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Abstract

We address the problem of forecasting a time series meeting the Causal Bernoulli

Shift model, using a parametric set of predictors. The aggregation technique pro-

vides a predictor with well established and quite satisfying theoretical properties

expressed by an oracle inequality for the prediction risk. The numerical compu-

tation of the aggregated predictor usually relies on a Markov chain Monte Carlo

method whose convergence should be evaluated. In particular, it is crucial to bound

the number of simulations needed to achieve a numerical precision of the same or-

der as the prediction risk. In this direction we present a fairly general result which

can be seen as an oracle inequality including the numerical cost of the predictor

computation. The numerical cost appears by letting the oracle inequality depend

on the number of simulations required in the Monte Carlo approximation. Some

numerical experiments are then carried out to support our findings.

1 Introduction

The objective of our work is to forecast a stationary time series Y = (Yt)t∈Z taking

values in X ⊆ Rr with r ≥ 1. For this purpose we propose and study an aggregation

scheme using exponential weights.

Consider a set of individual predictors giving their predictions at each moment t. An

aggregation method consists of building a new prediction from this set, which is nearly

as good as the best among the individual ones, provided a risk criterion (see [17]). This

kind of result is established by oracle inequalities. The power and the beauty of the

technique lie in its simplicity and versatility. The more basic and general context of

application is individual sequences, where no assumption on the observations is made

(see [9] for a comprehensive overview). Nevertheless, results need to be adapted if we

set a stochastic model on the observations.

The use of exponential weighting in aggregation and its links with the PAC-Bayesian

approach has been investigated for example in [5], [8] and [11]. Dependent pro-

cesses have not received much attention from this viewpoint, except in [1] and [2].
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In the present paper we study the properties of the Gibbs predictor, applied to Causal

Bernoulli Shifts (CBS). CBS are an example of dependent processes (see [12] and

[13]).

Our predictor is expressed as an integral since the set from which we do the aggregation

is in general not finite. Large dimension is a trending setup and the computation of

this integral is a major issue. We use classical Markov chain Monte Carlo (MCMC)

methods to approximate it. Results from Łatuszyński [15], [16] control the number

of MCMC iterations to obtain precise bounds for the approximation of the integral.

These bounds are in expectation and probability with respect to the distribution of the

underlying Markov chain.

In this contribution we first slightly revisit certain lemmas presented in [2], [8] and [20]

to derive an oracle bound for the prediction risk of the Gibbs predictor. We stress that

the inequality controls the convergence rate of the exact predictor. Our second goal

is to investigate the impact of the approximation of the predictor on the convergence

guarantees described for its exact version. Combining the PAC-Bayesian bounds with

the MCMC control, we then provide an oracle inequality that applies to the MCMC

approximation of the predictor, which is actually used in practice.

The paper is organised as follows: we introduce a motivating example and several

definitions and assumptions in Section 2. In Section 3 we describe the methodology

of aggregation and provide the oracle inequality for the exact Gibbs predictor. The

stochastic approximation is studied in Section 4. We state a general proposition inde-

pendent of the model for the Gibbs predictor. Next, we apply it to the more particular

framework delineated in our paper. A concrete case study is analysed in Section 5,

including some numerical work. A brief discussion follows in Section 6. The proofs

of most of the results are deferred to Section 7.

Throughout the paper, for a ∈ Rq with q ∈ N∗, ‖a‖ denotes its Euclidean norm,

‖a‖ = (
∑q

i=1
a2

i
)1/2 and ‖a‖1 its 1-norm ‖a‖1 =

∑q

i=1
|ai|. We denote, for a ∈ Rq and

∆ > 0, B (a,∆) = {a1 ∈ R
q : ‖a − a1‖ ≤ ∆} and B1 (a,∆) = {a1 ∈ R

q : ‖a − a1‖1 ≤ ∆}

the corresponding balls centered at a of radius ∆ > 0. In general bold characters repre-

sent column vectors and normal characters their components; for example y = (yi)i∈Z.

The use of subscripts with ‘:’ refers to certain vector components y1:k = (yi)1≤i≤k, or

elements of a sequence X1:k = (Xt)1≤t≤k. For a random variable U distributed as ν and

a measurable function h, ν[h(U)] or simply ν[h] stands for the expectation of h(U):

ν[h] =
∫

h(u)ν(du).

2 Problem statement and main assumptions

Real stable autoregressive processes of a fixed order, referred to as AR(d) processes,

are one of the simplest examples of CBS. They are defined as the stationary solution of

Xt =

d∑

j=1

θ jXt− j + σξt , (2.1)

where the (ξt)t∈Z are i.i.d. real random variables with E[ξt] = 0 and E[ξ2t ] = 1.
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We dispose of several efficient estimates for the parameter θ =
[
θ1 . . . θd

]′
which

can be calculated via simple algorithms as Levinson-Durbin or Burg algorithm for

example. From them we derive also efficient predictors. However, as the model is

simple to handle, we use it to progressively introduce our general setup.

Denote

A (θ) =



θ1 θ2 . . . . . . θd
1 0 . . . . . . 0

0 1 0
. . . 0

... 0
. . .

. . .
...

0 . . . 0 1 0



,

Xt−1 =

[
Xt−1 . . . Xt−d

]′
and e1 =

[
1 0 . . . 0

]′
the first canonical vector of Rd.

M′ represents the transpose of matrix M (including vectors). The recurrence (2.1) gives

Xt = θ
′Xt−1 + σξt = σ

∞∑

j=0

e′1A j (θ) e1ξt− j . (2.2)

The eigenvalues of A (θ) are the inverses of the roots of the autoregressive polynomial

θ (z) = 1 −
∑d

k=1 θkzk, then at most δ for some δ ∈ (0, 1) due to the stability of X (see

[7]). In other words θ ∈ sd (δ) = {θ : θ (z) , 0 for |z| < δ−1} ⊆ sd (1). In this

context (or even in a more general one, see [14]) for all δ1 ∈ (δ, 1) there is a constant K̄

depending only on θ and δ1 such that for all j ≥ 0

∣∣∣e′1A j (θ) e1

∣∣∣ ≤ K̄δ
j

1
, (2.3)

and then, the variance of Xt, denoted γ0, satisfies γ0 = σ
2
∑∞

j=0 |e
′
1
A j (θ) e1|

2 ≤ K̄2σ2/(1−

δ2
1
).

The following definition allows to introduce the process which interests us.

Definition 1. Let X′ ⊆ Rr′ for some r′ ≥ 1 and let A = (A j) j≥0 be a sequence of

non-negative numbers. A function H : (X′)N → X is said to be A-Lipschitz if

‖H (u) − H (v) ‖ ≤

∞∑

j=0

A j‖u j − v j‖ ,

for any u = (u j) j∈N, v = (v j) j∈N ∈ (X′)N.

Provided A = (A j) j≥0 with A j ≥ 0 for all j ≥ 0, the i.i.d. sequence of X′-valued ran-

dom variables (ξt)t∈Z and H : (X′)N → X, we consider that a time series X = (Xt)t∈Z

admitting the following property is a Causal Bernoulli Shift (CBS) with Lipschitz co-

efficients A and innovations (ξt)t∈Z.

(M) The process X = (Xt)t∈Z meets the representation

Xt = H (ξt, ξt−1, ξt−2, . . .) ,∀t ∈ Z ,
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where H is an A-Lipschitz function with the sequence A satisfying

Ã∗ =

∞∑

j=0

jA j < ∞ . (2.4)

We additionally define

A∗ =

∞∑

j=0

A j . (2.5)

CBS regroup several types of nonmixing stationary Markov chains, real-valued func-

tional autoregressive models and Volterra processes, among other interesting models

(see [10]). Thanks to the representation (2.2) and the inequality (2.3) we assert that

AR(d) processes are CBS with A j = σK̄δ
j

1
for j ≥ 0.

We let ξ denote a random variable distributed as the ξts. Results from [1] and [2] need a

control on the exponential moment of ξ in ζ = A∗, which is provided via the following

hypothesis.

(I) The innovations (ξt)t∈Z satisfy φ(ζ) = E
[
eζ‖ξ‖

]
< ∞.

Bounded or Gaussian innovations trivially satisfy this hypothesis for any ζ ∈ R.

Let π0 denote the probability distribution of the time series Y that we aim to forecast.

Observe that for a CBS, π0 depends only on H and the distribution of ξ. For any

f : XN
∗

→ X measurable and t ∈ Z we consider Ŷt = f
(
(Yt−i)i≥1

)
, a possible predictor

of Yt from its past. For a given loss function ℓ : X × X → R+, the prediction risk is

evaluated by the expectation of ℓ(Ŷt, Yt)

R ( f ) = E
[
ℓ
(
Ŷt, Yt

)]
= π0

[
ℓ
(
Ŷt, Yt

)]
=

∫

XZ

ℓ
(
f
(
(yt−i)i≥1

)
, yt

)
π0 (dy) .

We assume in the following that the loss function ℓ fulfills the condition:

(L) For all y, z ∈ X, ℓ (y, z) = g (y − z), for some convex function g which is non-

negative, g (0) = 0 and K- Lipschitz: |g (y) − g (z)| ≤ K‖y − z‖.

If X is a subset of R, ℓ (y, z) = |y − z| satisfies (L) with K = 1.

From estimators of dimension d for θ we can build the corresponding linear predictors

fθ (y) = θ′y1:d. Speaking more broadly, consider a set Θ and associated with it a set

of predictors { fθ, θ ∈ Θ}. For each θ ∈ Θ there is a unique d = d (θ) ∈ N∗ such that

fθ : Xd → X is a measurable function from which we define

Ŷθt = fθ (Yt−1, . . . , Yt−d) ,

as a predictor of Yt given its past. We can extend all functions fθ in a trivial way (using

dummy variables) to start fromXN
∗

. A natural way to evaluate the predictor associated

with θ is to compute the risk R (θ) = R ( fθ). We use the same letter R by an abuse of

notation.
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We observe X1:T from X = (Xt)t∈Z, an independent copy of Y. A crucial goal of this

work is to build a predictor function f̂T for Y, inferred from the sample X1:T andΘ such

that R( f̂T ) is close to infθ∈Θ R (θ) with π0- probability close to 1.

The set Θ also depends on T , we write Θ ≡ ΘT . Let us define

dT = sup
θ∈ΘT

d (θ) . (2.6)

The main assumptions on the set of predictors are the following ones.

(P-1) The set { fθ, θ ∈ ΘT } is such that for any θ ∈ ΘT there are b1 (θ) , . . . , bd(θ) (θ) ∈ R+
satisfying for all y = (yi)i∈N∗ , z = (zi)i∈N∗ ∈ X

N
∗

,

|| fθ(y) − fθ(z)|| ≤

d(θ)∑

j=1

b j(θ)
∣∣∣
∣∣∣y j − z j

∣∣∣
∣∣∣ .

We assume moreover that LT = supθ∈ΘT

∑d(θ)

j=1
b j (θ) < ∞.

(P-2) The inequality LT + 1 ≤ log T holds for all T ≥ 4.

In the case whereX ⊆ R and { fθ, θ ∈ ΘT } is such that θ ∈ Rd(θ) and fθ (y) = θ′y1:d(θ) for

all y ∈ RN, we have

| fθ(y) − fθ(z)| ≤

d(θ)∑

j=1

∣∣∣θ j

∣∣∣
∣∣∣y j − z j

∣∣∣ .

The last conditions are satisfied by the linear predictors when ΘT is a subset of the

ℓ1-ball of radius log T − 1 in RdT .

3 Prediction via aggregation

The predictor that we propose is defined as an average of predictors fθ based on the

empirical version of the risk,

rT (θ |X ) =
1

T − d (θ)

T∑

t=d(θ)+1

ℓ
(
X̂θt , Xt

)
.

where X̂θt = fθ
(
(Xt−i)i≥1

)
. The function rT (θ |X ) relies on X1:T and can be computed at

stage T ; this is in fact a statistic.

We consider a prior probability measure πT on ΘT . The prior serves to control the

complexity of predictors associated with ΘT . Using πT we can construct one predictor

in particular, as detailed in the following.
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3.1 Gibbs predictor

For a measure ν and a measurable function h (called energy function) such that ν
[
exp (h)

]
=∫

exp (h) dν < ∞ , we denote by ν {h} the measure defined as

ν {h} (dθ) =
exp (h (θ))

ν
[
exp (h)

]ν (dθ) .

It is known as the Gibbs measure.

Definition 2 (Gibbs predictor). Given η > 0, called the temperature or the learning

rate parameter, we define the Gibbs predictor as the expectation of fθ, where θ is drawn

under πT {−ηrT (· |X )}, that is

f̂η,T (y |X ) = πT {−ηrT (· |X )}
[
f· (y)

]
=

∫

ΘT

fθ (y)
exp (−ηrT (θ |X ))

πT

[
exp (−ηrT (· |X ))

]πT (dθ) . (3.1)

3.2 PAC-Bayesian inequality

At this point more care must be taken to describe ΘT . Here and in the following we

suppose that

ΘT ⊆ R
nT for some nT ∈ N

∗ . (3.2)

Suppose moreover that ΘT is equipped with the Borel σ-algebra B(ΘT ).

A Lipschitz type hypothesis on θ guarantees the robustness of the set { fθ, θ ∈ ΘT } with

respect to the risk R.

(P-3) There is D < ∞ such that for all θ1, θ2 ∈ ΘT ,

π0

[∣∣∣
∣∣∣ fθ1

(
(Xt−i)i≥1

)
− fθ2

(
(Xt−i)i≥1

)∣∣∣
∣∣∣
]
≤ Dd

1/2

T
||θ1 − θ2|| ,

where dT is defined in (2.6).

Linear predictors satisfy this last condition withD = π0 [|X1|].

Suppose that the θ reaching the infθ∈ΘT
R(θ) has some zero components, i.e. supp(θ) <

nT . Any prior with a lower bounded density (with respect to the Lebesgue measure)

allocates zero mass on lower dimensional subsets of ΘT . Furthermore, if the density

is upper bounded we have πT [B(θ,∆) ∩ ΘT ] = O(∆nT ) for ∆ small enough. As we

will notice in the proof of Theorem 3.1, a bound like the previous one would impose a

tighter constraint to nT . Instead we set the following condition.

(P-4) There is a sequence (θT )T≥4 and constants C1 > 0, C2,C3 ∈ (0, 1] and γ ≥ 1

such that θT ∈ ΘT ,

R (θT ) ≤ inf
θ∈ΘT

R (θ) + C1

log3 (T )

T 1/2
,

and πT [B (θT ,∆) ∩ ΘT ] ≥ C2∆
n

1/γ

T ,∀0 ≤ ∆ ≤ ∆T =
C3

T
.
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A concrete example is provided in Section 5.

We can now present the main result of this section, our PAC-Bayesian inequality con-

cerning the predictor f̂ηT ,T (· |X ) built following (3.1) with the learning rate η = ηT = T 1/2/(4 log T ),

provided an arbitrary probability measure πT on ΘT .

Theorem 3.1. Let ℓ be a loss function such that Assumption (L) holds. Consider a

process X = (Xt)t∈Z satisfying Assumption (M) and let π0 denote its probability distri-

bution. Assume that the innovations fulfill Assumption (I) with ζ = A∗; A∗ is defined

in (2.5). For each T ≥ 4 let { fθ, θ ∈ ΘT } be a set of predictors meeting Assumptions

(P-1), (P-2) and (P-3) such that dT , defined in (2.6), is at most T/2. Suppose that the

set ΘT is as in (3.2) with nT ≤ logγ T for some γ ≥ 1 and we let πT be a probability

measure on it such that Assumption (P-4) holds for the same γ. Then for any ε > 0,

with π0-probability at least 1 − ε,

R
(
f̂ηT ,T (· |X )

)
≤ inf

θ∈ΘT

R ( fθ) + E
log3 T

T 1/2
+

8 log T

T 1/2
log

(
1

ε

)
,

where

E = C1 + 8 +
2

log 2
−

2 logC2

log2 2
−

4 logC3

log 2
+

8K2
(
A∗ + Ã∗

)2

Ã2
∗

+
KDC3

8 log3 2

+
4Kφ(A∗)

log 2
+

2K2φ(A∗)

log2 2
, (3.3)

with Ã∗ defined in (2.4), K, φ andD in Assumptions (L), (I) and (P-3), respectively, and

C1, C2 and C3 in Assumption (P-4).

The proof is postponed to Section 7.1.

Here however we insist on the fact that this inequality applies to an exact aggregated

predictor f̂ηT ,T (· |X ). We need to investigate how these predictors are computed and

how practical numerical approximations behave compared to the properties of the exact

version.

4 Stochastic approximation

Once we have the observations X1:T , we use the Metropolis - Hastings algorithm to

compute f̂η,T (· |X ) =
∫

fθ (· |X ) πT {−ηrT (θ |X )} (dθ). The Gibbs measure πT {−ηrT (· |X )}

is a distribution on ΘT whose density πη,T (· |X ) with respect to πT is proportional to

exp (−ηrT (· |X )).

4.1 Metropolis - Hastings algorithm

Given X ∈ XZ, the Metropolis-Hastings algorithm generates a Markov chainΦη,T (X) =

(θη,T,n(X))n≥0 with kernel Pη,T (only depending on X1:T ) having the target distribution

πT {−ηrT (· |X )} as the unique invariant measure, based on the transitions of another

Markov chain which serves as a proposal (see [21]). We consider a proposal transition
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of the form Qη,T (θ1, dθ) = qη,T (θ1, θ)πT (dθ) where the conditional density kernel qη,T
(possibly also depending on X1:T ) on ΘT × ΘT is such that

βη,T (X) = inf
(θ1,θ2)∈ΘT×ΘT

qη,T (θ1, θ2)

πη,T (θ2 |X )
∈ (0, 1) . (4.1)

This is the case of the independent Hastings algorithm, where the proposal is i.i.d. with

density qη,T . The condition gets into

βη,T (X) = inf
θ∈ΘT

qη,T (θ)

πη,T (θ |X )
∈ (0, 1) . (4.2)

In Section 5 we provide an example.

The relation (4.1) implies that the algorithm is uniformly ergodic, i.e. we have a control

in total variation norm (‖ · ‖TV ). Thus, the following condition holds (see [18]).

(A) Given η, T > 0, there is βη,T : XZ → (0, 1) such for any θ0 ∈ ΘT , x ∈ XZ

and n ∈ N, the chain Φη,T (x) with transition law Pη,T and invariant distribution

πT {−ηrT (· |x )} satisfies

∣∣∣
∣∣∣Pn
η,T (θ0, ·) − πT {−ηrT (· |x )}

∣∣∣
∣∣∣
TV
≤ 2

(
1 − βη,T (x)

)n
.

4.2 Theoretical bounds for the computation

In [16, Theorem 3.1] we find a bound on the mean square error of approximating

one integral by the empirical estimate obtained from the successive samples of certain

ergodic Markov chains, including those generated by the MCMC method that we use.

A MCMC method adds a second source of randomness to the forecasting process and

our aim is to measure it. Let θ0 ∈ ∩T≥1ΘT , we set θη,T,0 (x) = θ0 for all T, η > 0,

x ∈ XZ. We denote by µη,T (· |X ) the probability distribution of the Markov chain

Φη,T (X) with initial point θ0 and kernel Pη,T .

Let νη,T denote the probability distribution of (X,Φη,T (X)); it is defined by setting for

all sets A ∈ (B(X))⊗Z and B ∈ (B(ΘT ))⊗N

νη,T (A × B) =

∫ 1A (x) 1B (φ) µη,T (dφ |x ) π0 (dx) (4.3)

Given Φη,T = (θη,T,n)n≥0, we then define for n ∈ N∗

f̄η,T,n =
1

n

n−1∑

i=0

fθη,T,i . (4.4)

Since our chain depends on X, we make it explicit by using the notation f̄η,T,n (· |X ).

The cited [16, Theorem 3.1] leads to a proposition that applies to the numerical ap-

proximation of the Gibbs predictor (the proof is in Section 7.2). We stress that this is

independent of the model (CBS or any), of the set of predictors and of the theoretical

guarantees of Theorem 3.1.
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Proposition 1. Let ℓ be a loss function meeting Assumption (L). Consider any process

X = (Xt)t∈Z with an arbitrary probability distribution π0. Given T ≥ 2, η > 0, a set

of predictors { fθ, θ ∈ ΘT } and πT ∈ M
1
+

(ΘT ), let f̂η,T (· |X ) be defined by (3.1) and

let f̄η,T,n (· |X ) be defined by (4.4). Suppose that Φη,T meets Assumption (A) for η and

T with a function βη,T : XZ → (0, 1). Let νη,T denote the probability distribution of

(X,Φη,T (X)) as defined in (4.5). Then, for all n ≥ 1 and D > 0, with νη,T - probability

at least max{0, 1 − Aη,T/(Dn1/2)} we have |R( f̄η,T,n (· |X )) − R( f̂η,T (· |X ))| ≤ D, where

Aη,T = 3K

∫

XZ

1

βη,T (x)

∫

XZ

sup
θ∈ΘT

∣∣∣ fθ (y) − f̂η,T (y |x )
∣∣∣ π0 (dy) π0 (dx) . (4.5)

We denote by νT = νηT ,T the probability distribution of (X,Φη,T (X)) setting η = ηT = T 1/2/(4 log T ).

As Theorem 3.1 does not involve any simulation, it also holds in νT - probability. From

this and Proposition 1 a union bound gives us the following.

Theorem 4.1. Under the hypothesis of Theorem 3.1, consider moreover that Assump-

tion (A) is fulfilled by Φη,T for all η = ηT and T with T ≥ 4. Thus, for all ε > 0 and

n ≥ M (T, ε), with νT - probability at least 1 − ε we have

R
(

f̄ηT ,T,n (· |X )
)
≤ inf

θ∈ΘT

R ( fθ) +

(
E +

2

log 2
+ 2

)
log3 T

T 1/2
+

8 log T

T 1/2
log

(
1

ε

)
,

where E is defined in (3.3) and M (T, ε) = A2
ηT ,T

T/(ε2 log6 T ) with Aη,T as in (4.5).

5 Applications to the autoregressive process

We carefully recapitulate all the assumptions of Theorem 4.1 in the context of an au-

toregressive process. After that, we illustrate numerically the behaviour of the proposed

method.

5.1 Theoretical considerations

Consider a real valued stable autoregressive process of finite order d as defined by (2.1)

with parameter θ lying in the interior of sd (δ) and unit normally distributed innovations

(Assumptions (M) and (I) hold). With the loss function ℓ (y, z) = |y − z| Assumption (L)

holds as well. The linear predictors is the set that we test; they meet Assumption (P-3).

Without loss of generality assume that dT = nT . In the described framework we have

f̂η,T (· |X ) = fθ̂η,T (X), where

θ̂η,T (X) =

∫

ΘT

θ
exp (−ηrT (θ |X ))

πT

[
exp (−ηrT (θ |X ))

]πT (dθ) .

This θ̂η,T (X) ∈ RdT is known as the Gibbs estimator.
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Remark that, by (2.2) and the normality of the innovations, the risk of any θ̂ ∈ RdT is

computed as the absolute moment of a centered Gaussian, namely

R
(
fθ̂
)
= R

(
θ̂
)
=

(
2
(
θ̂ − θ

)′
ΓT

(
θ̂ − θ

)
+ 2σ2

)1/2

π1/2
, (5.1)

where ΓT = (γi, j)0≤i, j≤dT−1 is the covariance matrix of the process. In (5.1) the vector θ

originally in Rd is completed by dT − d zeros.

In this context arg infθ∈RN∗ R (θ) ∈ sd(1) gives the true parameter θ generating the pro-

cess. Let us verify Assumption (P-4) by setting conveniently ΘT and πT . Let ∆d∗ > 0

be such that B (θ,∆d∗) ⊆ sd(1).

We express ΘT =
⋃dT

k=1
Θk,T where θ ∈ Θk,T if and only if d (θ) = k. It is interesting to

set Θk,T as the part of the stability domain of an AR(k) process satisfying Assumptions

(P-1) and (P-2). Consider Θ1,T = s1(1)× {0}dT−1 ∩ B1

(
0, log T − 1

)
and Θk,T = sk(1)×

{0}dT−k ∩ B1

(
0, log T − 1

)
\Θk−1,T for k ≥ 2. Assume moreover that dT = ⌊logγ T ⌋.

We write πT =
∑dT

k=1
ck,Tπk,T where for all k, ck,Tπk,T is the restriction of πT to Θk,T

with ck,T a real non negative number and πk,T a probability measure on Θk,T . In

this setup ck,T = πT

[
Θk,T

]
and πk,T

[
A ∩ Θk,T

]
= πT

[
A ∩ Θk,T

]
/ck,T if ck,T > 0 and

πk,T

[
A ∩Θk,T

]
= 0 otherwise. The vector

[
c1,T . . . cdT ,T

]
could be interpreted as a

prior on the model order. Set ck,T = ck/(
∑dT

i=1
ci) where ck > 0 is the k-th term of a

convergent series (
∑∞

k=1 ck = c∗ < ∞).

The distribution πk,T is inferred from some transformations explained below. Observe

first that if a ≤ b we have sk(a) ⊆ sk(b). If θ ∈ sk(1) then
[
λθ1 . . . λkθk

]′
∈ sk(1) for

any λ ∈ (−1, 1). Let us set

λT (θ) = min

{
1,

log T − 1

‖θ‖1

}
.

We define Fk,T (θ) =
[
λT (θ)θ1 . . . λk

T
(θ)θk 0 . . . 0

]′
∈ RdT . Remark that for any

θ ∈ sk(1), ‖Fk,T (θ)‖1 ≤ λT (θ)‖θ‖1 ≤ log T − 1. This gives us an idea to generate vectors

in Θk,T . Our distribution πk,T is deduced from:

Algorithm 1: πk,T generation

input an effective dimension k, the number of observations T and Fk,T ;

generate a random θ uniformly on sk(1);

return Fk,T (θ)

The distribution πk,T is lower bounded by the uniform distribution on sk(1).

Provided any γ ≥ 1, let T∗ = min{T : dT ≥ dγ, log T ≥ d1/22d}. Since sk(1) ⊆

B(0, 2k − 1) (see [19, Lemma 1]) and k1/2‖θ‖ ≥ ‖θ‖1 for any θ ∈ Rk, the constraint

‖θ‖1 ≤ log T − 1 becomes redundant in Θk,T for 1 ≤ k ≤ d and T ≥ T∗, i.e. Θ1,T =

s1(1)× {0}dT−1 and Θk,T = sk(1)× {0}dT−k\Θk−1,T for 2 ≤ k ≤ d. We define the sequence

of Assumption (P-4) as θT = 0 for T < T∗ and θT = arg infθ∈ΘT
R(θ) for T ≥ T∗.

Remark that the first d components of θT are constant for T ≥ T∗ (they correspond

to the θ ∈ Rd generating the AR(d) process), and the last dT − d are zero. Let ∆1∗ =
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2 log 2 − 1. Then, we have for T < T∗ and all ∆ ∈ [0,∆1∗]

πT [B (θT ,∆) ∩ ΘT ] ≥ c1,Tπ1,T

[
B (0,∆) ∩ s1(1) × {0}dT−1

]
≥

c1

c∗
∆ .

Furthermore, for T ≥ T∗ and ∆ ∈ [0,∆d∗]

πT [B (θT ,∆) ∩ ΘT ] ≥ cd,Tπd,T

[
B (θT ,∆) ∩ sd(1) × {0}dT−d

]
≥

cd

2d2
c∗
∆

d .

Assumption (P-4) is then fulfilled for any γ ≥ 1 with

C1 = max

{
0, (R (0) − inf

θ∈ΘT

R (θ))T 1/2 log−3 T, 4 ≤ T < T∗

}

C2 = min

{
1,

c1

c∗
,

cd

2d2
c∗

}

C3 = min {1, 4∆1∗, T∗∆d∗} .

Let qη,T be the constant function 1, this means that the proposal has the same distribu-

tion πT . Let us bound the ratio (4.2).

βη,T (X) = inf
θ∈ΘT

qη,T (θ)

πη,T (θ |X )
= inf

θ∈ΘT

dT∑

k=1

ck,T

∫

Θk,T

exp (−ηrT (z |X )) πk,T (dz)

exp (−ηrT (θ |X ))

≥

dT∑

k=1

ck,T

∫

Θk,T

exp (−ηrT (z |X )) πk,T (dz) > 0 . (5.2)

Now note that

∣∣∣xt − fθ
(
(xt−i)i≥1

)∣∣∣ ≤ |xt | +

d(θ)∑

j=1

∣∣∣θ j

∣∣∣
∣∣∣xt− j

∣∣∣ ≤ log T max
j=0,...,d(θ)

∣∣∣xt− j

∣∣∣ . (5.3)

Plugging the bound (5.3) on (5.2) with η = ηT

βηT ,T (x) ≥

dT∑

k=1

ck

∫

Θk

exp (−ηT rT (z |x )) πk (dz) ≥ exp

(
−

T 1/2

4
max

j=0,...,dT

∣∣∣xt− j

∣∣∣
)
,

we deduce that

1

βηT ,T (x)
≤

dT∑

k=0

exp


T 1/2

∣∣∣xt− j

∣∣∣
4

 . (5.4)

Taking (5.4) into account, setting γ = 1 (thus dT = ⌊log T ⌋), using Assumption (P-3),
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that K = 1 and applying the Cauchy-Schwarz inequality we get

AηT ,T = 3K

∫

XZ

1

βηT ,T (x)

∫

XZ

sup
θ∈ΘT

∣∣∣∣ fθ (y) − fθ̂ηT ,T (x) (y)
∣∣∣∣ π0 (dy) π0 (dx)

≤ 3 (dT + 1) d
1/2

T
π0

[
exp

(
T 1/2 |X1|

4

)]
π0 [|X1|] sup

θ∈ΘT

||θ||

≤ 6 log3/2 Tπ0

[
exp

(
T 1/2 |X1|

4

)]
π0 [|X1|] .

As X1 is centered and normally distributed of variance γ0, π0 [|X1|] = (2γ0/π)
1/2 and

π0[exp(T 1/2 |X1| /4)] = γ0T 1/2 exp(γ0T/32)/4.

From n ≥ M∗ (T, ε) = 9γ3
0
T 2 exp (γ0T/16) /(2πε2 log3 T ) the result of Theorem 4.1 is

reached. This bound of M (T, ε) is prohibitive from a computational viewpoint. That

is why we limit the number of iterations to a fixed n∗.

What we obtain from MCMC is f̄ηT ,T,n (y |X ) = θ̄′
ηT ,T,n

(X) y1:dT
with θ̄ηT ,T,n (X) =

∑n−1
i=0 θηT ,T,i (X) /n. Remark that f̄ηT ,T,n (· |X ) = fθ̄ηT ,T,n(X). The risk is expressed as

R
(
f̄ηT ,T,n (· |X )

)
=

(
2
(
θ̄ηT ,T,n (X) − θ

)′
Γ (Y)

(
θ̄ηT ,T,n (X) − θ

)
+ 2σ2

)1/2

π1/2
.

5.2 Numerical work

Consider 100 realisations of an autoregressive processes X simulated with the same

θ ∈ sd (δ) for d = 8 and δ = 3/4 and with σ = 1. Let c(i), i = 1, 2 the sequences

defining two different priors in the model order:

1. c
(1)

k
= k−2, the sparsity is favoured,

2. c
(2)

k
= e−k, the sparsity is strongly favoured.

For each sequence c and for each value of T ∈ {2 j, j = 6, . . . , 12} we compute θ̄ηT ,T,n∗ ,

the MCMC approximation of the Gibbs estimator using Algorithm 2 with η = ηT .

Algorithm 2: Independent Hastings Sampler

input the sample X1:T of X, the prior c, the learning rate η, the generators πk,T

for k = 1, . . . , dT and a maximum iterations number n∗;

initialization θη,T,0 = 0;

for i=1 to n∗ − 1 do

generate k ∈ {1, . . . , dT } using the prior c;

generate θcandidate ∼ πk,T ;

generate U ∼ U(0, 1);

if U ≤ αη,T,X(θη,T,i−1, θcandidate) then

θη,T,i = θcandidate else

θη,T,i = θη,T,i−1;

return θ̄η,T,n∗ (X) =
∑n∗−1

i=0 θη,T,k (X) /n∗.
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The acceptance rate is computed as αη,T,X(θ1, θ2) = exp (ηrT (θ1 |X ) − ηrT (θ2 |X )).

Algorithm 1 used by the distributions πk,T generates uniform random vectors on sk (1)

by the method described in [6]. It relies in the Levinson-Durbin recursion algorithm.

We also implemented the numerical improvements of [3].

Set ε = 0.1. Figure 1 displays the (1 − ε)-quantiles in data R(θ̄ηT ,T,n
∗ (X)) − (2/π)1/2σ2

for c(1) and c(2) using different values of n∗.
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Figure 1: The plots represent the 0.9-quantiles in data R(θ̄ηT ,T,n
∗ (X)) − (2/π)1/2σ2 for

T = 32, 64, . . . , 4096. The graph on the left corresponds to the order prior c
(1)

k
= k−2

while that on the right corresponds to c
(2)

k
= e−k. The solid curves were plotted with

n∗ = 100, the dashed ones with n∗ = 1000 and as a reference, the dotted curve is

proportional to log3 T/T 1/2.

Note that, for the proposed algorithm the prediction risk decreases very slowly when

the number T of observations grows and the number of MCMC iterations remains

constant. If n∗ = 1000 the decaying rate is faster than if n∗ = 100 for smaller values

of T . For T ≥ 2000 we observe that both rates are roughly the same in the logarithmic

scale. This behaviour is similar in both cases presented in Figure 1. As expected, the

risk of the approximated predictor does not converge as log3 T/T 1/2.

6 Discussion

There are two sources of error in our method: prediction (of the exact Gibbs predictor)

and approximation (using the MCMC). The first one decays when T grows and the

obtained guarantees for the second one explode. We found a possibly pessimistic upper

bound for M(T, ǫ). The exponential growing of this bound is the main weakness of our

procedure. The use of a better adapted proposal in the MCMC algorithm needs to be

investigated. The Metropolis Langevin Algorithm (see [4]) gives us an insight in this

direction. However it is encouraging to see that, in the analysed practical case, the risk

of f̄ηT ,T,n∗ (· |X ) does not increase with T .

13



Acknowledgements

The author is specially thankful to François Roueff, Christophe Giraud, Peter Weyer-

Brown and the two referees for their extremely careful readings and highly pertinent

remarks which substantially improved the paper. This work has been partially sup-
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7 Technical proofs

7.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the same tools used by [2] up to Lemma 3. For

the sake of completeness we quote the essential ones.

We denote byM1
+

(F) the set of probability measures on the measurable space (F,F ).

Let ρ, ν ∈ M1
+

(F), K (ρ, ν) stands for the Kullback-Leibler divergence of ν from ρ.

K (ρ, ν) =

{ ∫
log

dρ

dν
(θ) ρ (dθ) , if ρ≪ ν

+∞ , otherwise .

The first lemma can be found in [8, Equation 5.2.1].

Lemma 1 (Legendre transform of the Kullback divergence function). Let (F,F ) be

any measurable space. For any ν ∈ M1
+

(F) and any measurable function h : F → R

such that ν
[
exp (h)

]
< ∞ we have,

ν
[
exp (h)

]
= exp

 sup
ρ∈M1

+(F)

(ρ [h] − K (ρ, ν))

 ,

with the convention ∞ − ∞ = −∞. Moreover, as soon as h is upper-bounded on the

support of ν, the supremum with respect to ρ in the right-hand side is reached by the

Gibbs measure ν {h}.

For a fixed C > 0, let ξ̃
(C)
t = max {min {ξt,C} ,−C}. Consider X̃t = H(̃ξ

(C)
t , ξ̃

(C)

t−1
, . . .).

Denote X̃ = (X̃t)t∈Z and by R̃ (θ) and r̃T

(
θ
∣∣∣X̃

)
the respective exact and empirical risks

associated with X̃ in θ.

R̃ (θ) = E

[
ℓ

(
̂̃X
θ

t , X̃t

)]
,

r̃T

(
θ
∣∣∣X̃

)
=

1

T − d (θ)

T∑

t=d(θ)+1

ℓ

(
̂̃X
θ

t , X̃t

)
,

where ̂̃X
θ

t = fθ((X̃t−i)i≥1).

This thresholding is interesting because truncated CBS are weakly dependent processes

(see [2, Section 4.2]).
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A Hoeffding type inequality introduced in [20, Theorem 1] provides useful controls on

the difference between empirical and exact risks of a truncated process.

Lemma 2 (Laplace transform of the risk). Let ℓ be a loss function meeting Assump-

tion (L) and X = (Xt)t∈Z a process satisfying Assumption (M). For all T ≥ 2, any

{ fθ, θ ∈ ΘT } satisfying Assumption (P-1), ΘT such that dT , defined in (2.6), is at most

T/2, any truncation level C > 0, η ≥ 0 and θ ∈ ΘT we have,

E

[
exp

(
η
(
R̃(θ) − r̃T

(
θ
∣∣∣X̃

)))]
≤ exp

(
4η2k2(T,C)

T

)
, (7.1)

and

E

[
exp

(
η
(
r̃T

(
θ
∣∣∣X̃

)
− R̃(θ)

))]
≤ exp

(
4η2k2(T,C)

T

)
, (7.2)

where k(T,C) = 21/2CK(1 + LT )
(
A∗ + Ã∗

)
. The constants Ã∗ and A∗ are defined in

(2.4) and (2.5) respectively, K and LT in Assumptions (L) and (P-1) respectively.

The following lemma is a slight modification of [2, Lemma 6.5]. It links the two

versions of the empirical risk: original and truncated.

Lemma 3. Suppose that Assumption (L) holds for the loss function ℓ, Assumption (M)

holds for X = (Xt)t∈Z and Assumption (I) holds for the innovations with ζ = A∗; A∗
is defined in (2.5). For all T ≥ 2, any { fθ, θ ∈ ΘT } meeting Assumption (P-1) with

ΘT such that dT , defined in (2.6), is at most T/2, any truncation level C > 0 and any

0 ≤ η ≤ T/4 (1 + LT ) we have,

E

[
exp

(
η sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
)]
≤ exp (ηϕ (T,C, η)) ,

where

ϕ(T,C, η) = 2K(1 + LT )φ(A∗)

(
A∗C

exp (A∗C) − 1
+ η

4K(1 + LT )

T

)
,

with K and LT defined in Assumptions (L) and (P-1) respectively.

Finally we present a result on the aggregated predictor defined in (3.1). The proof is

partially inspired by that of [2, Theorem 3.2].

Lemma 4. Let ℓ be a loss function such that Assumption (L) holds and let X = (Xt)t∈Z

a process satisfying Assumption (M) with probability distribution π0. For each T ≥ 2 let

{ fθ, θ ∈ ΘT } be a set of predictors and πT ∈ M
1
+

(ΘT ) any prior probability distribution

on ΘT . We build the predictor f̂η,T (· |X ) following (3.1) with any η > 0. For any ε > 0
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and any truncation level C > 0, with π0-probability at least 1 − ε we have,

R
(
f̂η,T (· |X )

)
≤ inf
ρ∈M1

+
(ΘT )

{
ρ [R] +

2K (ρ, πT )

η

}
+

2 log

(
2

ε

)

η

+
1

2η
log

(
E

[
exp

(
2η

(
R̃ − r̃T

))])
+

1

2η
log

(
E

[
exp

(
2η

(
r̃T − R̃

))])

+
2

η
log

(
E

[
exp

(
2η sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
)])
.

Proof. We use Tonelli’s theorem and Jensen’s inequality with the convex function g to

obtain an upper bound for R
(
f̂η,T (· |X )

)

R
(
f̂η,T (· |X )

)
=

∫

XZ

g



∫

ΘT

(
fθ

(
(yt−i)i≥1

)
− yt

)
πT {−ηrT (· |X )} (dθ)

 π0 (dy)

≤

∫

XZ



∫

ΘT

g
(
fθ

(
(yt−i)i≥1

)
− yt

)
πT {−ηrT (· |X )} (dθ)

 π0 (dy)

=

∫

ΘT



∫

XZ

g
(
fθ

(
(yt−i)i≥1

)
− yt

)
π0 (y)

 πT {−ηrT (· |X )} (dθ) = πT {−ηrT (· |X )} [R] .

In the remainder of this proof we search for upper bounding πT {−ηrT (· |X )} [R].

First, we use the relationship:

R − rT (· |X ) =
(
R̃ − r̃T

(
·
∣∣∣X̃

))
+

(
R − R̃

)
−

(
rT (· |X ) − r̃T

(
·
∣∣∣X̃

))
. (7.3)

For the sake of simplicity and while it does not disrupt the clarity, we lighten the no-

tation of rT and r̃T . We now suppose that in the place of θ we have a random variable

distributed as πT ∈ M
1
+

(ΘT ). This is taken into account in the following expectations.

The identity (7.3) and the Cauchy-Schwarz inequality lead to

E

[
exp

(
η

2
(R − rT )

)]
= E

[
exp

(
η

2

(
R̃ − r̃T

))
exp

(
η

2

((
R − R̃

)
− (rT − r̃T )

))]

≤
(
E

[
exp

(
η
(
R̃ − r̃T

))]
E

[
exp

(
η
((

R − R̃
)
− (rT − r̃T )

))])1/2

≤

(
E

[
exp

(
η
(
R̃ − r̃T

))]
E

[
exp

(
η sup
θ∈ΘT

∣∣∣∣
(
R − R̃

)
(θ) − (rT − r̃T ) (θ)

∣∣∣∣
)])1/2

. (7.4)

Observe now that R (θ) = E [rT (θ |X )] and R̃ (θ) = E[̃rT (θ|X̃)]. Jensen’s inequality for
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the exponential function gives that

exp

(
η sup
θ∈ΘT

∣∣∣R (θ) − R̃ (θ)
∣∣∣
)
≤ exp

(
ηE

[
sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
])

≤ E

[
exp

(
η sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
)]
. (7.5)

From (7.5) we see that

E

[
exp

(
η sup
θ∈ΘT

∣∣∣∣
(
R − R̃

)
(θ) − (rT − r̃T ) (θ)

∣∣∣∣
)]

≤ E

[
exp

(
η sup
θ∈ΘT

∣∣∣R (θ) − R̃ (θ)
∣∣∣
)

exp

(
η sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
)]

≤

(
E

[
exp

(
η sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
)])2

. (7.6)

Combining (7.4) and (7.6) we obtain

E

[
exp

(
η

2
(R − rT (· |X ))

)]
≤

(
E

[
exp

(
η
(
R̃ − r̃T

))])1/2

E

[
exp

(
η sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
)]
. (7.7)

Let Lη,T,C = log((E[exp(η(R̃ − r̃T ))])1/2
E[exp(η supθ∈ΘT

|rT (θ|X) − r̃T (θ|X̃)|)]). Remark

that the left term of (7.7) is equal to the integral of the expression enclosed in brackets

with respect to the measure π0 × πT . Changing η by 2η and thanks to Lemma 1 we get

π0

exp

 sup
ρ∈M1

+
(ΘT )

(ηρ[R − rT (· |X )] − K (ρ, πT ))


 ≤ exp

(
L2η,T,C

)
.

Markov’s inequality implies that for all ε > 0, with π0- probability at least 1 − ε

sup
ρ∈M1

+
(ΘT )

(ηρ [R − rT (· |X )] − K (ρ, πT )) − log

(
1

ε

)
− L2η,T,C ≤ 0 .

Hence, for any πT ∈ M
1
+

(ΘT ) and η > 0, with π0- probability at least 1 − ε, for all

ρ ∈ M1
+

(ΘT )

ρ [R − rT (· |X )] −
1

η
K (ρ, πT ) −

1

η
log

(
1

ε

)
−

L2η,T,C

η
≤ 0 . (7.8)

By setting ρ = πT {−ηrT (· |X )} and relying on Lemma 1, we have

K (πT {−ηrT } , πT ) = πT {−ηrT }

[
log

dπT {−ηrT }

dπT

]
= πT {−ηrT }

[
log

exp (−ηrT )

πT

[
exp (−ηrT )

]
]

= πT {−ηrT }
[
−ηrT

]
− log

(
πT

[
exp (−ηrT )

])

= πT {−ηrT }
[
−ηrT

]
+ inf
ρ∈M1

+
(ΘT )

{
ρ
[
ηrT

]
+K (ρ, πT )

}
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Using (7.8) with ρ = πT {−ηrT (· |X )} it follows that, with π0- probability at least 1 − ε,

πT {−ηrT (· |X )} [R] ≤ inf
ρ∈M1

+(ΘT )

{
ρ [rT (· |X )] +

K (ρ, πT )

η

}
+

log

(
1

ε

)

η
+

L2η,T,C

η
.

To upper bound ρ[rT (·|X)] we use an upper bond on ρ [rT (·|X) − R]. We obtain an

inequality similar to (7.8) with ρ [R − rT (·|X)] replaced by ρ [rT (·|X) − R] and Lη,T,C

replaced by L′
η,T,C

= log((E[exp(η(̃rT − R̃))])1/2
E[exp(η supθ∈ΘT

|rT (θ|X) − r̃T (θ|X̃)|)]).

This provides us another inequality satisfied with π0- probability at least 1−ε. To obtain

a π0- probability of the intersection larger than 1 − ε we apply previous computations

with ε/2 instead of ε and hence,

πT {−ηrT (· |X )} [R] ≤ inf
ρ∈M1

+
(ΘT )

{
ρ [R] +

2K (ρ, πT )

η

}
+

2 log

(
2

ε

)

η

+
1

2η
log

(
E

[
exp

(
2η

(
R̃ − r̃T

))])
+

1

2η
log

(
E

[
exp

(
2η

(
r̃T − R̃

))])

+
2

η
log

(
E

[
exp

(
2η sup
θ∈ΘT

∣∣∣∣rT (θ |X ) − r̃T

(
θ
∣∣∣X̃

)∣∣∣∣
)])
.

�

We can now proof Theorem 3.1.

Proof. Let π0,C denote the distribution on XZ × XZ of the couple (X, X̃). Fubini’s

theorem and (7.1) of Lemma 2 imply that

E

[
exp

(
2η

(
R̃ − r̃T

))]
= π0,C × πT

[
exp

(
2η

(
R̃ − r̃T

))]
= πT × π0,C

[
exp

(
2η

(
R̃ − r̃T

))]

≤ exp

(
16η2k2(T,C)

T

)
. (7.9)

Using (7.2), we analogously get

E

[
exp

(
2η

(
r̃T − R̃

))]
≤ exp

(
16η2k2(T,C)

T

)
. (7.10)

Consider the set of probability measures
{
ρθT ,∆, T ≥ 2, 0 ≤ ∆ ≤ ∆T

}
⊂ M1

+
(ΘT ), where

θT is the parameter defined by Assumption (P-4) and ρθT ,∆ (θ) ∝ πT (θ) 1B(θT ,∆)∩ΘT
(θ).

Lemma 4, together with Lemma 3, (7.9) and (7.10) guarantee that for all 0 < η ≤

T/8 (1 + LT )

R
(
f̂η,T (· |X )

)
≤ inf

0≤∆≤∆T

{
ρθT ,∆ [R] +

2K
(
ρθT ,∆, πT

)

η

}
+

16ηk2(T,C)

T
+

2 log

(
2

ε

)

η
+

4ϕ(T,C, 2η) . (7.11)
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Thanks to assumptions (L) and (P-3), for any T ≥ 2 and θ ∈ B (θT ,∆)

R (θ) − R (θT ) ≤ Kπ0

[∣∣∣
∣∣∣ fθ

(
(Yt−i)i≥1

)
− fθT

(
(Yt−i)i≥1

)∣∣∣
∣∣∣
]
≤ KDd

1/2

T
∆ . (7.12)

For T ≥ 4 Assumption (P-4) gives

K
(
ρθT ,∆, πT

)
= log

(
1

πT [B (θT ,∆) ∩ ΘT ]

)
≤ −n

1/γ

T
log (∆) − log (C2) . (7.13)

Plugging (7.12) and (7.13) into (7.11) and using again Assumption (P-4)

R
(
f̂η,T (· |X )

)
≤R (θT ) + inf

0≤∆≤∆T

E1d
1/2

T
∆ −

2n
1/γ

T
log (∆)

η

 +
E2η (1 + LT )2 C2

T

+
E3 (1 + LT ) C

exp (A∗C) − 1
+

2 log

(
2

ε

)
− 2 log (C2)

η
+
E4 (1 + LT )2 η

T
(7.14)

where E1 = KD, E2 = 32K2
(
A∗ + Ã∗

)2
, E3 = 8Kφ(A∗)A∗ and E4 = 32K2φ(A∗).

We upper bound dT by T/2, nT by logγ T and substitute ∆T = C3/T . Since it is difficult

to minimize the right term of (7.14) with respect to η and C at the same time, we

evaluate them in certain values to obtain a convenient upper bound.

At a fixed ε, the convergence rate of
[
2 log (2/ε) − 2 log (C2)

]
/η + E4 (1 + LT )2 η/T is

at best log T/T 1/2, and we get it doing η ∝ T 1/2/ log T . As η ≤ T/8(1 + LT ) we set

η = ηT = T 1/2/(4 log T ).

The order of the already chosen terms is log3 T/T 1/2, doing C = log T/A∗ we preserve

it. Taking into account that R (θT ) ≤ infθ∈ΘT
R (θ) + C1 log3 T/T 1/2 the result follows.

�

7.2 Proof of Proposition 1

Considering that Assumption (L) holds we get

∣∣∣∣R
(
f̄η,T,n (· |X )

)
− R

(
f̂η,T (· |X )

)∣∣∣∣ ≤ K

∫

XZ

∣∣∣ f̄η,T,n (y |X ) − f̂η,T (y |X )
∣∣∣ π0 (dy)

Observe that the last expression depends on X1:T and Φη,T (X). We bound the expecta-

tion to infer a bound in probability.

Tonelli’s theorem and Jensen’s inequality lead to

νη,T

[∣∣∣∣R
(
f̄η,T,n (· |X )

)
− R

(
f̂η,T (· |X )

)∣∣∣∣
]
≤

K

∫

XZ

∫

XZ



∫

Θ
N

T

∣∣∣ f̄η,T,n (y |x ) − f̂η,T (y |x )
∣∣∣2 µη,T (dφ |x )



1/2

π0 (dy) π0 (dx) . (7.15)
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We are then interested in upper bounding the expression under the square root. To that

end, we use [16, Theorem 3.1] which implies that for any x

∫

Θ
N

T

∣∣∣ f̄η,T,n (y |x ) − f̂η,T (y |x )
∣∣∣2 µη,T (dφ |x ) ≤

sup
θ∈ΘT

(
fθ (y) − f̂η,T (y |x )

)2
(

4

βη,T (x)
− 3

) (
1

n
+

2

n2βη,T (x)

)
.

Plugging this on (7.15), using that n ≥ 1 and that

((
4 − 3βη,T (x)

) (
2 + βη,T (x)

))1/2
≤ 3 ,

we obtain the following

νη,T

[∣∣∣∣R
(
f̄η,T,n (· |X )

)
− R

(
f̂η,T (· |X )

)∣∣∣∣
]
≤

3K

n1/2

∫

XZ

1

βη,T (x)

∫

XZ

sup
θ∈ΘT

∣∣∣ fθ (y) − f̂η,T (y |x )
∣∣∣ π0 (dy) π0 (dx) .

The result follows from Markov’s inequality.
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