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We give an extension of Hoeffding's inequality to the case of supermartingales with differences bounded from above. Our inequality strengthens or extends the inequalities of Freedman, Bernstein, Prohorov, Bennett and Nagaev.

Introduction

Let ξ 1 , ..., ξ n be a sequence of centered (Eξ i = 0) random variables such that σ 2 i = Eξ 2 i < ∞ and let X n = ∑ n i=1 ξ i . Since the seminal papers of Cramér (1938, [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF]) and Bernstein (1946, [7]), the estimation of the tail probabilities P (X n > x) for positive x has attracted much attention. We would like to mention here the celebrated Bennett inequality (1962, cf. (8b) of [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF], see also Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]) which states that, for independent and centered random variables ξ i satisfying ξ i ≤ 1 and for any t > 0,

P(X n ≥ nt) ≤ ( σ 2 t + σ 2 ) n(t+σ 2 ) e nt (1) 
= exp

{ -nt [( 1 + σ 2 t ) log ( 1 + t σ 2 ) -1 ]} , (2) 
where σ 2 = 1 n ∑ n i=1 σ 2 i . Further, inequalities for the probabilities P (X n > x) have been obtained by Prohorov (1959, [27]), Hoeffding (1963, [18]), Azuma (1967, [START_REF] Azuma | Weighted sum of certain independent random variables[END_REF]), Steiger (1967, [29]; 1969, [START_REF] Steiger | A best possible Kolmogoroff-type inequality for martingales and a characteristic property[END_REF]), Freedman (1975, [14]), Nagaev (1979, [22]), Haeusler (1984, [17]), McDiarmid (1989, [21]), Pinelis (1994, [24]), Talagrand (1995, [31]), De La Peña (1999, [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF]), Lesigne and Volný (2001, [19]), Nagaev (2003, [23]), Bentkus (2004, [4]), Pinelis (2006, [26]) and Bercu and Touati (2008, [6]) among others.

Most of these results were obtained by an approach based on the use of the exponential Markov's inequality. The challenge for this method is to find a sharp upper bound of the moment generating function φ i (λ) = E(e λξ i ). Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], Azuma [START_REF] Azuma | Weighted sum of certain independent random variables[END_REF] and McDiarmid [START_REF] Mcdiarmid | On the method of bounded differences[END_REF] used the elementary estimation φ i (λ) ≤ e λ 2 /2 , λ ≥ 0, which holds if |ξ i | ≤ 1. Better results can be obtained by the following improvement φ i (λ) ≤ (e λ -1λ)σ 2 i , λ ≥ 0, which holds for ξ i ≤ 1 (see for example Freedman [START_REF] Freedman | On tail probabilities for martingales[END_REF]). Bennett [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF] and Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] used a more precise estimation

φ i (λ) ≤ 1 1 + σ 2 i exp { -λσ 2 i } + σ 2 i 1 + σ 2 i exp{λ}, λ ≥ 0, (3) 
for any ξ i satisfying ξ i ≤ 1. Bennett's estimation (3) is sharp with the equality attained when P(ξ i = 1) =

σ 2 i 1+σ 2 i and P(ξ i = -σ 2 i ) = 1 1+σ 2 i
. Using (3), Hoeffding improved Bennett's inequality [START_REF] Azuma | Weighted sum of certain independent random variables[END_REF] and obtained the following inequality: for independent and centered random variables (ξ i ) i=1,...,n satisfying ξ i ≤ 1 and for any 0 < t < 1,

P (X n ≥ nt) ≤    ( 1 + t σ 2 ) -t+σ 2 1+σ 2 (1 -t) -1-t 1+σ 2    n , (4) 
where [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]). It turns out that, under the stated conditions, Hoeffding's inequality (4) is very tight and improving ( 4) is a rather difficult task. Significant advances in improving Hoeffding's and Bennett's inequalities have been obtained by several authors. For instance Eaton [START_REF] Eaton | A probability inequality for linear combination of bounded randon variables[END_REF], Pinelis [START_REF] Pinelis | Extremal probabilistic problems and Hotelling's T 2 test under a symmetry assumption[END_REF] and Talagrand [START_REF] Talagrand | The missing factor in Hoeffding's inequalities[END_REF] have added to (4) a missing factor of the order σ √ n t . Improvements of the Bennett's inequality (1) can be found in Pinelis [START_REF] Pinelis | Binomial uper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above[END_REF], where some larger classes of functions are considered instead of the class of exponential functions usually used in Markov's inequality. When ξ i are martingale differences, Bentkus [START_REF] Bentkus | On Hoeffding's inequality[END_REF] showed that if the conditional variances of ξ i are bounded, then

σ 2 = 1 n ∑ n i=1 σ 2 i (cf. (2.8) of
P(X n ≥ x) ≤ c P( ∑ n i=1 η i ≥ x)
, where η i are independent and identically distributed Rademacher random variables, c = e 2 /2 = 3.694... and x is a real such that P( ∑ n i=1 η i ≥ x) has a jump at x (see also [START_REF] Bentkus | On domination of tail probabilities of (super)martingales: explicit bounds[END_REF] for related results). However, to the best of our knowledge, there is no martingale or supermartingale version which reduces exactly to the Hoeffding inequality (4) in the independent case.

The scope of the paper is to extend the Hoeffding inequality (4) to the case of martingales and supermartingales. Our inequality will recover (4) in the independent case, and in the case of (super)martingales will apply under a very weak constraint on the sum of conditional variances.

The main results of the paper are the following inequalities (see Theorem 2.1 and Remark 2.1). Assume that (ξ i , F i ) i=1,...,n are supermartingale differences satisfying ξ i ≤ 1. Denote by

⟨X⟩ k = ∑ k i=1 E(ξ 2 i |F i-1
) for k = 1, ..., n. Then, for any x ≥ 0 and v > 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ { ( v 2 x + v 2 ) x+v 2 ( n n -x ) n-x } n n+v 2 1 {x≤n} (5) 
≤ exp { - x 2 2(v 2 + 1 3 x) } . (6) 
In the independent case, inequality (5) with x = nt and v 2 = nσ 2 reduces to inequality (4). We will see that the inequalities (5) and ( 6) strengthen or extend many well-known inequalities obtained by Freedman, De La Peña, Bernstein, Prohorov, Bennett, Hoeffding, Azuma, Nagaev and Haeusler. In particular, if the martingale differences (ξ i , F i ) i=1,...,n satisfy -b ≤ ξ i ≤ 1 for some constant b > 0, then we get (see Corollary 2.1), for all x ≥ 0,

P ( max 1≤k≤n X k ≥ x ) ≤ exp { - 2x 2 U n (x, b) } , (7) 
where

U n (x, b) = min { n(1 + b) 2 , 4 ( nb + 1 3 x )} .
Notice that inequality [START_REF] Bernstein | The Theory of Probabilities (Russian)[END_REF] is sharper than the usual Azuma-Hoeffding inequality when 0

< x < 3 4 n(1 -b) 2 .
Our approach is based on the conjugate distribution technique due to Cramér, and is different from the method used in Hoeffding's original paper [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]. The technique has been developed in Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramer's method[END_REF] to obtain expansions of large deviation for martingales. We refine this technique to get precise upper bounds for tail probabilities, providing a simple and unified approach for improving several well-known inequalities. We also make clear some relations among these inequalities.

Our main results will be presented in Section 2 and proved in Sections 3 and 4.

Main Results

Assume that we are given a sequence of real supermartingale differences (ξ i , F i ) i=0,...,n , defined on some probability space (Ω, F, P), where ξ 0 = 0 and

{∅, Ω} = F 0 ⊆ ... ⊆ F n ⊆ F are increasing σ-fields. So, by definition, we have E(ξ i |F i-1 ) ≤ 0, i = 1, ..., n. Set X 0 = 0, X k = k ∑ i=1 ξ i , k = 1, ..., n. (8) 
Let ⟨X⟩ be the quadratic characteristic of the supermartingale X = (X k , F k ):

⟨X⟩ 0 = 0, ⟨X⟩ k = k ∑ i=1 E(ξ 2 i |F i-1 ), k = 1, ..., n. (9) 
Theorem 2.1. Assume that (ξ i , F i ) i=1,...,n are supermartingale differences satisfying ξ i ≤ 1. Then, for any x ≥ 0 and v > 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ H n (x, v), (10) 
where

H n (x, v) = { ( v 2 x + v 2 ) x+v 2 ( n n -x ) n-x } n n+v 2 1 {x≤n}
with the convention that (+∞) 0 = 1 (which applies when x = n).

Because of the obvious inequalities

P ( X n ≥ x, ⟨X⟩ n ≤ v 2 ) ( 11 
) ≤ P ( max 1≤k≤n X k ≥ x, ⟨X⟩ n ≤ v 2 ) ( 12 
) ≤ P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ,
the function H n (x, v) is also an upper bound of the tail probabilities [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF] and [START_REF] Dzhaparidze | On Bernstein-type inequalities for martingales[END_REF]. Therefore Theorem 2.1 extends Hoeffding's inequality (4) to the case of supermartingales with differences ξ i satisfying ξ i ≤ 1.

The following remark establishes some relations among the well-known bounds of Hoeffding, Freedman, Bennett, Bernstein and De La Peña.

Remark 2.1. For any x ≥ 0 and v > 0, it holds

H n (x, v) ≤ F (x, v) =: ( v 2 x + v 2 ) x+v 2 e x (13) 
≤ B 1 (x, v) =: exp      - x 2 v 2 ( 1 + √ 1 + 2 x 3 v 2 ) + 1 3 x      (14) 
≤ B 2 (x, v) =: exp { - x 2 2(v 2 + 1 3 x) } . ( 15 
)
Moreover, for any x, v > 0, H n (x, v) is increasing in n and

lim n→∞ H n (x, v) = F (x, v). (16) 
Since H n (x, v) ≤ F (x, v), our inequality (10) implies Freedman's inequality for supermartingales [START_REF] Freedman | On tail probabilities for martingales[END_REF]. The bounds B 1 (x, v) and B 2 (x, v) are respectively the bounds of Bennett and Bernstein (cf. [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF], (8a) and [START_REF] Bernstein | The Theory of Probabilities (Russian)[END_REF]). Note that Bennett and Bernstein obtained their bounds for independent random variables under the Bernstein condition

E|ξ i | k ≤ 1 2 k! ( 1 3 
) k-2 Eξ 2 i , for k ≥ 3. ( 17 
)
We would like to point out that our condition ξ i ≤ 1 does not imply Bernstein condition [START_REF] Haeusler | An exact rate of convergence in the functional central limit theorem for special martingale difference arrays[END_REF]. The bounds B 1 (x, v) and B 2 (x, v) have also been obtained by De La Peña ( [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF], (1.2)) for martingale differences ξ i satisfying the conditional version of Bernstein's condition [START_REF] Haeusler | An exact rate of convergence in the functional central limit theorem for special martingale difference arrays[END_REF]. Our result shows that the inequalities of Bennett ([2], (8a)), Bernstein [START_REF] Bernstein | The Theory of Probabilities (Russian)[END_REF] and De La Peña ( [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF], (1.2)) also hold when the (conditional) Bernstein condition is replaced by the condition ξ i ≤ 1. So Theorem 2.1 refines and completes the inequalities of Bennett, Bernstein and De La Peña for supermartingales with differences bounded from above.

It is interesting to note that from Theorem 2.1 and ( 14) it follows that

P ( X k ≥ x 3 + v √ 2x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ e -x , (18) 
which is another form of Bennett's inequalities (for related bounds we refer to Rio [START_REF] Rio | A Bennett type inequality for maxima of empirical processes[END_REF] and Bousquet [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF]).

If the (super)martingale differences (ξ i , F i ) i=1,..,n are in addition bounded from below, our inequality (10) also implies the inequalities (2.1) and (2.6) of Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] as seen from the following corollary.

Corollary 2.1. Assume that (ξ i , F i ) i=1,...,n are martingale differences satisfying -b ≤ ξ i ≤ 1 for some constant b > 0. Then, for any x ≥ 0,

P ( max 1≤k≤n X k ≥ x ) ≤ H n ( x, √ nb ) (19) 
and

P ( max 1≤k≤n X k ≥ x ) ≤ exp { - 2x 2 U n (x, b) } , ( 20 
)
where

U n (x, b) = min { n(1 + b) 2 , 4 ( nb + 1 3 x )} .
The inequalities [START_REF] Lesigne | Large deviations for martingales[END_REF] and ( 20) remain true for supermartingale differences

(ξ i , F i ) i=1,...,n satisfying -b ≤ ξ i ≤ 1 for some constant 0 < b ≤ 1.
In the martingale case, our inequality ( 19) is a refined version of the inequality (2.1) of Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] in the sense that X n is replaced by max [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF] is a refined version of the usual Azuma-Hoeffding inequality (cf. [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], (2.6)); when 0 < x < 3 4 n(1b) 2 , our inequality [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF] is sharper than the Azuma-Hoeffding inequality. Related results can be found in Steiger [START_REF] Steiger | Some Kolmogoroff-type inequalities for bounded random variables[END_REF], [START_REF] Steiger | A best possible Kolmogoroff-type inequality for martingales and a characteristic property[END_REF], McDiarmid [START_REF] Mcdiarmid | On the method of bounded differences[END_REF], Pinelis [START_REF] Pinelis | Binomial uper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above[END_REF] and Bentkus [START_REF] Bentkus | On Hoeffding's inequality[END_REF], [START_REF] Bentkus | On domination of tail probabilities of (super)martingales: explicit bounds[END_REF].

1≤k≤n X k . When U n (x, b) = n(1 + b) 2 , inequality
The following result extends an inequality of De La Peña ( [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF], (1.15)).

Corollary 2.2. Assume that (ξ i , F i ) i=1,...,n are supermartingale differences satisfying ξ i ≤ 1. Then, for any x ≥ 0 and v > 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ exp { - x 2 arc sinh ( x 2v 2 )} . ( 21 
)
De La Peña [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF] obtained the same inequality [START_REF] Mcdiarmid | On the method of bounded differences[END_REF] for martingale differences (ξ i , F i ) i=1,...,n under the more restrictive condition that |ξ i | ≤ c for some constant 0 < c < ∞. In the independent case, the bound in ( 21) is the Prohorov bound [START_REF] Prohorov | An extremal problem in probability theory[END_REF]. As was remarked by Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], the right side of [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] is less than the right side of [START_REF] Mcdiarmid | On the method of bounded differences[END_REF]. So inequality [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] implies inequality [START_REF] Mcdiarmid | On the method of bounded differences[END_REF].

For unbounded supermartingale differences (ξ i , F i ) i=1,...,n , we have the following inequality.

Corollary 2.3. Assume that (ξ i , F i ) i=1,...,n are supermartingale differences. Let y > 0 and

V 2 k (y) = k ∑ i=1 E(ξ 2 i 1 {ξ i ≤y} |F i-1 ), k = 1, ..., n. (22) 
Then, for any x ≥ 0, y > 0 and v > 0,

P ( X k ≥ x and V 2 k (y) ≤ v 2 for some k ∈ [1, n]
)

≤ H n ( x y , v y 
) + P ( max 1≤i≤n ξ i > y ) . (23) 
We notice that inequality [START_REF] Nagaev | On probability and moment inequalities for supermartingales and martingales[END_REF] improves an inequality of Fuk ([15], (3)). It also extends and improves Nagaev's inequality ( [START_REF] Nagaev | Large deviations of sums of independent random variabels[END_REF], (1.55)) which was obtained in the independent case.

Since P(V 2 n (y) > v 2 ) ≤ P (⟨X⟩ n > v 2 ) and H n (x, v) ≤ F (x, v), Corollary 2.3 implies the following inequality due to Courbot [START_REF] Courbot | Rates of convergence in the functional CLT for martingales[END_REF]:

P ( max 1≤k≤n X k ≥ x ) ≤ F ( x y , v y ) + n ∑ i=1 P (ξ i > y) + P(⟨X⟩ n > v 2 ). ( 24 
)
A slightly weaker inequality was obtained earlier by Haeusler [START_REF] Haeusler | An exact rate of convergence in the functional central limit theorem for special martingale difference arrays[END_REF]: in Haeusler's inequality F

( x y , v y )
is replaced by a larger bound exp

{ x y ( 1 -log xy v 2
) } . Thus, inequality (23) improves Courbot's and Haeusler's inequalities.

To close this section, we present an extension of the inequalities of Freedman and Bennett under the condition that

E(ξ 2 i e λξ i |F i-1 ) ≤ e λ E(ξ 2 i |F i-1 ), for any λ ≥ 0, (25) 
which is weaker than the assumption ξ i ≤ 1 used before.

Theorem 2.2. Assume that (ξ i , F i ) i=1,...,n are martingale differences satisfying [START_REF] Pinelis | Extremal probabilistic problems and Hotelling's T 2 test under a symmetry assumption[END_REF]. Then, for any x ≥ 0 and v > 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ F (x, v). (26) 
Bennett [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF] proved [START_REF] Pinelis | Binomial uper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above[END_REF] in the independent case under the condition that

E|ξ i | k ≤ Eξ 2 i , for any k ≥ 3,
which is in fact equivalent to |ξ i | ≤ 1. Taking into account Remark 2.1, we see that [START_REF] Pinelis | Binomial uper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above[END_REF] recovers the inequalities of Freedman and Bennett under the less restrictive condition (25).

Proof of Theorems

Let (ξ i , F i ) i=0,...,n be the supermartingale differences introduced in the previous section and X = (X k , F k ) k=0,...,n be the corresponding supermartingale defined by [START_REF] Bousquet | A Bennett concentration inequality and its application to suprema of empirical processes[END_REF]. For any nonnegative number λ, define the exponential multiplicative martingale Z(λ) = (Z k (λ), F k ) k=0,...,n , where

Z k (λ) = k ∏ i=1 e λξ i E(e λξ i |F i-1 ) , Z 0 (λ) = 1, λ ≥ 0.
If T is a stopping time, then Z T ∧k (λ) is also a martingale, where

Z T ∧k (λ) = T ∧k ∏ i=1 e λξ i E(e λξ i |F i-1 ) , Z 0 (λ) = 1, λ ≥ 0.
Thus, for each nonnegative number λ and each k = 1, ..., n, the random variable Z T ∧k (λ) is a probability density on (Ω, F, P), i.e.

∫ Z T ∧k (λ)dP = E(Z T ∧k (λ)) = 1.
The last observation allows us to introduce, for any nonnegative number λ, the conjugate probability measure P λ on (Ω, F) defined by

dP λ = Z T ∧n (λ)dP. ( 27 
)
Throughout the paper, we denote by E λ the expectation with respect to P λ . Consider the predictable process Ψ(λ) = (Ψ k (λ), F k ) k=0,...,n , which is called the cumulant process and which is related to the supermartingale X as follows:

Ψ k (λ) = k ∑ i=1 log E(e λξ i |F i-1 ), 0 ≤ k ≤ n. ( 28 
)
We should give a sharp bound for the function Ψ k (λ). To this end, we need the following elementary lemma which, in the special case of centered random variables, has been proved by Bennett [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF].

Lemma 3.1. If ξ is a random variable such that ξ ≤ 1, Eξ ≤ 0 and Eξ 2 = σ 2 , then, for any λ ≥ 0,

E(e λξ ) ≤ 1 1 + σ 2 exp { -λσ 2 } + σ 2 1 + σ 2 exp{λ}. ( 29 
)
Proof. We argue as in Bennett [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF]. For λ = 0, inequality ( 29) is obvious. Fix λ > 0 and consider the function

φ(ξ) = aξ 2 + bξ + c, ξ ≤ 1,
where a, b and c are determined by the conditions

φ(1) = e λ , φ(-σ 2 ) = 1 λ φ ′ (-σ 2 ) = exp{-λσ 2 }, λ > 0.
By simple calculations, we have

a = e λ -e -λσ 2 -λ(1 + σ 2 )e -λσ 2 (1 + σ 2 ) 2 , b = λ(1 -σ 4 )e -λσ 2 + 2σ 2 (e λ -e -λσ 2 ) (1 + σ 2 ) 2 and c = σ 4 e λ + (1 + 2σ 2 + λσ 2 + λσ 4 )e -λσ 2 (1 + σ 2 ) 2 .
We now prove that e λξ ≤ φ(ξ) for any ξ ≤ 1 and λ > 0, [START_REF] Steiger | A best possible Kolmogoroff-type inequality for martingales and a characteristic property[END_REF] which will imply the assertion of the lemma. For any ξ ∈ R, set

f (ξ) = φ(ξ) -e λξ .
Since f (-σ 2 ) = f (1) = 0, by Rolle's theorem, there exists some ξ 1 ∈ (-σ 2 , 1) such that f ′ (ξ 1 ) = 0. In the same way, since f ′ (-σ 2 ) = 0 and f ′ (ξ 1 ) = 0, there exists some ξ 2 ∈ (-σ 2 , ξ 1 ) such that f ′′ (ξ 2 ) = 0. Taking into account that the function f ′′ (ξ) = 2aλ 2 e λξ is strictly decreasing, we conclude that ξ 2 is the unique zero point of [START_REF] Steiger | A best possible Kolmogoroff-type inequality for martingales and a characteristic property[END_REF]. Since b ≥ 0 and Eξ ≤ 0, from [START_REF] Steiger | A best possible Kolmogoroff-type inequality for martingales and a characteristic property[END_REF], it follows that, for any λ > 0,

f ′′ (ξ). It follows that f (ξ) is convex on (-∞, ξ 2 ] and concave on [ξ 2 , 1], with min (-∞,ξ 2 ] f (ξ) = f (-σ 2 ) = 0 and min [ξ 2 ,1] f (ξ) = f (1) = 0. Therefore min (-∞,1] f (ξ) = 0, which implies
E(e λξ ) ≤ aσ 2 + c = 1 1 + σ 2 exp { -λσ 2 } + σ 2 1 + σ 2 exp{λ}.
This completes the proof of Lemma 3.1.

The following technical lemma is from Hoeffding [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] (see Lemma 3 therein and its proof). For reader's convenience, we shall give a proof following [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]. Lemma 3.2. For any λ ≥ 0 and t ≥ 0, let

f (λ, t) = log ( 1 1 + t exp {-λt} + t 1 + t exp{λ} ) . (31) 
Then ∂ ∂t f (λ, t) > 0 and ∂ 2 ∂ 2 t f (λ, t) < 0 for any λ > 0 and t ≥ 0. Proof. Denote g(y) = e -λy + y -1 y , y ≥ 1. 
Then f (λ, t) = λ + log g(1 + t). By straightforward calculation, we have, for any y ≥ 1, g ′ (y) = e -λy (e λy -1λy) y 2 > 0 and g ′′ (y) = -2e -λy y 3 (e λy -1λy -

λ 2 y 2 2 ) < 0. Since g(y) > 0 for y = t + 1 ≥ 1, ∂ ∂t f (λ, t) = g ′ (y) g(y) and ∂ 2 ∂ 2 t f (λ, t) = g ′′ (y)g(y) -g ′ (y) 2 g(y) 2 , it follows that ∂ ∂t f (λ, t) > 0 and ∂ 2 ∂ 2 t f (λ, t) < 0 for all λ, t > 0.
Lemma 3.3. Assume that (ξ i , F i ) i=1,...,n are supermartingale differences satisfying ξ i ≤ 1. Then, for any λ ≥ 0 and k = 1, ..., n,

Ψ k (λ) ≤ kf ( λ, ⟨X⟩ k k ) . (32) 
Proof. For λ = 0, inequality (32) is obvious. By Lemma 3.1, we have, for any λ > 0,

E(e λξ i |F i-1 ) ≤ exp {-λE(ξ 2 i |F i-1 )} 1 + E(ξ 2 i |F i-1 ) + E(ξ 2 i |F i-1 ) 1 + E(ξ 2 i |F i-1 )
exp{λ}.

Therefore, using [START_REF] Talagrand | The missing factor in Hoeffding's inequalities[END_REF] with t = E(ξ 2 i |F i-1 ), we get log E(e

λξ i |F i-1 ) ≤ f (λ, E(ξ 2 i |F i-1 )). ( 33 
)
By Lemma 3.2, for fixed λ > 0, the function f (λ, t) has a negative second derivative in t. Hence, f (λ, t) is concave in t ≥ 0, and therefore, by Jensen's inequality,

k ∑ i=1 f (λ, E(ξ 2 i |F i-1 )) = k k ∑ i=1 1 k f (λ, E(ξ 2 i |F i-1 )) ≤ kf ( λ, ⟨X⟩ k k ) . (34) 
Combining ( 33) and (34), we obtain

Ψ k (λ) = k ∑ i=1 log E(e λξ i |F i-1 ) ≤ kf ( λ, ⟨X⟩ k k ) .
This completes the proof of Lemma 3.3.

Proof of Theorem 2.1. For any 0 ≤ x ≤ n, define the stopping time

T (x) = min{k ∈ [1, n] : X k ≥ x and ⟨X⟩ k ≤ v 2 }, (35) 
with the convention that min{∅} = 0. Then

1{X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n]} = n ∑ k=1 1 {T (x) = k} .
Using the change of measure ( 27), we have, for any 0 ≤ x ≤ n, v > 0 and λ ≥ 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) = E λ Z T ∧n (λ) -1 1 {Xk≥x and ⟨X⟩ k ≤v 2 for some k∈[1,n]} = n ∑ k=1 E λ exp {-λX T ∧n + Ψ T ∧n (λ)} 1 {T (x)=k} = n ∑ k=1 E λ exp {-λX k + Ψ k (λ)} 1 {T (x)=k} ≤ n ∑ k=1 E λ exp {-λx + Ψ k (λ)} 1 {T (x)=k} . (36) 
Using Lemma 3.3, we deduce, for any 0 ≤ x ≤ n, v > 0 and λ ≥ 0,

P(X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n]) ≤ n ∑ k=1 E λ exp { -λx + kf ( λ, ⟨X⟩ k k )} 1 {T (x)=k} . (37) 
By Lemma 3.2, f (λ, t) is increasing in t ≥ 0. Therefore

P(X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n]) ≤ n ∑ k=1 E λ exp { -λx + kf ( λ, v 2 k )} 1 {T (x)=k} . (38) 
As f (λ, 0) = 0 and f (λ, t) is concave in t ≥ 0 (see Lemma 3.2), the function f (λ, t)/t is decreasing in t ≥ 0 for any λ ≥ 0. Hence, we have, for any 0 ≤ x ≤ n, v > 0 and λ ≥ 0,

P(X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n]) ≤ exp { -λx + nf ( λ, v 2 n )} E λ n ∑ k=1 1 {T (x)=k} ≤ exp { -λx + nf ( λ, v 2 n )} . ( 39 
)
Since the function in (39) attains its minimum at

λ = λ(x) = 1 1 + v 2 /n log 1 + x/v 2 1 -x/n , (40) 
inserting λ = λ(x) in (39), we obtain, for any 0 ≤ x ≤ n and v > 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ H n (x, v),
where

H n (x, v) = inf λ≥0 exp { -λx + nf ( λ, v 2 n )} , (41) 
which gives the bound [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF].

Proof of Remark 2.1. We will use the function f (λ, t) defined by [START_REF] Talagrand | The missing factor in Hoeffding's inequalities[END_REF]. Since ∂ 2 ∂t 2 f (λ, t) ≤ 0 for any t ≥ 0 and λ ≥ 0, it holds

f (λ, t) ≤ f (λ, 0) + ∂ ∂t f (λ, 0) t = (e λ -1 -λ) t, t, λ ≥ 0. (42) 
Hence, using (41), for any x ≥ 0 and v > 0,

H n (x, v) ≤ inf λ≥0 exp { -λx + (e λ -1 -λ)v 2 } = ( v 2 x + v 2 ) x+v 2 e x , (43) 
which proves [START_REF] Eaton | A probability inequality for linear combination of bounded randon variables[END_REF]. Using the inequality

(e λ -1 -λ)v 2 ≤ λ 2 v 2 2(1 -1 3 λ) , for any λ, v ≥ 0,
we get, for any x ≥ 0 and v > 0,

( v 2 x + v 2 ) x+v 2 e x ≤ inf 3>λ≥0 exp { -λx + λ 2 v 2 2(1 -1 3 λ) } = exp      - x 2 v 2 ( 1 + √ 1 + 2 x 3 v 2 ) + 1 3 x      ≤ exp { - x 2 2(v 2 + 1 3 x) } ,
where the last inequality follows from the fact

√ 1 + 2 x 3 v 2 ≤ 1 + x 3v 2
. This proves ( 14) and [START_REF] Fuk | Some probablistic inequalities for martingales[END_REF].

Since f (λ, t)/t is decreasing in t ≥ 0 for any λ ≥ 0, from (41), we find that H n (x, v) is increasing in n. Taking into account that lim n→∞ ( n n-x

) n-x = e x , we obtain [START_REF] Grama | Large deviations for martingales via Cramer's method[END_REF]. This completes the proof of Remark 2.1. Lemma 3.4. Assume that (ξ i , F i ) i=1,...,n are martingale differences satisfying E(ξ 2 i e λξ i |F i-1 ) ≤ e λ E(ξ 2 i |F i-1 ) for any λ ≥ 0. Then, for any λ ≥ 0 and k = 1, ..., n, Ψ k (λ) ≤ (e λ -1λ)⟨X⟩ k .

Proof. Denote ψ i (λ) = log E(e λξ i |F i-1 ), λ ≥ 0. Since ψ i (0) = 0 and ψ ′ i (0) = E(ξ i |F i-1 ) = 0, by Leibniz-Newton formula, it holds

ψ i (λ) = ∫ λ 0 ψ ′ i (y)dy = ∫ λ 0 ∫ y 0 ψ ′′ i (t)dtdy.
Therefore for any λ ≥ 0 and k = 1, ..., n, This completes the proof of Lemma 3.4.

Ψ k (λ) = k ∑ i=1 ψ i (λ) = k ∑ i=1 ∫ λ 0 ∫ y 0 ψ ′′ i (t)
Proof of Theorem 2.2. By (36) and Lemma 3.4, we obtain, for any x ≥ 0, v > 0 and λ ≥ 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ n ∑ k=1 E λ exp {-λx + Ψ k (λ)} 1 {T (x)=k} ≤ n ∑ k=1 E λ exp { -λx + (e λ -1 -λ)⟨X⟩ k } 1 {T (x)=k} ≤ n ∑ k=1 E λ exp { -λx + (e λ -1 -λ)v 2 } 1 {T (x)=k} ≤ exp { -λx + (e λ -1 -λ)v 2 } . ( 46 
)
Since the function in (46) attains its minimum at λ = λ(x) = log

( 1 + x v 2 ) , (47) 
inserting λ = λ(x) in (46), we have, for any x ≥ 0 and v > 0,

P ( X k ≥ x and ⟨X⟩ k ≤ v 2 for some k ∈ [1, n] ) ≤ F (x, v) = ( v 2 x + v 2 ) x+v 2 e x .
This completes the proof of Theorem 2.2.

Proof of Corollaries

We use Theorem 2.1 to prove Corollaries 2.1 and 2.3.

  dtdy. (44)Since, by Jensen's inequality, E(e tξ i |F i-1 ) ≥ 1, we get, for any t ≥ 0,E(ξ 2 i e tξ i |F i-1 ) E(e tξ i |F i-1 ) -E(ξ i e tξ i |F i-1 ) 2 E(e tξ i |F i-1 ) 2 ≤ E(ξ 2 i e tξ i |F i-1 ) ≤ e t E(ξ 2 i |F i-1).

	Inserting (45) into (44), we obtain		
	Ψ k (λ) ≤	k ∑ i=1	∫ λ 0	∫ y 0	e t E(ξ 2 i |F i-1 )dtdy
	= (e			
	ψ ′′ i (t) =				
					(45)

λ -1λ)⟨X⟩ k .
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Proof of Corollary 2.1. As -b ≤ ξ i ≤ 1, we have -ξ i ≤ b and 1-ξ i ≥ 0, so that -ξ i (1ξ i ) ≤ b(1ξ i ). When E(ξ i |F i-1 ) = 0 or E(ξ i |F i-1 ) ≤ 0 and 0 < b ≤ 1, it follows that

Therefore ⟨X⟩ n ≤ nb. Hence, using Theorem 2.1, we have, for any 0 ≤ x ≤ n,

which obtains inequality [START_REF] Lesigne | Large deviations for martingales[END_REF]. Using [START_REF] Fuk | Some probablistic inequalities for martingales[END_REF], we get, for any x ≥ 0,

From (41), we have, for any x ≥ 0,

With the notations z = λ(1 + b) and p = b 1+b , we obtain

Returning to (51), we deduce, for any x ≥ 0,

Combining ( 50) and ( 52), we obtain [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF].

Proof of Corollary 2.3. For y > 0 and k = 1, ..., n, set

k is a sum of supermartingale differences. Now, for any y > 0, 0 ≤ x ≤ ny and v > 0,

) .

Applying Theorem 2.1 to X k = X ′ k y , we obtain Corollary 2.3.