inequalities for sums of weakly dependent variables[END_REF].

Adding a hypothesis on S n to Theorem 2.2, we can easily obtain the following Bernstein type inequality which is similar to an inequality of Merlevède, Peligrad and Rio [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF] for weakly dependent sequences.
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Corollary 2.3. Let α ∈ (0, 1). Assume that (X i , F i ) i≥1 is a sequence of supermartingale differences satisfying sup i E exp{(X + i ) α 1-α } ≤ C 1 and E exp{( S n n ) α 1-α } ≤ C 2 for some constants C 1 , C 2 ∈ (0, ∞). Then, for all x > 0, P max 1≤k≤n S k ≥ nx ≤ exp - x 1+α 2 1 + 1 3 x n α + (nC 1 + C 2 ) exp{-x α n α }. (2.5)
In particular, with x = 1, it holds

P max 1≤k≤n S k ≥ n = O (exp{-C n α }) , n → ∞, (2.6) 
where C > 0 is an absolute constant. Moreover, the power α in (2.6) is optimal for the class of martingale differences: for each α ∈ (0, 1), there exists a sequence of martingale differences

(X i , F i ) i≥1 satisfying sup i E exp{(X + i ) α 1-α } < ∞, sup n E exp{( S n n ) α 1-α } < ∞ and P max 1≤k≤n S k ≥ n ≥ exp{-3n α } (2.7)
for all n large enough.

Actually, just as (2.2), the power α in (2.6) is optimal even for stationary martingale difference sequences. In the i.i.d. case, the conditions of Corollary 2.3 can be weakened considerably, see Lanzinger and Stadtmüller [START_REF] Lanzinger | Maxima of increments of partial sums for certain subexponential distributions[END_REF] where it is shown that

if E exp{(X + 1 ) α } < ∞ with α ∈ (0, 1), then P max 1≤k≤n S k ≥ n = O (exp{-C α n α }) , n → ∞.
(2.8)

Proof of Theorem 2.1

We shall need the following refined version of the Azuma-Hoeffding inequality.

Lemma 3.1. Assume that (X i , F i ) i≥1 is a sequence of martingale differences satisfying |X i | ≤ 1 for all i ≥ 1. Then, for all x ≥ 0,

P max 1≤k≤n S k ≥ x ≤ exp - x 2 2n . (3.1) 
A proof can be found in Laib [START_REF] Laib | Exponential-type inequalities for martingale difference sequences. Application to nonparametric regression estimation[END_REF].

For the proof of Theorem 2.1, we use a truncating argument as in Lesigne and Volný [START_REF] Lesigne | Large deviations for martingales[END_REF]. Let (X i , F i ) i≥1 be a sequence of supermartingale differences. Given u > 0, define

X i = X i 1 {|Xi|≤u} -E(X i 1 {|Xi|≤u} |F i-1 ), X i = X i 1 {|Xi|>u} -E(X i 1 {|Xi|>u} |F i-1 ), S k = k i=1 X i , S k = k i=1 X i , S k = k i=1 E(X i |F i-1 ).
Then (X i , F i ) i≥1 and (X i , F i ) i≥1 are two martingale difference sequences and S k = S k + S k + S k . Let t ∈ (0, 1). Since S k ≤ 0, for any x > 0, 

P max 1≤k≤n S k ≥ x ≤ P max 1≤k≤n S k + S k ≥ xt + P max 1≤k≤n S k ≥ x(1 -t) ≤ P max 1≤k≤n S k ≥ xt + P max 1≤k≤n S k ≥ x(1 -t) . ( 3 
P max 1≤k≤n S k ≥ xt ≤ exp - x 2 t 2 8nu 2 . (3.3) Let F i (x) = P(|X i | ≥ x), x ≥ 0. Since E exp{|X i | 2α 1-α } ≤ C 1 ,
we obtain, for all x ≥ 0,

F i (x) ≤ exp{-x 2α 1-α }E exp{|X i | 2α 1-α } ≤ C 1 exp{-x 2α 1-α }.
Using the martingale maximal inequality (cf. e.g. p. 14 in [START_REF] Hall | Martingale Limit Theory and Its Application[END_REF]), we get

P max 1≤k≤n S k ≥ x(1 -t) ≤ 1 x 2 (1 -t) 2 n i=1 EX i 2 .
(3.4)

It is easy to see that

EX i 2 = - ∞ u t 2 dF i (t) = u 2 F i (u) + ∞ u 2tF i (t)dt ≤ C 1 u 2 exp{-u 2α 1-α } + 2C 1 ∞ u t exp{-t 2α 
1-α }dt.

(3.5)

Notice that the function g(t 

) = t 3 exp{-t 2α 1-α } is decreasing in [β, +∞) and is increasing in [0, β], where β = 3(1-α) 2α 1-α 2α . If 0 < u < β, we have ∞ u t exp{-t 2α 1-α }dt ≤ β u t exp{-t 2α 1-α }dt + ∞ β t -2 t 3 exp{-t 2α 1-α }dt ≤ β u t exp{-u 2α 1-α }dt + ∞ β t -2 β 3 exp{-β 2α 1-α }dt ≤ 3 2 β 2 exp{-u 2α 1-α }. (3.6) If β ≤ u, we have ∞ u t exp{-t 2α 1-α }dt = ∞ u t -2 t 3 exp{-t 2α 1-α }dt ≤ ∞ u t -2 u 3 exp{-u 2α 1-α }dt = u 2 exp{-u 2α 1-α }.
EX i 2 ≤ 3C 1 (u 2 + β 2 ) exp{-u 2α 1-α }. (3.8) 
From (3.4), it follows that 

P max 1≤k≤n S k ≥ x(1 -t) ≤ 3nC 1 x 2 (1 -t) 2 (u 2 + β 2 ) exp{-u 2α 1-α }.
P max 1≤k≤n S k ≥ x ≤ 2 exp - x 2 t 2 8nu 2 + 3nC 1 (1 -t) 2 u 2 x 2 + β 2 x 2 exp{-u 2α 1-α }. Taking t = 1 √ 2 and u = x 4 √ n 1-α
, we get, for all x > 0,

P max 1≤k≤n S k ≥ x ≤ C n (α, x) exp - x 2 16n α , where C n (α, x) = 2 + 35nC 1 1 x 2α (16n) 1-α + β 2 x 2 .
Hence, for all x > 0,

P max 1≤k≤n S k ≥ nx ≤ C(α, x) exp - x 4 2α n α , where C(α, x) = 2 + 35C 1 1 x 2α 16 1-α + 1 x 2 3(1 -α) 2α 1-α α .
This completes the proof of the first assertion of Theorem 2.1.

Next, we prove that the power α in (2.2) is optimal by giving a stationary sequence of martingale differences satisfying (2.3). We proceed as in Lesigne and Volný ([9], p. 150). Take a positive random variable X such that

P (X > x) = 2e 1 + x 1+α 1-α exp -x 2α 1-α (3.10) for all x > 1. Using the formula Ef (X) = f (1) + ∞ 1 f (t)P(X > t)dt for f (t) = exp{t 2α 1-α }, t ≥ 1, we obtain E exp{X 2α 1-α } = e + 4e α 1 -α ∞ 1 t 3α-1 1-α 1 + t 1+α 1-α dt < ∞.
Assume that (ξ i ) i≥1 are Rademacher random variables independent of X, i.e. P(ξ i = 1) = P(ξ i = -1) = 1 2 . Set X i = Xξ i , F 0 = σ(X) and F i = σ(X, (ξ k ) k=1,...,i ). Then, (X i , F i ) i≥1 is a stationary sequence of martingale differences satisfying

sup i E exp{|X i | 2α 1-α } = E exp{X 2α 1-α } < ∞.
For β ∈ (0, 1), it is easy to see that

P max 1≤k≤n S i ≥ n ≥ P (S n ≥ n) ≥ P n i=1 ξ i ≥ n β P X ≥ n 1-β .
Since, for n large enough,

P n i=1 ξ i ≥ n β ≥ exp -n 2β-1 ,
(cf. Corollary 3.5 in Lesigne and Volný [START_REF] Lesigne | Large deviations for martingales[END_REF]), we get, for n large enough,

P max 1≤k≤n S i ≥ n ≥ 2e 1 + (n 1-β ) 1+α 1-α exp -n 2β-1 -(n 1-β ) 2α 1-α . (3.11) 
Setting 2β -1 = α, we obtain, for n large enough,

P max 1≤k≤n S i ≥ n ≥ 2e 1 + n 1+α 2 exp {-2n α } ≥ exp {-3n α } ,
which proves (2.3). This ends the proof of Theorem 2.1.
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Proof of Theorem 2.2

To prove Theorem 2.2, we need the following inequality.

Lemma 4.1 ([4], Remark 2.1). Assume that (X i , F i ) i≥1 are supermartingale differences satisfying X i ≤ 1 for all i ≥ 1. Then, for all x, v > 0,

P S k ≥ x and S k ≤ v 2 for some k ∈ [1, n] ≤ exp - x 2 2(v 2 + 1 3 x) . (4.1)
Assume that (X i , F i ) i≥1 are supermartingale differences. Given u > 0, set

X i = X i 1 {Xi≤u} , X i = X i 1 {Xi>u} , S k = k i=1 X i and S k = k i=1 X i .
Then, (X i , F i ) i≥1 is also a sequence of supermartingale differences and S k = S k + S k . Since S k ≤ S k , we deduce, for all x, u, v > 0,

P S k ≥ x and S k ≤ v 2 for some k ∈ [1, n] ≤ P S k ≥ x and S k ≤ v 2 for some k ∈ [1, n] +P S k ≥ 0 and S k ≤ v 2 for some k ∈ [1, n] ≤ P S k ≥ x and S k ≤ v 2 for some k ∈ [1, n] + P max 1≤k≤n S k ≥ 0 . (4.2)
Applying Lemma 4.1 to the supermartingale differences (X i /u, F i ) i≥1 , we have, for all x, u, v > 0,

P(S k ≥ x and S k ≤ v 2 for some k ∈ [1, n]) ≤ exp - x 2 2(v 2 + 1 3 xu) . (4.3)
Using the exponential Markov's inequality and the condition E exp{(X

+ i ) α 1-α } ≤ C 1 , we get P max 1≤k≤n S k ≥ 0 ≤ n i=1 P(X i > u) ≤ n i=1 E exp{(X + i ) α 1-α -u α 1-α } ≤ nC 1 exp{-u α 1-α }. (4.4)
Combining the inequalities (4.2), (4.3) and (4.4) together, we obtain, for all x, u, v > 0,

P(S k ≥ x and S k ≤ v 2 for some k ∈ [1, n]) ≤ exp - x 2 2(v 2 + 1 3 xu) + nC 1 exp{-u α 1-α }. (4.5) 
Taking u = x 1-α , we get, for all x, v > 0, (5.1) By Theorem 2.2, it follows that, for all x, v > 0,

P(S k ≥ x and S k ≤ v 2 for some k ∈ [1, n]) ≤ exp - x 2 2(v 2 + 1 3 x 2-α ) + nC 1 exp{-x α }. ( 4 
P max 1≤k≤n S k ≥ nx ≤ exp - x 2 2 n α-1 v 2 + 1 3 x 2-α n α +nC 1 exp {-x α n α } + P( S n > nv 2 ),
Using the exponential Markov's inequality and the condition E exp{( S n n ) α 1-α } ≤ C 2 , we get, for all v > 0,

P S n > nv 2 ≤ E exp ( S n n ) α 1-α -v 2 α 1-α ≤ C 2 exp{-v 2 α 1-α }.
Taking v = (nx)

1-α 2 , we obtain, for all x > 0,

P max 1≤k≤n X k ≥ nx ≤ exp - x 1+α 2 1 + 1 3 x n α + (nC 1 + C 2 ) exp{-x α n α },
which gives inequality (2.5).

Next, we prove that the power α in (2.6) is optimal. Let (X i , F i ) i≥1 be the sequence of martingale differences constructed in the proof of the second assertion of Theorem 2.1. Then

S n n = X 2 , sup i E exp (X + i ) α 1-α = 1 2 E exp{X α 1-α } < ∞ and sup n E exp ( S n n ) α 1-α = E exp{X 2α 1-α } < ∞.
Using the same argument as in the proof of Theorem 2.1, we obtain, for n large enough,

P max 1≤k≤n S k ≥ n ≥ exp {-3n α } .
This ends the proof of Corollary 2.3.

( 3 . 9 )

 39 Combining (3.2), (3.3) and (3.9), we obtain

  Using Lemma 3.1 and the fact that |X i | ≤ 2u, we have

.2) Electron. Commun. Probab. 0 (2012), no. 0, 1-8. ecp.ejpecp.org

  To prove Corollary 2.3 we make use of Theorem 2.2. It is easy to see that≤ P(S k ≥ nx and S k ≤ nv 2 for some k ∈ [1, n]) +P S n > nv 2 .

	P max 1≤k≤n	S k ≥ nx	≤ P max 1≤k≤n	S k ≥ nx, S n ≤ nv 2
			+P max 1≤k≤n	S k ≥ nx, S n > nv 2

.6) This completes the proof of Theorem 2.2. Electron. Commun. Probab. 0 (2012), no. 0, 1-8. ecp.ejpecp.org 5 Proof of Corollary 2.3.
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