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In this paper we present a single-particle scattering approach for the angular correlation between a photo-

electron and the subsequent Auger electron from atomic targets. This method is proposed as an alternative

approach with respect to the usual density matrix formalism, since it is more convenient for extension to the

solid state case. Such an extension is required by the great progress made in the field of coincidence spectros-

copy in condensed matter systems. We derived a tensor expression for the cross section and an equivalent

expression in terms of convenient angular functions has been treated for the case of linearly polarized light.

Numerical calculations are performed for the L3M2,3M2,3 transition in argon, in the single configuration

Dirac-Fock scheme. Results are compared with experimental data for different final angular momentum states

of the doubly charged ion and for different kinematical conditions.
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I. INTRODUCTION

During the last two decades differential cross sections de-

scribing the ejection of an Auger electron and its related

photoelectron have been investigated �1,2�, and several ex-

perimental results have been published both regarding

atomic systems and surfaces �3–7�. Auger-electron–

photoelectron coincidence spectroscopy �APECS� exploits

the relationship between initial photoionization and subse-

quent Auger decay, which are related by the respective cre-

ation and annihilation of the same core hole. This technique

enables the photoemission and Auger spectra to be examined

with unprecedented discrimination �8–11�.
Coincidence angular distributions contain much informa-

tion about correlations within the two-electron pair. The dif-

ference between the coincidence and single-electron distribu-

tion can be considered as an index of the strength of such

correlations. The anisotropy in Auger-electron–photoelectron

coincidence angular distributions is due both to nonstatistical

population in the magnetic sublevels of the intermediate ion

caused by photon absorption, which is not probed by single-

electron emission, and to the introduction of another quanti-

zation axis �the axis of detection of one of the two electrons�.
Generally, the axial symmetry of the angular distribution

with respect to the light quantization axis is broken, and the

angular pattern shows different degrees of anisotropy for dif-

ferent detection angles of the first electron. The axial sym-

metry is retained only if the fixed electron is revealed along

the light polarization or along the light propagation direction,

depending on the polarization properties of the photon beam.

Thus, the study of the symmetry and anisotropy of the angu-

lar correlation between the two electrons allows an insight

into the interplay between symmetry reduction and interpar-

ticle correlation.

From the theoretical point of view the angular correlations

between Auger electrons and photoelectrons has been mainly

studied using density matrix and statistical-tensor approach

�12�, or the graphical technique �13�. The statistical-tensor

approach, in particular, is very powerful since it allows a

many-body treatment of the angular correlation part, with all

possible couplings between angular momenta of intermediate

or residual final ion and continuum electrons. It is based on

rotational invariance of the problem under investigation and

therefore it is widely used in atomic physics. It can be ap-

plied both to closed and open shell systems and a different

coupling scheme can be adopted depending on the relative

strength of spin orbit and Coulomb interaction. The Wigner-

Eckart theorem leads to a factorization of the cross section in

a dynamical and geometrical part, which is very convenient

for analyzing the influence of the geometry in different ex-

perimental conditions. The general expression for the cross

section for Auger-electron–photoelectron coincidence emis-

sion can be found in �1�

d2�

dkA dkp
= �

k1k2

4��k̂1k̂2�−1A�k1,k2,k�

��Yk1
�kp� � Yk2

�kA��kq�kq
� �1,1� , �1�

where k̂=�2k+1, kp, kA are unit vectors determining the

escaping direction of the two outgoing electrons, �kq
� �1,1� is

a dipole photon statistical tensor carrying a total momentum

j�=1, and A�k1 ,k2 ,k� are coefficients which contain all the

informations concerning the double photoionization dynam-

ics. When also interference effects such as postcollision in-

teraction �PCI� are considered, then a correlation factor

which modifies the angle dependent cross section �1� must be

included �15�. For the dynamical parameters many works

�16,17� implemented the multiconfiguration Dirac-Fock

�MCDF� model with or without QED corrections to calculate

radial functions. Coincidence calculations performed within

the MCDF approach show good agreement with experimen-

tal data, both when reproducing the energy distribution and

the angular correlation patterns, even if sometimes a satisfy-
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ing agreement in terms of the anisotropy is missing and

would require the inclusion of several higher electronic con-

figurations.

In this paper we present an alternative approach for the

angular correlation between the two electrons which is based

on scattering theory in the single-particle approximation.

This approach is entirely based on intuitive concepts of

quantum mechanics and has the great advantage that it can

also be extended to nonrotationally invariant problems, such

as electron scattering in a solid sample, due to the flexibility

of scattering theory to treat condensed-matter systems.

Therefore, in order to cope with the problem of coincidence

angular distributions in condensed matter, one should merge

the exact treatment of the angular correlation between the

two electrons with the one-particle approach of the multiple

scattering theory, which will be described in a forthcoming

paper. The boost that coincidence spectroscopy in solid state

has received in recent years makes the development of a

theoretical method necessary. Our shorter term attempt is to

verify if a single-particle approach could give a good de-

scription for the angular correlation between the two elec-

trons emitted from an atomic target.

The attention will be focused on the dependence of the

angular correlation patterns upon the kinematics of the ex-

periment considered by P. Bolognesi et al. �18� and upon

angular momentum coupling in the final doubly ionized

state. The transition considered is the Ar L3M23M23 transition

with photon energy 253.6 eV �only 5 eV above threshold�.
No distortions of the cross section due to postcollision inter-

action effects between the photoelectron and the Auger elec-

tron �with 200 eV kinetic energy� are included in our simple

model. Calculations of radial matrix elements are performed

within the single-configuration Dirac-Fock model and results

for the coincidence cross section are compared with Auger

coincidence angular distributions measured for three differ-

ent fixed directions of the photoelectron for each final angu-

lar momentum state �1S0 , 3PJ , 1D2�.

II. COINCIDENCE CROSS SECTION

The purpose of this section is to present the building

blocks for a description of the photoionization and Auger

decay process. We are interested in the transition from an

initial state given by the ground state of the system plus an

incoming photon to a final state with two outgoing electrons

and a doubly charged ion. The process of photoionization

and Auger decay is energetically degenerate with the so-

called direct double photoionization �DPI� process, in which

two electrons are simultaneously emitted following the ab-

sorption of one photon. In the t-matrix approach the general

expression for the transition probability is determined by the

operator

T = D + VG0T = D + VG0D + VG0VG0T = �
n=0

�

�VG0�nD ,

�2�

which is first order in the dipole operator D and infinite order

in the Coulomb decay operator V. In principle one should

consider photoinduced Auger electron emission as a reso-

nance embedded in double photoionization, i.e., as a two-

electron resonant emission process which interferes with

DPI. Then the transition amplitude can be written as

T = 	�	e1e2

D
�g� + �




� 	�	e1e2

V
�
��	�
�
D
�g�d�

1 + 2 + E	
+ − E
�

,

�3�

where �g, �	e1e2
are the ground state and the final state wave

functions, the latter given by the doubly ionized ion and the

two electrons wave functions. E	
++ is the energy of the doubly

charged ion and E
�E

++�−

1

2
i�
 with E


+ being the energy

of the one hole ionic state which is coupled to a single-

electron excited state 
�� in the many-electron intermediate

state �
�. The first term is DPI. Ignoring the second term is

appropriate far from resonances and for such simple systems

as He where inner shells do not exist. In the case of excita-

tion and decay of a strong isolated resonance 
=r �long-lived

inner vacancy�, one ignores the first term and all terms in the

summations over all possible intermediate states except the

considered intermediate state. If one then neglects possible

final state interactions, and assuming that the difference be-

tween the kinetic energies of the two electrons is large com-

pared to the intermediate level width, then the two-step for-

mulation which separates photoionization from Auger decay

is obtained as follows:

T =
	�	e2

− 
V
�r�	�re1

D
�g�

2 + E	
++ − Er

+ −
1

2
i�r

. �4�

The link between photoionization and Auger decay is

made via the intermediate hole state only. Essential prereq-

uisites for the two-step model to be valid are as follows: the

intermediate state lifetime must be bigger than the relaxation

time of the system �thus, the Auger decay begins from a

completely relaxed state so that no influence of the many-

body effects due to multiple excitations is observed�, a well-

defined angular momentum JM and parity, no overlapping

with neighbors states, and neglect of direct double photoion-

ization process as well as final channel interactions. For a

particular intermediate state the energy denominator is com-

mon to all terms and can be factorized giving the standard

Lorenz factor L�= ��r /2�� / ��2−Er
+�2+�r

2 /4�.
In our discussion we adopt a hole picture and the inter-

mediate ion state is denoted only by quantum numbers that

characterize the core hole. No further recoupling with higher

nonoccupied levels is considered. This is correct in the case

of closed shell atoms, but it can be considered valid in more

general cases if the spin-orbit interaction of the core hole

exceeds the lifetime broadening of the two spin-orbit edges.

In the presence of core-outer shell interactions, this approxi-

mation is still valid if the energy splitting due to interaction

with outer shells does not exceed the lifetime broadening.

Moreover, we consider the photoelectron as a pure spectator

in the Auger decay neglecting interactions between photo-

electron and the core hole state left behind. This is no longer

valid if the experiment is performed just above threshold
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�photoelectron energy 0.02 eV�; in this case recoupling be-

tween the outgoing electron and the intermediate ion must be

considered. Using a hole picture, the ground state is de-

scribed by one hole in the continuum which will be filled by

the photoelectron and the intermediate state by the core hole

state. Then the Auger decay starts from the core hole state

coupled to one hole in the continuum which will be filled by

the Auger electron, and the final state is given by the two

holes. In the following we denote ep, eA as the photoelectron

and the Auger electron, respectively. The spin-orbit coupled

core state is given by

�c�r� = Rnlc
�r� �

mc�c

Clcmc�1/2��c

jcjcz Y lcmc
�r̂���c

, �5�

where ��c
are usual spin functions and C

lcmc
1

2
�c

jcjcz
are the

Clebsch-Gordan coefficients. The one-electron scattering

wave-functions solution of the Lippmann-Schwinger equa-

tion are given by the time reversed state of the ingoing plane

wave

�p
− = ��kp

+ �ri� = C �
lpmp�p

Y lpmp
�kp�ilptlp

Rlp
�ri�Y lpmp

* �r̂i����p
,

�6�

where tlp
=ei�lp sin �lp

describe the strength of the scattering

process and �lp
is the additional phase factor which is ac-

quired by the wave function as a consequence of the scatter-

ing potential. C is
1

4�
� kp

� and is given by normalization to

one state per Rydberg. The transition operator in dipole ap-

proximation can be written in terms of spherical components

of � and r. Then for the dipole matrix element one easily

obtains

	lc
1

2 jcjcz
� · r
�p
−�

=�kp

�
�
�

�
lpmp�pmc

Y1�
* ��Rnlc,plp

Clcmc�1/2��p

jcjcz

�Y lpmp
�kp�ilptlp

� 1

4�
�1

3

l̂c

l̂p

Clc010
lp0 Clcmc1�

lpmp , �7�

where Rnlc,plp
is the radial integral. For the second step the

initial state for Auger decay can be written as the product of

the �c�r� state and the scattering wave function correspond-

ing to the outgoing Auger electron. For the final state, we

considered LS coupling to be valid and the two holes wave

function can be written as the antisymmetrized product of

two particles wave function, where the total orbital L and

spin momentum S are coupled to a total J.

The Coulomb interaction can be written as a zero-rank

tensor product between spherical harmonics, and integration

over angular variables consists in integration over the prod-

uct of three bipolar spherical harmonics, corresponding to

the expansion of the Coulomb interaction and to the interme-

diate and final state of the process each coupled to a particu-

lar orbital momentum. The Auger matrix element, for the

case of two equivalent holes, is given by

	��l1l2�LS�JJz

1


r1 − r2


�A

−,lc
1

2 jcjcz�

=
1

4�
�kA

�
l1
ˆ l2

ˆ �− 1�l1+lc+L

� �
lAkmAm̄c�̄cMSz

Vn1l1,AlA,nclc,n2l2
k Cl10k0

lA0 Cl20k0
lc0

�� l2 lc k

lA l1 L
�CLMSSz

JJz Clcm̄c�1/2��̄c

jcjcz

�ClAmAlcm̄c

LM C�1/2��A�1/2��̄c

SSz Y lAmA
�kA�ilAtlA

, �8�

where Vn1l1,AlA,nclc,n2l2
k is the Coulomb radial integral �direct

and exchange integrals are equal for two equivalent holes;

see the Appendix for the more general case�. In the interme-

diate state only the total angular momentum of the core hole

is a good quantum number, thus the hole is allowed to mi-

grate to different sublevels mc, �c without changing its total

angular momentum and energy. After straightforward though

cumbersome applications of angular momentum algebra, we

find the following tensor expression for the cross section:

d2�

dkA dkp
= 4�2���L� �

L0M0lpplAA

�L0M0

*

��Y lpp
�kp� � Y lAA

�kA��L0M0
AlpplAA

L0 , �9�

where �L0M0

* =C
1�1��

L0M0 Y1�
* ���Y1��

��*� is the radiation tensor

given by combinations of spherical components of the polar-

ization vector, �Y lpp
�kp� � Y lAA

�kA��L0M0
is the bipolar spheri-

cal harmonic which describes the two outgoing electrons,

and AlpplAA

L0 �see the Appendix for further details� contains

combinations of Clebsch-Gordan, 6j and 9j coefficients, di-

pole and Coulomb matrix elements, and the tl which describe

the strength of the scattering for each electron. The angular

momentum lpp, lAA are given, respectively, by vector cou-

pling of photoelectron angular momentum lp and lp� and Au-

ger electron orbital momentum lA and lA� . lpp, lAA are re-

stricted to even values due to parity conservation. Use of the

dipole approximation restricts the rank of the radiation tensor

only to the values 0,1,2. The same values denote the angular

functions which describe the distributions of the two elec-

trons, since the initial target is unpolarized. The spherical

tensors approach is more convenient than Cartesian expres-

sions since it allows one to analyze separately which terms

contribute to the cross section in different kinematic condi-

tions. In deriving Eq. �10� we could sum up all azimuth

quantum numbers except M0 which reflects the introduction

of a preference axis in photon impact. Generalizing this re-

sult to the case where the light polarization properties are

expressed by Stokes parameters one recovers the result given

by the statistical tensor approach for closed shell systems.

Kinematical dependence of the cross section

The purpose of this section is just to give a simple method

to obtain an analytical expression for the cross section in

order to estimate its angular dependence for different kine-
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matic conditions. The cross section describing the two-

electron emission must account for all the possible contribu-

tions due to the different angular momentum allowed by

selection rules. Once a specific model is chosen, the angular

correlation between a photoelectron and the Auger electron

can be described by a limited set of parameters. Since we are

interested in the linearly polarized case, we choose conve-

niently the reference system with the z axis parallel to the

polarization vector. A preliminary analysis can be performed

analyzing the order of the spherical harmonics involved in

the cross section and writing them as vector and scalar prod-

ucts among the vectors involved in the problem. This allows

for a qualitative description just discussing the basic formu-

las without any detailed calculations.

With linearly polarized radiation, the polarization vector

is real, thus �
*=� and one can use the addition theorem to

recouple the spherical harmonics of the light. Choosing the z
axis parallel to the polarization vector, then one has that only

the m�=0 spherical components Y10��� of the polarization

vector contribute and only even rank values of the radiation

tensor are allowed. The waves describing the photoelectron

and the Auger electron have opposite azimuth dependence

since they are coupled to m�=0 projections of the light ten-

sor. The cross section is the sum of a simple scalar product

between the spherical harmonics of the two electrons �the

monopole term� and the zero component of the quadrupole

tensor. Following �19� we can define the angular function

FlpplAA

L0 �kp ,kA ,�� as follows:

FlpplAA

L0 �kp,kA,��

= �
mppmAA

ClppmpplAAmAA

L00 Y lppmpp
�kp�Y lAAmAA

�kA�YL00��� .

�10�

Then the cross section can be rewritten as

d2�

dkA dkp
= �

L0lpplAA

FlpplAA

L0 �kp,kA,��ÃlpplAA

L0 , �11�

where ÃlpplAA

L0 =
3

2L̂0

C1010
L00 4�2���L�AlpplAA

L0 . Thus, the cross sec-

tion is given by the product of a kinematical part and a dy-

namical part. We focus our attention on the Auger decay

L3M2,3M2,3 in a closed shell system like argon; in dipole

approximation and neglecting spin-orbit interaction in the

continuum, the photoionization of Ar 2p3/2 leads to the fol-

lowing possible decays:

h
 + Ar → Ar+2p3/2
−1 �2P3/2� + ep

−�s,d�

�Ar2+3p4�1S0� + eA
−�p�

�Ar2+3p4�3P0,1,2� + eA
−�p�

�Ar2+3p4�1D2� + eA
−�p, f� , �12�

where ep is the photoelectron and eA the Auger electron. Note

that the two holes in the final state can couple their angular

momentum in different ways giving different multiplet terms

for the final double ion Ar2+; the conservation of total angu-

lar momentum and parity leads in this way to different pos-

sible partial waves of the Auger electron. The different an-

gular characters of the double ion multiplet term and the

different partial waves of the Auger electron affects the an-

gular distribution. The angular momentum allowed by the

selection rules are lp=0,2, lA=1 �for final state 1S0 and 3PJ�
and lA=1,3 �for 1D2�. The selection rules for lA can be read

easily from Eq. �9�, where the 6j symbol imposes 
lc−L

� lA� lc+L. For the coupled quantum numbers lpp=0,2 ,4,

lAA=0,2, L0=0,2. Regarding the k index in Eq. �8�, which

expresses the expansion index for the Coulomb interaction,

in the case of the transition considered, it can assume the

values k=0,2, while only k=2 is possible when lA=3 �1D2�.
Thus, the differences in the angular distributions related to

the different final states are mainly given by the angular mo-

mentum of the final state and the possible angular momenta

allowed for the Auger electron, since the k terms are nearly

the same for all states, except the k=2 term �for lA=3� in the

decay path to 1D2. Of course, also small differences in the

matrix elements due to slightly different kinetic energies of

Auger electrons related to the final possible ion states can

appear but such differences can be neglected. The allowed

angular function FlpplAA

L0 are F00
0 ,F22

0 ,F02
2 ,F20

2 ,F22
2 ,F42

2 , and

some of them are listed below as follows:

F22
0 � 3�kp · kA�2 − 1, �13�

F22
2 � 2 − 3�kA · ��2 − 3�kp · ��2 − 3�kp · kA�2 + 9�kA · kp�

��kA · ���kp · �� , �14�

F42
2 � 1 − 5�kA · ��2 + 2�kp · ��2 − 5�kp · kA�2 − 20�kA · kp�

��kA · ���kp · �� + 35�kA · kp�2�kp · ��2. �15�

The angular functions F02
2 ,F20

2 are equal to the first one

F22
0 but with �kA ·��2 and �kp ·��2 instead of �kp ·kA�2. F00

0 is

a constant.

If the photoelectron is detected along the light polariza-

tion vector, then the cross section is proportional to A
+B�cos �A�2 like in a conventional one-electron experiment.

The same angular dependence is obtained when the Auger

electron is detected along the polarization vector. If one de-

tects the photoelectron perpendicular to the polarization vec-

tor, then some angular functions FlpplAA

L0 do not contribute �for

example, the F20
2 with its corresponding dynamical part A20

2

and some terms in F22
2 and in F42

2 �. In different geometries

the dynamical part ÃlpplAA

L0 is weighted in different ways. For

example, subtracting the cross sections measured with kp
parallel and perpendicular to �, then we can single out the

contribution of dynamical and angular parts related to differ-

ent waves describing the continuum electrons. Therefore,

one can inspect the behavior of the angular functions FlpplAA

L0

allowed for the transition of interest in order to choose a

geometry which suppresses contributions from certain angu-

lar components for the continuum electrons. It is clear that

varying the detection angle of the first electron, the degree of

anisotropy of the angular distribution of the second electron

is different. Thus, the expression �11� for the cross section is
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convenient in order to analyze what is the expected angular

dependence for a particular geometry of the experiment and

for a particular transition.

III. NUMERICAL CALCULATIONS

Both bound state and excited radial wave functions have

been calculated using the PHAGEN code which uses a single

configuration Dirac-Fock implementation of Desclaux’s pro-

gram �20,21�. In the single configuration Dirac-Fock, a state

function is given by a Slater determinant of the Dirac orbit-

als. Our code includes the Breit interaction—Gaunt term

+retardation term–only as a first-order perturbative correc-

tion �after the self-consistent iterations converged with the

Coulomb interaction terms only�. Then the code generates

the radial matrix elements and the tl elements which contain

the phase shifts and describe the strength of the interaction.

The initial wave functions are obtained by integration of

the Dirac equation using a self-consistent procedure. Ex-

change and correlation potential can be included using vari-

ous approximations for the final state. In our case the Hedin-

Lundqvist �22� exchange correlation potential has been used.

For the calculations of the matrix elements, different widths

of the Auger peaks corresponding to the different final angu-

lar momentum states due to photoionization above threshold

have been taken into account. The cross section is then cal-

culated using the SPEC �23� package, which calculates all the

angular momentum coefficients and performs the necessary

external and coherent summations over quantum numbers.

This package is a multiple scattering package for treating

emission from a solid sample, but the multiple scattering part

can be externally switched off and then the atomic distribu-

tion is calculated.

IV. RESULTS AND DISCUSSION

For each multiplet term of the final ion state three coinci-

dence angular distributions have been analyzed, correspond-

ing to photoelectron detection at 0°, 30°, 60° from the polar-

ization direction in the plane of detection of the two

electrons perpendicular to the photon beam. Normalization

between theory and experimental data has been performed

by comparing the integrated cross section and scaling the

theoretical results using the ratio between the two integrals.

The comparison between experimental data and theoreti-

cal curves for 1S0 final state is presented in Fig. 1. The agree-

ment is good for the experimental condition in which the

photoelectron is revealed along the light polarization vector.

In this case no additional quantization axis are introduced

and the angular distribution of coincident Auger electrons

retains its axial symmetry with respect to the light polariza-

tion direction. In this case also the anisotropy is reproduced

well by the theoretical calculations. When the direction of

detection of the first electron is moved to 30° from the po-

larization vector, the calculations seem to reproduce still

rather well the position of the lobes observed in the experi-

ments, but the theoretical predictions appear to be more an-

isotropic than the measurements. We remember that in our

model no PCI effects are taken into account. However, it is

not possible to say a priori which consequences these effects
could have on the cross section in terms of an enhanced or
reduced anisotropy. A more complete treatment of the inter-
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FIG. 1. �Color online� Comparison between experimental data

and theoretical results for Ar L3M2,3M2,3 �1S0� Auger coincidence

angular distributions for different detection angles of the photoelec-

tron ��p=0°, �p=30°, �p=60°�. Both electrons are detected in the

plane perpendicular to the photon beam.

ANGULAR CORRELATION BETWEEN PHOTOELECTRONS… PHYSICAL REVIEW A 75, 052704 �2007�

052704-5



mediate state should improve the agreement between the the-

oretical results and the experimental data, but it is not pos-

sible to affirm that PCI effects would surely reduce the

anisotropy. The discrepancy concerning the anisotropy ap-

pears also in the case when the photoelectron is detected at

60° from the polarization. In this latter condition also a dis-

agreement in reproducing the lobe at 300° can be noted. In

contrast to the two previous cases ��p=0° and �p=30°�, the

experimental results are dissymmetrical. Agreement with the

upper experimental lobe is good, while that with the lower

one is not. This discrepancy has quite a strange character,

since the calculations seem to reproduce the position of the

lobe quite well but overestimate its intensity. A distorted an-

gular distribution can be induced in cases in which PCI ef-

fects are important. In the experiment the photon energy was

just 5 eV above the Ar L3 threshold, thus the photoelectron

has a much lower energy with respect to the Auger electron,

and some interference effects could arise, i.e., the photoelec-

tron with its lower energy acts as a postcollision effect in-

ducer for the process of Auger electron emission. This could

lead to distortions of the coincidence cross section. However,

to test if such effects are present or not, one should improve

the experiment with better statistics and measurements over

a larger angular range.

Analytical expressions for the cross sections in the differ-

ent experimental geometries and for the different decay paths

have been derived implementing the “modulus square” for-

mulation of the intensity �given by the product between Eqs.

�7� and �9�� using MATHEMATICA 5.0 �14�. They are obtained

very quickly with respect to calculations performed using the

tensor representation of the cross section, because of the

presence of several Wigner nj symbols in the dynamical fac-

tor whose calculation is time consuming. Checks to test the

equivalence between the modulus square and the tensor for-

mulation have been done �and they prove the correctness of

the angular momentum recouplings�. Considering the refer-

ence system with the z axis along the beam polarization and

the y axis along the beam propagation direction, the analyti-

cal expressions for the angular distributions presented in Fig.

1 are given by �both �p=�A=0°�

� d�

d�A
�

�p=0°

� 3.46 cos2 �A + 0.87 sin2 �A,

� d�

d�A
�

�p=30°

� 1.86 − 0.23 cos 2�A + 1.09 sin 2�A,

� d�

d�A
�

�p=60°

� 1.25 − 0.60 cos 2�A − 0.46 sin 2�A.

�16�

The weights of the sine and cosine functions are given by

angular momentum coefficients and matrix elements which

govern the transition. In principle, for more complex distri-

butions, one could use the analysis provided by the

FlpplAA

L0 �kp ,kA ,�� functions to suppress some terms in the

cross section. In our case, we did not consider the spin-orbit

interaction in the continuum, and thus a comparison between

extracted and calculated photoionization matrix elements re-

lated to lp=0, jp=1/2 and lp=2, jp=3/2; 5 /2 is not feasible

and beyond the scope of this work. Moreover, since in this

decay path only one angular momentum is allowed for the

Auger electron �lA=1�, and since the lp=2 is dominant with

respect to the lower channel lp=0 �an order of magnitude of

difference�, both dipole and Coulomb matrix elements can be

factorized �the latter for a determined k index�, leading to an

expression for the cross section which is the sum of the k0

and k2 terms. The ratio between the two integrals


Dk=0
 / 
Dk=2
 is 1.4. Thus, it is true that k=0 is the leading

term, but also the term related to k=2 cannot be neglected.

This complete factorization of the dipole matrix element and

the partial factorization of the Coulomb matrix element

means that the angular part of the cross section describes

well the correlation between the two electrons, as seen by the

agreement with the experimental data.

In Fig. 2 the comparison between theoretical calculations

and experimental data for the 3PJ final state is reported.

Since the different spin-orbit component J of the final ion

state are not resolved experimentally, we summed over the

theoretical contributions from the different values of J with

their statistical weights. It can be observed that for all the

angular distributions �photoelectrons detected at 0°, 30°, 60°

from the light polarization vector� the positions of the peaks

are well reproduced while the anisotropy of the calculations

is more pronounced than that of the experimental data. The

discrepancy is larger at a large angle between the light po-

larization and the direction of detection of the photoelectron.

It can be noted that, especially in the case in which the pho-

toelectron is detected at �p=0° and �p=60°, the experimental

data behave in a different way from what is expected, since

in the position of the theoretical minimum the measurements

seem to have a slight increase in intensity. These structures

are far from being possible additional lobes, but the effect is

clear and probably more evident in the condition �p=0°

where at 180° a secondary local maximum appears in the

experimental data. The theory only reproduces the two main

structures in the cross section and completely misses such

extra structures with lower intensity. The reason for this dis-

crepancy between theory and experiments could again rely

on the neglected PCI effects in the model calculations. PCI

effects are known to eventually predict a collapse of the an-

gular pattern for small relative angle between the two elec-

trons �15�, but here no experimental data for the Auger elec-

tron are present near �p=0°. The slight increase in the

intensity appears exactly when the two electrons are mea-

sured in opposite directions. Moreover, these structures are

not present in the case of 1S0 and 1D2 final state. This could

suggest that the triplet character of the two electrons wave

functions in the case of 3PJ could lead to differences with

respect to a singlet emission case due to exchange effects,

apart from considering the whole rotation of the angular dis-

tribution which is different for each decay path. The unclear

origin of this behavior should be further investigated.

The analytical expressions for the angular distributions

for the 3PJ final state are given by Eq. �10� as follows:

DA PIEVE et al. PHYSICAL REVIEW A 75, 052704 �2007�

052704-6



� d�

d�A
�

�p=0°

� 2.48 + 0.91 cos 2�A,

� d�

d�A
�

�p=30°

� 1.74 − 0.63 sin 2�A,

� d�

d�A
�

�p=60°

� 1.04 + 0.25 cos 2�A + 0.26 sin 2�A.

�17�

Also in the case of 3PJ there is only one value of the

angular momentum allowed for the Auger electron �lA=1�.
This means again that both the dipole and Auger matrix el-

ements can be factorized �the former due to the fact that the

lp=2 channel is dominant with respect to the lp=0 term�.
Thus, the angular part is the only part which really describes

the correlation between the two electrons, except for the

weights given by the two terms corresponding to k=0 and

k=2 of the related Auger matrix elements.

In Fig. 3 we present the comparison between the experi-

mental data and the theoretical calculations for the 1D2 final

state. As can be seen, also in this case the calculations repro-

duce well the shift of the coincidence angular distributions

with respect to the light polarization vector. The positions of

the lobes agree in all three kinematic conditions, while the

anisotropy is not well reproduced in every kinematic condi-

tion. In the other cases the theoretical angular distributions

are more anisotropic than the experimental patterns, espe-

cially when �p=30° from the polarization. No other struc-

tures seem to be present in the experimental data, contrary to

the case of the 3P final state. However, in the case �p=0° the

experimental cross section seems not to have the simple form

predicted by theory. Such a disagreement goes beyond the

anisotropic problem and should be investigated at different

photon energy to assess its origin.

The analytical expressions for the angular distributions

for the 1P2 state are given by

� d�

d�A
�

�p=0°

� 4.06 + 4.32 cos 2�A + 0.81 cos 4�A

+ 0.12 cos 6�A,

� d�

d�A
�

�p=30°

� 2.83 + 1.82 cos 2�A + 0.07 cos 4�A

+ 0.05 cos 6�A + 2.37 cos �A sin �A

+ 0.45 sin 4�A + 0.04 sin 6�A,

� d�

d�A
�

�p=60°

� 1.68 + 0.60 cos 2�A − 0.15 cos 4�A

+ 0.11 cos 6�A − 0.98 cos �A sin �A

− 0.19 sin 4�A − 0.18 sin 6�A. �18�

These expressions are more complicated than those re-

lated to the 1S0, 3PJ final states, since for the 1D2 final state

also the lA=3 is possible for the Auger electron. When lA
=3 only k=2 is possible, and the corresponding radial inte-

gral has nearly the same absolute value of the term lA=1, k
=2, but with opposite sign. Thus, in this case no factorization
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FIG. 2. �Color online� Comparison between experimental data

and theoretical results for Ar L3M2,3M2,3 �3PJ� Auger coincidence

angular distributions for different detection angles of the photoelec-

tron ��p=0°, �p=30°, �p=60°�. Both electrons are detected in the

plane perpendicular to the photon beam.
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for the Coulomb matrix elements can be done and the cross

section has a more complicated form due to the interference

between these two channels.

V. CONCLUSIONS

In this paper we have presented a scattering approach for

the angular correlation between the photoelectron and the

subsequent Auger electron based on a single-particle scheme.

This method is proposed as an alternative approach with re-

spect to the usual density matrix formalism, since it is more

convenient for an extension to the solid state case. It could

also allow one to merge a correct description of the two-

electrons correlation with the fundamental spectra formalism

given by Thole and van der Laan �24–26� for several spec-

troscopies, which has proved to be very useful in the inter-

pretation of light properties dependence of the corresponding

cross sections. We derived a tensor expression for the cross

section and an equivalent expression in terms of convenient

angular functions has been treated for the case of linearly

polarized light. The agreement between theoretical calcula-

tions and experimental data for Ar L23M23M23 Auger transi-

tion depends on the specific decay path and the photoelec-

tron’s direction. Regarding the geometry of the experiment,

for all possible ion final states the agreement in anisotropy

decreases when the photoelectron is moved from the light

polarization direction. For the position of the peaks some

discrepancy appears, especially in the 1S0, �p=60° case.

However, the agreement is of the same order as in the case of

other calculations performed within the statistical tensor ap-

proach used in angular correlations problems, where all pos-

sible angular momentum recoupling are considered and ma-

trix elements are usually calculated using the MCDF model.

Disagreement in terms of anisotropy of the angular distribu-

tions can be noted in both approaches. This can be due to a

wrong description of the intermediate state. Regarding dis-

tortions which appear in the cross section which is not

clearly explainable, one could argue that PCI effects could

arise due to the lower kinetic energy of the photoelectron,

even if this is not the only possibility for disagreement. How-

ever, PCI effects generally induce some collapses of the cor-

relation patterns at small relative angles �where no experi-

mental data are available� due to repulsive interaction

between the two electrons. Experimental data should be col-

lected over a larger angular range in order to test the pres-

ence of such effects. Both additional experimental and theo-

retical efforts are necessary in order to clarify the situation.

In the case of emission from molecules and clusters, the

outgoing electron wave functions are expanded in curved

waves, and this brings further summations which should be

added to those due to selection rules of the process. Indeed,

due to the breaking of the spherical symmetry in the solid

state, the emitted electron will not be described by eigen-

functions of the orbital momentum anymore, but a different

description must be used. The multiple scattering events felt

by the two electrons could even obscure completely the ini-

tial angular correlation between the two electrons at the

atomic site. The possibility to extend the theoretical treat-

ment of the two-electron correlation to solid state is

very attractive since it could allow one to interpret the coin-

cidence experiments whose results have been published

in recent years. Extension to the case of Auger-electron–
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FIG. 3. �Color online� Comparison between experimental data

and theoretical results for Ar L3M2,3M2,3 �1D2� Auger coincidence

angular distributions for different detection angles of the photoelec-

tron ��p=0°, �p=30°, �p=60°�. Both electrons are detected in the

plane perpendicular to the photon beam.
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photoelectron pairs emitted from a cluster becomes neces-

sary and it will be treated elsewhere.
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APPENDIX: FORM OF THE DYNAMICAL PART OF THE

CROSS SECTION

In this appendix we hint at some steps of the calculations

without going into the full details. The coincidence cross

section is given by the modulus square of the product be-

tween Eqs. �7� and �8�, with equal intermediate quantum

numbers in the two steps of the process, and with an external

sum over the two spin projections of the continuum electrons

and over the magnetic quantum number of the residual ion as

follows:

d2�

dkA dkp
= 4�2���� �

�A�pJz

� e2

�2
�4�

3
� 1

4�
�2�kA

�
�kp

�
l̂1l̂2l̂c�− 1�lc+l1+L �

lplA�k

1

l̂p

Y1�
* ���R�nclc,Elp�

� �Dn1l1n2l2,lAnclc
k dklA

+ �− 1�−L−SEn2l2n1l1,lAnclc
k eklA

� �
mAmcmpMSzm̄c�̄cjcz

Clc010
lp0

� Clcmc1�
lpmp CLMSSz

JJz Clcmc�1/2��p

jcjcz Clcm̄c�1/2��̄c

jcjcz ClAmAlcm̄c

LM C1/2�A�1/2��̄c

SSz Y lAmA
�kA�Y lpmp

�kp�ilp+lAtlA
tlp�2

, �A1�

where we have used the notation Dk�n1l1n2l2 ,lAnclc� for direct Coulomb radial matrix elements and Ek�n2l2n1l1 ,lAnclc� for

the exchange Coulomb radial matrix element. The coefficient dklA
and eklA

comes from the integration over the spherical

harmonics and are given by the corresponding Gaunt coefficients.

The photoelectron is considered as a spectator in the second step decay. Starting from Eq. �A1� one can simplify first

coupling the Clebsch-Gordan coefficients eliminating the projections jcz, jcz� , �A, Jz �the primed numbers are those due to

interference�, as, for example,

�
jcz

Clcmc�1/2��p

jcjcz Clcm̄c�1/2��̄c

jcjcz = �
c�

�− 1�c+jc+m̄c−�p ĵc
2Clcmclc−m̄c

c� C1/2−�p�1/2��̄c

c� � lc lc c

1

2

1

2
jc � . �A2�

Performing such couplings then the way to proceed is made clearer and summations over the spin projections of the

photoelectron and residual ion can be performed. Then one comes to an expression which contains two bipolar spherical

harmonics �the second one appears as a consequence of the interference�. Due to rotational invariance, they can be coupled

further to a third spherical harmonic denoted by quantum numbers which then result to be the one related to the photon beam

properties �since the initial atom is unpolarized and is a closed shell system, the moment induced by beam impact is directly

transferred to the two-electron pair� as follows:

�Y lp
�kp� � Y lA

�kA��L1M1
�− 1�M2�− 1�lA�+lp�−L2�Y lp�

�kp� � Y lA�
�kA��L2−M2

= �− 1�lA�+lp�−L2+M2 �
L3M3

CL1M1L2−M2

L3M3 �
lpplAA

l̂pl̂p�l̂Al̂A�L̂1L̂2

4�
Clp0lp�0

lpp0
ClA0lA�0

lAA0 � lp lp� lpp

lA lA� lAA

L1 L2 L3

��Y lpp
�kp� � Y lAA

�kA��L3M3
. �A3�

The AlpplAA

L0 factor in the tensorial cross section �9� is given by

AlpplAA

L0 = ĵc
2 ĵc

2Ĵ2Ŝ2l̂c
2l̂1

2l̂2
2e4
kA

kp


2

3�

1

�16�2�2 �
���lAlA� lplp�kk�

1

lplp�
Y1�

* �̂�Y1��
�̂*�Rnclc,Elp

Rnclc,Elp�

*
Clc010

lp0 Clc010

lp�0

��Dn1l1n2l2,lAnclc
k dklA

+ �− 1�−L−SEn2l2n1l1,lAnclc
k eklA

��Dn1l1n2l2,lA�nclc

k�*

dk�lA�
+ �− 1�−L−SEn2l2n1l1,lA�nclc

k�*

ek�lA�
�

� �
cgfprLeL1L2

�− 1�−p+g+r+Le−L0+lA�+lp�ĝ2 f̂2p̂2ĉ2r̂2L̂e
2L̂1

2L̂2
2�

1

2

1

2
g

c f
1

2
�� lc lc c

1

2

1

2
jc ��

lc lc g

1

2

1

2
jc ��

S S f

1

2

1

2

1

2
�
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� �L L f

S S J
��L 1 p

lc lc c

lA lp L1

��
L 1 r

lc lc g

lA� lp� L2

��1 1 L0

L L f

r p Le
� �

lpplAAM0

l̂pl̂p�l̂Al̂A�

4�
Clp0lp�0

lpp0
ClA0lA�0

lAA0 � lp lp� lpp

lA lA� lAA

L1 L2 L0

�
� �Y lpp

�kp� � Y lAA
�kA��L0M0

ilp+lA−lp�−lA�tlA
tlp

tlp�

*
tlA�

*
. �A4�

All the intermediate quantum numbers �c ,g , f , p ,r� which

appear in Eq. �A4� are due to summations over magnetic

quantum numbers of the electrons involved in the whole pro-

cess. The only magnetic quantum number which still appears

in the cross section is the one related to the introduction of a

preference axis �the light polarization or the beam propaga-

tion direction�. The AlpplAA

L0 contains the dynamical properties

�i.e., radial matrix elements and their phase shifts� which

weight in a different way the allowed angular momentum

components for the continuum wave functions.
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