Time series prediction via aggregation : an oracle bound including numerical cost

Andres Sanchez-Perez

To cite this version:

Andres Sanchez-Perez. Time series prediction via aggregation : an oracle bound including numerical cost. 2013. hal-00905418v3

HAL Id: hal-00905418 https://hal.science/hal-00905418v3

Preprint submitted on 27 Apr 2014 (v3), last revised 26 May 2014 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Time series prediction via aggregation: an oracle bound including numerical cost

Andres Sanchez-Perez
andres.sanchez-perez@telecom-paristech.fr
Institut Mines-Télécom ; Télécom ParisTech ; CNRS LTCI

April 27, 2014

Abstract

We address the problem of forecasting a time series meeting the Causal Bernoulli Shifts model, using a parametric family of predictors. The aggregation technique provides a predictor with well established and quite satisfying theoretical properties expressed by an oracle inequality for the prediction risk. The numerical computation of the aggregated predictor usually relies on a Markov chain Monte Carlo method whose convergence should be evaluated. In particular, it is crucial to bound the number of simulations needed to achieve a numerical precision of the same order as the prediction risk. In this direction we present a fairly general result which can be seen as an oracle inequality including the numerical cost of the predictor computation. The numerical cost appears by letting the oracle inequality depend on the number of simulations required in the Monte Carlo approximation. Some numerical experiments are then carried out to support our findings.

1 Introduction

The objective of our work is to forecast a stationary time series $Y=\left(Y_{t}\right)_{t \in \mathbb{Z}}$ taking values in $X \subseteq \mathbb{R}^{r}$ with $r \geq 1$. For this purpose we propose and study an aggregation scheme using exponential weights.
Consider a collection of experts giving their individual predictions (also called expert's advice) at each moment t. An aggregation method consists of building a new prediction from the set of expert's advice, which is nearly as good as the best among them, given a risk criterion (see [17]). This kind of result is established by oracle inequalities. The power and the beauty of the technique lie in its simplicity and versatility. The more basic and general context of application is individual sequences, where no assumption on the observations is made (see [9] for a comprehensive overview). Nevertheless, results need to be adapted if we set a stochastic model on the observations.
The use of exponential weighting in aggregation and its links with the PAC-Bayesian approach has been investigated for example in [5], [8] and [11]. Dependent processes have not received much attention from this viewpoint, except in [1] and [2].

In the present paper we study the properties of the Gibbs predictor, applied to Causal Bernoulli Shifts (CBS). CBS are an example of dependent processes (see [12] and [13]).
Our predictor is expressed as an integral since the set from which we do the aggregation is in general not finite. Large dimension is a trending setup and the computation of this integral is a major issue. We use classical Markov chain Monte Carlo (MCMC) methods to approximate it. Results from Łatuszyński [15], [16] control the number of MCMC iterations to obtain precise bounds for the integral's approximation. These bounds are in expectation and probability with respect to the distribution of the underlying Markov chain.
In this contribution we first slightly revisit certain lemmas presented in [2], [8] and [20] to derive an oracle bound for prediction risk of the Gibbs predictor. We stress that the inequality controls the convergence rate of the exact predictor. Our second goal is to investigate the impact of the predictor's approximation on the convergence guarantees described for its exact version. Combining the PAC-Bayesian bounds with the MCMC control, we then provide an oracle inequality that applies to the predictor's MCMC approximation, which is actually used in practice.
The paper is organised as follows: we introduce a motivating example and several definitions and assumptions in Section 2. In Section 3 we describe the methodology of aggregation and provide the oracle inequality for the exact Gibbs predictor. The stochastic approximation is studied in Section 4. We state a general proposition independent of the model for the Gibbs predictor. Next, we apply it to the more particular framework delineated in our paper. A concrete case study is analysed in Section 5, including some numerical work. A brief discussion follows in Section 6. The proofs of most of the results are deferred to Section 7.
Throughout the paper, for $\boldsymbol{a} \in \mathbb{R}^{q}$ with $q \in \mathbb{N}^{*},\|\boldsymbol{a}\|$ denotes its Euclidean norm, $\|\boldsymbol{a}\|=\left(\sum_{i=1}^{q} a_{i}^{2}\right)^{1 / 2}$ and $\|\cdot\|_{1}$ its 1-norm $\|\boldsymbol{a}\|_{1}=\sum_{i=1}^{q}\left|a_{i}\right|$. We denote, for $\boldsymbol{a} \in \mathbb{R}^{q}$ and $\Delta>0, B(\boldsymbol{a}, \Delta)=\left\{\boldsymbol{a}_{1} \in \mathbb{R}^{q}:\left\|\boldsymbol{a}-\boldsymbol{a}_{1}\right\| \leq \Delta\right\}$ and $B_{1}(\boldsymbol{a}, \Delta)=\left\{\boldsymbol{a}_{1} \in \mathbb{R}^{q}:\left\|\boldsymbol{a}-\boldsymbol{a}_{1}\right\|_{1} \leq \Delta\right\}$ the corresponding balls centered at \boldsymbol{a} of radius $\Delta>0$. In general bold characters represent column vectors and normal characters their components; for example $\boldsymbol{y}=\left(y_{i}\right)_{i \in \mathbb{Z}}$. The use of subscripts with ' $:$ ' refers to certain vector's components $\boldsymbol{y}_{1: k}=\left(y_{i}\right)_{1 \leq i \leq k}$, or elements of a sequence $X_{1: k}=\left(X_{t}\right)_{1 \leq t \leq k}$. For a random variable U distributed as v and a measurable function $h, v[h(U)]$ or simply $v[h]$ stands for the expectation of $h(U)$: $v[h]=\int h(u) v(\mathrm{~d} u)$.

2 Problem statement and main assumptions

Real stable autoregressive processes of a fixed order, referred to as the $\operatorname{AR}(d)$, are one of the simplest examples of CBS. They are defined as the stationary solution of

$$
\begin{equation*}
X_{t}=\sum_{j=1}^{d} \theta_{j} X_{t-j}+\sigma \xi_{t} \tag{2.1}
\end{equation*}
$$

where the ξ_{t} are i.i.d. real random variables with $\mathbb{E}\left[\xi_{t}\right]=0$ and $\mathbb{E}\left[\xi_{t}^{2}\right]=1$.
We dispose of several efficient estimates for the parameter $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{d}\right)^{\prime}$ which can
be calculated via simple algorithms as Levinson-Durbin or Burg algorithm for example. From them we derive also efficient predictors. However, as the model is simple to handle, we use it to progressively introduce our general setup.
Denote

$$
A(\boldsymbol{\theta})=\left[\begin{array}{ccccc}
\theta_{1} & \theta_{2} & \ldots & \ldots & \theta_{d} \\
1 & 0 & \ldots & \ldots & 0 \\
0 & 1 & 0 & \ddots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & 0
\end{array}\right]
$$

$\boldsymbol{X}_{t-1}=\left(X_{t-1} \ldots X_{t-d}\right)^{\prime}$ and $\boldsymbol{e}_{1}=(1,0, \ldots, 0)^{\prime}$ the first canonical vector of $\mathbb{R}^{d} . M^{\prime}$ represents the transpose of matrix M (including vectors). The recurrence (2.1) gives

$$
\begin{equation*}
X_{t}=\boldsymbol{\theta}^{\prime} \boldsymbol{X}_{t-1}+\sigma \xi_{t}=\sigma \sum_{j=0}^{+\infty} \boldsymbol{e}_{1}^{\prime} A^{j}(\boldsymbol{\theta}) \boldsymbol{e}_{1} \xi_{t-j} . \tag{2.2}
\end{equation*}
$$

The eigenvalues of $A(\boldsymbol{\theta})$ are the inverses of the roots of the autoregressive polynomial $\boldsymbol{\theta}(z)=1-\sum_{k=1}^{d} \theta_{k} z^{k}$, then at most δ for some $\delta \in(0,1)$ due to the stability of X (see [7]). In other words $\boldsymbol{\theta} \in s_{d}(\delta)=\left\{\boldsymbol{\theta}: \boldsymbol{\theta}(z) \neq 0\right.$ for $\left.|z|<\delta^{-1}\right\} \subseteq s_{d}(1)$. In this context (or even in a more general one, see [14]) for all $\delta_{1} \in(\delta, 1)$ there is a constant \bar{K} depending only on $\boldsymbol{\theta}$ and δ_{1} such that for all $j \geq 0$

$$
\begin{equation*}
\left|\boldsymbol{e}_{1}^{\prime} A^{j}(\boldsymbol{\theta}) \boldsymbol{e}_{1}\right| \leq \bar{K} \delta_{1}^{j}, \tag{2.3}
\end{equation*}
$$

and then, the variance of X_{t}, denoted γ_{0}, satisfies $\gamma_{0}=\sigma^{2} \sum_{j=0}^{+\infty}\left|\boldsymbol{e}_{1}^{\prime} A^{j}(\boldsymbol{\theta}) \boldsymbol{e}_{1}\right|^{2} \leq \bar{K}^{2} \sigma^{2} /(1-$ δ_{1}^{2}). Let us now define the process which interests us.

Definition 1 (CBS). A time series $X=\left(X_{t}\right)_{t \in \mathbb{Z}}$ is defined as Causal Bernoulli Shifts (CBS) if it meets the representation

$$
X_{t}=H\left(\xi_{t}, \xi_{t-1}, \xi_{t-2}, \ldots\right), \forall t \in \mathbb{Z},
$$

where $\xi=\left(\xi_{s}\right)_{s \in \mathbb{Z}}$ is an i.i.d. sequence of \mathcal{X}^{\prime}-valued random variables called innovations, for some $\mathcal{X}^{\prime} \subseteq \mathbb{R}^{r^{\prime}}, r^{\prime} \geq 1$ and $H:\left(X^{\prime}\right)^{\mathbb{N}} \rightarrow X$ is a function satisfying

$$
\|H(\boldsymbol{u})-H(\boldsymbol{v})\| \leq \sum_{j=0}^{\infty} a_{j}(H)\left\|u_{j}-v_{j}\right\|
$$

for any $\boldsymbol{u}=\left(u_{j}\right)_{j \in \mathbb{N}}, \boldsymbol{v}=\left(v_{j}\right)_{j \in \mathbb{N}} \in\left(X^{\prime}\right)^{\mathbb{N}}$ and such that $\tilde{a}(H)=\sum_{j=0}^{\infty} j a_{j}(H)<\infty$. We denote $a(H)=\sum_{j=0}^{\infty} a_{j}(H)$.

CBS regroup several types of nonmixing stationary Markov chains, real-valued functional autoregressive models and Volterra processes, among other interesting models (see [10]). Thanks to the representation (2.2) and the inequality (2.3) we assert that $\mathrm{AR}(d)$ are CBS with $a_{j}(H)=\sigma \bar{K} \delta_{1}^{j}$.
Results from [1] and [2] need a control on an exponential moment of the innovations, which is provided in the following hypothesis.
(N-1) The process $X=\left(X_{t}\right)_{t \in \mathbb{Z}}$ is a CBS defined by $\xi=\left(\xi_{s}\right)_{s \in \mathbb{Z}}$ and H such that the Laplace transform of ξ_{0} at $a(H)$ is finite, i.e. $\phi(a(H))=\mathbb{E}\left[\exp \left(a(H)\left\|\xi_{0}\right\|\right)\right]<\infty$.

Bounded or Gaussian innovations trivially satisfy this hypothesis.
Let π_{0} denote the probability distribution of the time series Y that we aim to forecast. Observe that for a CBS, π_{0} depends only on H and the distribution of ξ_{0}. For any $f: X^{\mathbb{Z}} \rightarrow X$ measurable and $t \in \mathbb{Z}$ we consider $\widehat{Y}_{t}=f\left(\left(Y_{t-i}\right)_{i \geq 1}\right)$, a possible predictor of Y_{t} from its past. For a given loss function $\ell: X \times \mathcal{X} \rightarrow \mathbb{R}_{+}$, the prediction risk is evaluated by the expectation of $\ell\left(\widehat{Y}_{t}, Y_{t}\right)$

$$
R(f)=\mathbb{E}\left[\ell\left(\widehat{Y}_{t}, Y_{t}\right)\right]=\pi_{0}\left[\ell\left(\widehat{Y}_{t}, Y_{t}\right)\right]=\int_{X^{Z}} \ell\left(f\left(\left(y_{t-i}\right)_{i \geq 1}\right), y_{t}\right) \pi_{0}(\mathrm{~d} \boldsymbol{y})
$$

We assume in the following that the loss function ℓ fulfils the condition:
(L-1) For all $\boldsymbol{y}, \boldsymbol{z} \in \mathcal{X}, \ell(\boldsymbol{y}, \boldsymbol{z})=g(\boldsymbol{y}-\boldsymbol{z})$, for some convex function g which is nonnegative, $g(0)=0$ and K - Lipschitz: $|g(y)-g(z)| \leq K\|y-z\|$.

If \mathcal{X} is a subset of $\mathbb{R}, \ell(y, z)=|y-z|$ satisfies (L-1) with $K=1$.
From estimators of dimension d for $\boldsymbol{\theta}$ we can build the corresponding linear predictors $f_{\boldsymbol{\theta}}(\boldsymbol{y})=\boldsymbol{\theta}^{\prime} \boldsymbol{y}_{1: d}$. Speaking more broadly, consider a set Θ and associated with it a predictors' family $\left\{f_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta\right\}$. For each $\boldsymbol{\theta} \in \Theta$ there is a unique $d=d(\boldsymbol{\theta}) \in \mathbb{N}^{*}$ such that $f_{\theta}: \mathcal{X}^{d} \rightarrow \mathcal{X}$ is a measurable function from which we define

$$
\widehat{Y}_{t}^{\theta}=f_{\theta}\left(Y_{t-1}, \ldots, Y_{t-d}\right),
$$

as a predictor of Y_{t} given its past. We can extend all functions f_{θ} in a trivial way (using dummy variables) to start from $\mathcal{X}^{\mathbb{N}^{*}}$. A natural way to evaluate the predictor associated with $\boldsymbol{\theta}$ is to compute the risk $R(\boldsymbol{\theta})=R\left(f_{\boldsymbol{\theta}}\right)$. We use the same letter R by an abuse of notation.
We observe $X_{1: T}$ from $X=\left(X_{t}\right)_{t \in \mathbb{Z}}$, an independent copy of Y. A crucial goal of this work is to build a predictor function $\hat{f_{T}}$ for Y, inferred from the sample $X_{1: T}$ and Θ such that $R\left(\hat{f_{T}}\right)$ is close to $\inf _{\theta \in \Theta} R(\boldsymbol{\theta})$ with π_{0} - probability close to 1 .
The set Θ also depend on T, we write $\Theta \equiv \Theta_{T}$. Let $d_{T}=\sup _{\theta \in \Theta_{T}} d(\boldsymbol{\theta})$.
The main assumptions on the family of predictors are the following ones.
($\mathbf{E}-1$) The collection $\left\{f_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta_{T}\right\}$ is such that for any $\boldsymbol{\theta} \in \Theta_{T}$ there are $b_{1}(\boldsymbol{\theta}), \ldots$, $b_{d(\boldsymbol{\theta})}(\boldsymbol{\theta}) \in \mathbb{R}_{+}$satisfying for all $\boldsymbol{y}=\left(y_{i}\right)_{i \in \mathbb{N}^{*}}, z=\left(z_{i}\right)_{i \in \mathbb{N}^{*}} \in \mathcal{X}^{\mathbb{N}^{*}}$,

$$
\left\|f_{\theta}(\boldsymbol{y})-f_{\theta}(z)\right\| \leq \sum_{j=1}^{d(\boldsymbol{\theta})} b_{j}(\boldsymbol{\theta})\left\|y_{j}-z_{j}\right\| .
$$

We assume moreover that $L_{T}=\sup _{\boldsymbol{\theta} \in \Theta_{T}} \sum_{j=1}^{d(\boldsymbol{\theta})} b_{j}(\boldsymbol{\theta})<\infty$.
(E-2) The inequality $L_{T}+1 \leq \log T$ holds for all $T \geq 4$.

In the case where $\mathcal{X} \subseteq \mathbb{R}$ and $\left\{f_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta_{T}\right\}$ is so that $\boldsymbol{\theta} \in \mathbb{R}^{d(\boldsymbol{\theta})}$ and $f_{\boldsymbol{\theta}}(\boldsymbol{y})=\boldsymbol{\theta}^{\prime} \boldsymbol{y}_{1: d \boldsymbol{\theta})}$ for all $\boldsymbol{y} \in \mathbb{R}^{\mathbb{N}}$, we have

$$
\left|f_{\theta}(\boldsymbol{y})-f_{\theta}(z)\right| \leq \sum_{j=1}^{d(\theta)}\left|\theta_{j}\right|\left|y_{j}-z_{j}\right| .
$$

The last conditions are satisfied by the linear predictors when Θ_{T} is a subset of the ℓ_{1}-ball of radius $\log T-1$.

3 Prediction via aggregation

The predictor that we propose is defined as an average of predictors f_{θ} based on the empirical version of the risk,

$$
r_{T}(\boldsymbol{\theta} \mid X)=\frac{1}{T-d(\boldsymbol{\theta})} \sum_{t=d(\boldsymbol{\theta})+1}^{T} \ell\left(\widehat{X}_{t}^{\boldsymbol{\theta}}, X_{t}\right) .
$$

where $\widehat{X}_{t}^{\theta}=f_{\theta}\left(\left(X_{t-i}\right)_{i \geq 1}\right)$. The function $r_{T}(\boldsymbol{\theta} \mid X)$ relies on $X_{1: T}$ and can be computed at stage T; this is in fact a statistic.
We consider a prior probability measure π_{T} on Θ_{T}. The prior serves to control the complexity of predictors associated with Θ_{T}. Using π_{T} we can construct one predictor in particular, as detailed in the following.

3.1 Gibbs' predictor

For a measure v and a measurable function h (called energy function) such that $v[\exp (h)]=$ $\int \exp (h) \mathrm{d} v<\infty$, we denote $v\{h\}$ the measure defined as

$$
v\{h\}(\mathrm{d} \boldsymbol{\theta})=\frac{\exp (h(\boldsymbol{\theta}))}{v[\exp (h)]} v(\mathrm{~d} \boldsymbol{\theta}) .
$$

It is known as the Gibbs measure.
Definition 2 (Gibbs' predictor). Given $\eta>0$, called the temperature or the learning rate parameter, we define the Gibbs predictor as the expectation of f_{θ}, where $\boldsymbol{\theta}$ is drawn under $\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}$, that is

$$
\begin{equation*}
\hat{f}_{\eta, T}(\boldsymbol{y} \mid X)=\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}[f \cdot(\boldsymbol{y})]=\int_{\Theta_{T}} f_{\boldsymbol{\theta}}(\boldsymbol{y}) \frac{\exp \left(-\eta r_{T}(\boldsymbol{\theta} \mid X)\right)}{\pi_{T}\left[\exp \left(-\eta r_{T}(\cdot \mid X)\right)\right]} \pi_{T}(\mathrm{~d} \boldsymbol{\theta}) \tag{3.1}
\end{equation*}
$$

3.2 PAC-Bayesian inequality

At this point more care must be taken to describe Θ_{T}. Here and in the following we suppose that $\Theta_{T} \subseteq \mathbb{R}^{n_{T}}$ for some $n_{T} \in \mathbb{N}^{*}$ equipped with the Borel σ-algebra $\mathcal{B}\left(\Theta_{T}\right)$.
A Lipschitz type hypothesis on $\boldsymbol{\theta}$ guarantees the robustness of the set $\left\{f_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \boldsymbol{\Theta}_{T}\right\}$ with respect to the risk R.
(E-3) There is $\mathcal{D}<\infty$ such that for all $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2} \in \Theta_{T}$,

$$
\pi_{0}\left[\left\|f_{\boldsymbol{\theta}_{1}}\left(\left(X_{t-i}\right)_{i \geq 1}\right)-f_{\theta_{2}}\left(\left(X_{t-i}\right)_{i \geq 1}\right)\right\|\right] \leq \mathcal{D} d_{T}^{1 / 2}\left\|\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right\|
$$

Linear predictors satisfy this last condition with $\mathcal{D}=\pi_{0}\left[\left|X_{1}\right|\right]$.
Suppose that the $\boldsymbol{\theta}$ reaching the $\inf _{\boldsymbol{\theta} \in \Theta_{T}} R(\boldsymbol{\theta})$ has some zero components, i.e.
$\operatorname{supp}(\boldsymbol{\theta})<n_{T}$. Any prior with a lower bounded density (with respect to the Lebesgue measure) allocates zero mass on lower dimensional subsets of Θ_{T}. Furthermore, if the density is upper bounded we have $\pi_{T}\left[B(\boldsymbol{\theta}, \Delta) \cap \Theta_{T}\right]=O\left(\Delta^{n_{T}}\right)$ for Δ small enough. As we will notice in the proof of Theorem 3.1, a bound like the previous one would impose a tighter constraint to n_{T}. Instead we set the following condition.
$(\mathbf{P}-1)$ There is a sequence $\left(\boldsymbol{\theta}_{T}\right)_{T \geq 4}$ and constants $C_{1}>0, C_{2}, C_{3} \in(0,1]$ and $\gamma \geq 1$ such that $\theta_{T} \in \Theta_{T}$,

$$
\begin{aligned}
R\left(\boldsymbol{\theta}_{T}\right) & \leq \inf _{\boldsymbol{\theta} \in \Theta_{T}} R(\boldsymbol{\theta})+C_{1} \frac{\log ^{3}(T)}{T^{1 / 2}}, \\
\text { and } \pi_{T}\left[B\left(\boldsymbol{\theta}_{T}, \Delta\right) \cap \Theta_{T}\right] & \geq C_{2} \Delta^{\Delta_{T}^{1 / \gamma}}, \forall 0 \leq \Delta \leq \Delta_{T}=\frac{C_{3}}{T} .
\end{aligned}
$$

A concrete example is provided in Section 5.
We can now present the main result of this section, our PAC-Bayesian inequality concerning the predictor $\hat{f}_{\eta_{T}, T}(\cdot \mid X)$ built following (3.1) with the learning rate $\eta=\eta_{T}=$ $T^{1 / 2} /(4 \log T)$, provided an arbitrary probability measure π_{T} on Θ_{T}.

Theorem 3.1. Let ℓ be a loss function such that Assumption (L-1) holds. Consider $X=\left(X_{t}\right)_{t \in \mathbb{Z}}$ a CBS process with distribution π_{0} satisfying Assumption $(\mathbb{N}-1)$. For each $T \geq 4$ let $\left\{f_{\boldsymbol{\theta}}, \boldsymbol{\theta} \in \Theta_{T}\right\}$ be a collection of predictors meeting Assumptions ($\mathrm{E}-1$), ($\mathrm{E}-2$) and $(\mathrm{E}-3)$ with $d_{T} \leq T / 2$. The set Θ_{T} has dimension $n_{T} \leq \log ^{\gamma} T$ for some $\gamma \geq 1$ and we let π_{T} a probability measure on it such that Assumption (P-1) holds for the same γ. Then for any $\varepsilon>0$, with π_{0}-probability at least $1-\varepsilon$,

$$
R\left(\hat{f}_{\eta_{T}, T}(\cdot \mid X)\right) \leq \inf _{\theta \in \Theta_{T}} R\left(f_{\theta}\right)+\mathcal{E} \frac{\log ^{3} T}{T^{1 / 2}}+\frac{8 \log T}{T^{1 / 2}} \log \left(\frac{1}{\varepsilon}\right)
$$

where

$$
\begin{align*}
\mathcal{E}=C_{1}+8+\frac{2}{\log 2}-\frac{2 \log C_{2}}{\log ^{2} 2}-\frac{4 \log C_{3}}{\log 2}+ & \frac{8 K^{2}(a(H)+\tilde{a}(H))^{2}}{a^{2}(H)}+\frac{K \mathcal{D} C_{3}}{8 \log ^{3} 2} \\
& +\frac{4 K \phi(a(H))}{\log 2}+\frac{2 K^{2} \phi(a(H))}{\log ^{2} 2} \tag{3.2}
\end{align*}
$$

The proof is postponed to Section 7.1.
Here however we insist on the fact that this inequality applies to an exact aggregated predictor $\hat{f}_{\eta_{T}, T}(\cdot \mid X)$. We need to investigate how these predictors are computed and how practical numerical approximations behave compared to the properties of the exact version.

4 Stochastic approximation

Once we have the observations $X_{1: T}$, we use the Metropolis - Hastings algorithm to compute $\hat{f}_{\eta, T}(\cdot \mid X)=\int f_{\theta}(\cdot \mid X) \pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}(\mathrm{d} \boldsymbol{\theta})$. The Gibbs measure $\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}$ is a distribution on Θ_{T} which density $\pi_{\eta, T}(\cdot \mid X)$ with respect to π_{T} is proportional to $\exp \left(-\eta r_{T}(\cdot \mid X)\right)$.

4.1 Metropolis - Hastings algorithm

Given $X \in \mathcal{X}^{\mathbb{Z}}$, the Metropolis-Hastings algorithm generates a Markov chain $\Phi_{\eta, T}(X)=$ $\left(\boldsymbol{\theta}_{\eta, T, n}(X)\right)_{n \geq 0}$ with kernel $P_{\eta, T}$ (only depending on $X_{1: T}$) with the target distribution $\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}$ as the unique invariant measure, based on the transitions of another Markov chain which serves as a proposal (see [21]). We consider a proposal transition of the form $Q_{\eta, T}\left(\boldsymbol{\theta}_{1}, \mathrm{~d} \boldsymbol{\theta}\right)=q_{\eta, T}\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}\right) \pi_{T}(\mathrm{~d} \boldsymbol{\theta})$ where the conditional density kernel $q_{\eta, T}$ (eventually also depending on $X_{1: T}$) on $\Theta_{T} \times \Theta_{T}$ is such that

$$
\begin{equation*}
\beta_{\eta, T}(X)=\inf _{\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right) \in \Theta_{T} \times \Theta_{T}} \frac{q_{\eta, T}\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)}{\boldsymbol{\pi}_{\eta, T}\left(\boldsymbol{\theta}_{2} \mid X\right)} \in(0,1) . \tag{4.1}
\end{equation*}
$$

This is the case of the independent Hastings algorithm, where the proposal is i.i.d. with density $q_{\eta, T}$ such that

$$
\begin{equation*}
\beta_{\eta, T}(X)=\inf _{\boldsymbol{\theta} \in \Theta_{T}} \frac{q_{\eta, T}(\boldsymbol{\theta})}{\pi_{\eta, T}(\boldsymbol{\theta} \mid X)} \in(0,1) . \tag{4.2}
\end{equation*}
$$

In Section 5 we provide an example.
The relation (4.1) implies that the algorithm is uniformly ergodic, i.e. we have a control in total variation norm $\left(\|\cdot\|_{T V}\right)$. Thus, the following condition holds (see [18]).
(A-1) Given $\eta, T>0$, there is $\beta_{\eta, T}: \mathcal{X}^{\mathbb{Z}} \rightarrow(0,1)$ such for any $\boldsymbol{\theta}_{0} \in \Theta_{T}, \boldsymbol{x} \in \mathcal{X}^{\mathbb{Z}}$ and $n \in \mathbb{N}$, the chain $\Phi_{\eta, T}(\boldsymbol{x})$ with transition law $P_{\eta, T}$ and invariant distribution $\pi_{T}\left\{-\eta r_{T}(\cdot \mid \boldsymbol{x})\right\}$ satisfies

$$
\left\|P_{\eta, T}^{n}\left(\boldsymbol{\theta}_{0}, \cdot\right)-\pi_{T}\left\{-\eta r_{T}(\cdot \mid \boldsymbol{x})\right\}\right\|_{T V} \leq 2\left(1-\beta_{\eta, T}(\boldsymbol{x})\right)^{n} .
$$

4.2 Theoretical bounds for the computation

Theorem 3.1 from [16] bounds the mean square error of approximating one integral by the empirical estimate obtained from the successive samples of certain ergodic Markov chains (included those generated by the MCMC method that we use).
Using a MCMC method we add a second source of randomness to the forecasting process and our aim is to measure it. Let $\boldsymbol{\theta}_{0} \in \cap_{T \geq 1} \Theta_{T}$, we set $\boldsymbol{\theta}_{\eta, T, 0}(\boldsymbol{x})=\boldsymbol{\theta}_{0}$ for all $T, \eta>0, \boldsymbol{x} \in \mathcal{X}^{\mathbb{Z}}$. We denote $\mu_{\eta, T}(\cdot \mid X)$ the probability distribution of the Markov chain $\Phi_{\eta, T}(X)$ with initial point $\boldsymbol{\theta}_{0}$ and kernel $P_{\eta, T}$.
Let $v_{\eta, T}$ denote the probability distribution of $\left(X, \Phi_{\eta, T}(X)\right.$); it is defined by setting for all set $A \in(\mathcal{B}(\mathcal{X}))^{\otimes \mathbb{Z}}$ and $B \in\left(\mathcal{B}\left(\Theta_{T}\right)\right)^{\otimes \mathbb{N}}$

$$
v_{\eta, T}(A \times B)=\int 1_{A}(\boldsymbol{x}) 1_{B}(\boldsymbol{\phi}) \mu_{\eta, T}(\mathrm{~d} \boldsymbol{\phi} \mid \boldsymbol{x}) \pi_{0}(\mathrm{~d} \boldsymbol{x})
$$

Given $\Phi_{\eta, T}=\left(\boldsymbol{\theta}_{\eta, T, n}\right)_{n \geq 0}$, we then define for $n \in \mathbb{N}^{*}$

$$
\bar{f}_{\eta, T, n}=\frac{1}{n} \sum_{i=0}^{n-1} f_{\theta_{\eta, T, i}}
$$

Since our chain depends on X, we make it explicit by using the notation $\bar{f}_{\eta, T, n}(\cdot \mid X)$. The cited Theorem 3.1 from [16] leads to a proposition that applies to the numerical approximation of the Gibbs predictor (the proof is in Section 7.2). We stress that this is independent of the model (CBS or any), of the predictors' family and of the theoretical guarantees of Theorem 3.1.

Proposition 1. Let ℓ be a loss function meeting Assumption (L-1). Consider $X=$ $\left(X_{t}\right)_{t \in \mathbb{Z}}$ any process with an arbitrary probability distribution π_{0}. Given $T \geq 2, \eta>0$, a set of predictors $\left\{f_{\theta}, \boldsymbol{\theta} \in \Theta_{T}\right\}$ and $\pi_{T} \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)$, let $\hat{\eta}_{\eta, T}(\cdot \mid X)$ be de defined by (3.1). Suppose that $\Phi_{\eta, T}$ meets Assumption ($\mathbf{A}-1$) for η and T with a function $\beta_{\eta, T}: X^{\mathbb{Z}} \rightarrow$ (0,1). Then, for all $n \geq 1$ and $D>0$, with $v_{\eta, T^{-}}$probability at least $\max \{0,1-$ $\left.A_{T} /\left(D n^{1 / 2}\right)\right\}$ we have $\left|R\left(\bar{f}_{\eta, T, n}(\cdot \mid X)\right)-R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right)\right| \leq D$, where

$$
\begin{equation*}
A_{\eta, T}=3 K \int_{\mathcal{X}^{Z}} \frac{1}{\beta_{\eta, T}(\boldsymbol{x})} \int_{\mathcal{X}^{\mathbb{Z}}} \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|f_{\boldsymbol{\theta}}(\boldsymbol{y})-\hat{f}_{\eta, T}(\boldsymbol{y} \mid \boldsymbol{x})\right| \pi_{0}(\mathrm{~d} \boldsymbol{y}) \pi_{0}(\mathrm{~d} \boldsymbol{x}) \tag{4.3}
\end{equation*}
$$

Let $v_{T}=v_{\eta_{T}, T}$ denote the probability distribution of $\left(X, \Phi_{\eta, T}(X)\right)$ when $\eta=\eta_{T}=$ $T^{1 / 2} /(4 \log T)$. As Theorem 3.1 does not involve any simulation, it also holds in $v_{T^{-}}$ probability. From this and Proposition 1 a union bound gives us the following.

Theorem 4.1. Under the hypothesis of Theorem 3.1, consider moreover that Assumption (A-1) is fulfilled by $\Phi_{\eta, T}$ for all $\eta=\eta_{T}$ and T with $T \geq 4$. Thus, for all $\varepsilon>0$ and $n \geq M(T, \varepsilon)$, with v_{T}-probability at least $1-\varepsilon$ we have

$$
R\left(\bar{f}_{\eta_{T}, T, n}(\cdot \mid X)\right) \leq \inf _{\theta \in \Theta_{T}} R\left(f_{\theta}\right)+\left(\mathcal{E}+\frac{2}{\log 2}+2\right) \frac{\log ^{3} T}{T^{1 / 2}}+\frac{8 \log T}{T^{1 / 2}} \log \left(\frac{1}{\varepsilon}\right)
$$

where \mathcal{E} is defined in (3.2) and $M(T, \varepsilon)=A_{\eta_{T}, T}^{2} T /\left(\varepsilon^{2} \log ^{6} T\right)$ with $A_{\eta, T}$ as in (4.3).

5 Applications to the autoregressive process

We carefully recapitulate all the assumptions of Theorem 4.1 in the context of an autoregressive process. After that, we illustrate numerically the behaviour of the proposed method.

5.1 Theoretical considerations

Consider a real valued stable autoregressive process of finite order d as defined by (2.1) with parameter $\boldsymbol{\theta}$ lying in the interior of $s_{d}(\delta)$ and unit normally distributed innovations (the Assumption (N-1) holds). With the loss function $\ell(y, z)=|y-z|$ Assumption (L-1)
holds as well. The linear predictors is the family that we test; they meet Assumption (E-3). In this case we have $\hat{f}_{\eta, T}(\cdot \mid X)=f_{\hat{\theta}_{\eta, T}(X)}$, where:

$$
\hat{\boldsymbol{\theta}}_{\eta, T}(X)=\int_{\Theta_{T}} \boldsymbol{\theta} \frac{\exp \left(-\eta r_{T}(\boldsymbol{\theta} \mid X)\right)}{\pi_{T}\left[\exp \left(-\eta r_{T}(\boldsymbol{\theta} \mid X)\right)\right]} \pi_{T}(\mathrm{~d} \boldsymbol{\theta})
$$

This $\hat{\boldsymbol{\theta}}_{\eta, T}(X) \in \Theta_{T}$ is known as the Gibbs estimator.
Remark that, by (2.2) and the normality of the innovations, the risk of any $\hat{\boldsymbol{\theta}} \in \Theta_{T}$ is computed as the absolute moment of a centered Gaussian, namely

$$
\begin{equation*}
R\left(f_{\hat{\boldsymbol{\theta}}}\right)=R(\hat{\boldsymbol{\theta}})=\frac{\left(2(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\prime} \Gamma_{T}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})+2 \sigma^{2}\right)^{1 / 2}}{\pi^{1 / 2}} \tag{5.1}
\end{equation*}
$$

where $\Gamma_{T}=\left(\gamma_{i, j}\right)_{0 \leq i, j \leq d_{T}-1}$ is the covariance matrix of the process. In (5.1) the vector $\boldsymbol{\theta}$ originally in \mathbb{R}^{d} is completed by $d_{T}-d$ zeros.
In this context $\arg \inf _{\boldsymbol{\theta} \in \mathbb{R}^{\mathbb{N}^{*}}} R(\boldsymbol{\theta}) \in s_{d}(1)$ gives the true parameter $\boldsymbol{\theta}$ generating the process. Let us verify the Assumption ($\mathrm{P}-1$) by setting conveniently Θ_{T} and π_{T}. Let $\Delta_{d *}>0$ be such that $B\left(\boldsymbol{\theta}, \Delta_{d *}\right) \subseteq s_{d}(1)$.
We express $\Theta_{T}=\bigcup_{k=1}^{d_{T}} \Theta_{k, T}$ where $\boldsymbol{\theta} \in \Theta_{k, T}$ if and only if $d(\boldsymbol{\theta})=k$. It is interesting to set $\Theta_{k, T}$ as the part of the stability domain of an $\operatorname{AR}(k)$ satisfying Assumptions (E-1) and (E-2). Consider $\Theta_{1, T}=s_{1}(1) \times\{0\}^{d_{T}-1} \cap B_{1}(\mathbf{0}, \log T-1)$ and $\Theta_{k, T}=s_{k}(1) \times\{0\}^{d_{T}-k} \cap B_{1}(\mathbf{0}, \log T-1) \backslash \Theta_{k-1, T}$ for $k \geq 2$. Assume moreover that $d_{T}=\left\lfloor\log ^{\gamma} T\right\rfloor$.
We write $\pi_{T}=\sum_{k=1}^{d_{T}} c_{k, T} \pi_{k, T}$ where for all $k, c_{k, T} \pi_{k, T}$ is the restriction of π_{T} to $\Theta_{k, T}$ with $c_{k, T}$ a real non negative number and $\pi_{k, T}$ a probability measure on $\Theta_{k, T}$. In this case $c_{k, T}=\pi_{T}\left[\Theta_{k, T}\right]$ and $\pi_{k, T}\left[A \cap \Theta_{k, T}\right]=\pi_{T}\left[A \cap \Theta_{k, T}\right] / c_{k, T}$ if $c_{k, T}>0$ or $\pi_{k, T}\left[A \cap \Theta_{k, T}\right]=0$ otherwise. The vector $\left(c_{1, T}, \ldots, c_{d_{T}, T}\right)$ could be interpreted as a prior on the model order. Set $c_{k, T}=c_{k} /\left(\sum_{i=1}^{d_{T}} c_{i}\right)$ where $c_{k}>0$ is the k-th term of a convergent series $\left(\sum_{k=1}^{\infty} c_{k}=c^{*}<\infty\right)$.
The distribution $\pi_{k, T}$ is inferred from some transformations explained below. Observe first that if $a \leq b$ we have $s_{k}(a) \subseteq s_{k}(b)$. If $\boldsymbol{\theta} \in s_{k}(1)$ then $\left(\lambda \theta_{1}, \ldots, \lambda^{k} \theta_{k}\right)^{\prime} \in s_{k}(1)$ for any $\lambda \in(-1,1)$. Let us set

$$
\lambda_{T}(\boldsymbol{\theta})=\min \left\{1, \frac{\log T-1}{\|\boldsymbol{\theta}\|_{1}}\right\} .
$$

We define $F_{k, T}(\boldsymbol{\theta})=\left(\lambda_{T}(\boldsymbol{\theta}) \theta_{1}, \ldots, \lambda_{T}^{k}(\boldsymbol{\theta}) \theta_{k}, 0 \ldots, 0\right)^{\prime} \in \mathbb{R}^{d_{T}}$. Remark that for any $\boldsymbol{\theta} \in s_{k}(1),\left\|F_{k, T}(\boldsymbol{\theta})\right\|_{1} \leq \lambda_{T}(\boldsymbol{\theta})\|\boldsymbol{\theta}\|_{1} \leq \log T-1$. This gives us an idea to generate vectors in $\Theta_{k, T}$. Our distribution $\pi_{k, T}$ is deduced from:

```
Algorithm 1: }\mp@subsup{\pi}{k,T}{}\mathrm{ generation
    input An effective dimension k, the number of observations T and F}\mp@subsup{F}{k,T}{}\mathrm{ ;
    Output: A vector in }\mp@subsup{\Theta}{k,T}{
    generate a random }\boldsymbol{0}\mathrm{ uniformly on }\mp@subsup{s}{k}{}(1)\mathrm{ ;
    return }\mp@subsup{F}{k,T}{(\boldsymbol{0})
```

The distribution $\pi_{k, T}$ is lower bounded by the uniform distribution on $s_{k}(1)$.
Let $T_{*}=\min \left\{T: d_{T} \geq d^{\gamma}, \log T \geq d^{1 / 2} 2^{d}\right\}$. Since $s_{k}(1) \subseteq B\left(\mathbf{0}, 2^{k}-1\right)$ (see [19, Lemma 1]) and $k^{1 / 2}\|\boldsymbol{\theta}\| \geq\|\boldsymbol{\theta}\|_{1}$ for any $\boldsymbol{\theta} \in \mathbb{R}^{k}$, the constraint $\|\boldsymbol{\theta}\|_{1} \leq \log T-1$ becomes redundant in $\Theta_{k, T}$ for $1 \leq k \leq d$ and $T \geq T_{*}$, i.e. $\Theta_{1, T}=s_{1}(1) \times\{0\}^{d_{T}-1}$ and $\Theta_{k, T}=$ $s_{k}(1) \times\{0\}^{d_{T}-k} \backslash \Theta_{k-1, T}$ for $2 \leq k \leq d$. We define $\boldsymbol{\theta}_{T}=\mathbf{0}$ for $T<T_{*}$ and $\boldsymbol{\theta}_{T}=$ $\arg \inf _{\boldsymbol{\theta} \in \Theta_{T}} R(\boldsymbol{\theta})$ for $T \geq T_{*}$. Remark that the first d components of $\boldsymbol{\theta}_{T}$ are constant for $T \geq T_{*}$ (they correspond to the $\boldsymbol{\theta} \in \mathbb{R}^{d}$ generating the $\operatorname{AR}(d)$), and the last $d_{T}-d$ are zero. Let $\Delta_{1 *}=2 \log 2-1$. Then, we have for $T<T_{*}$ and all $\Delta \in\left[0, \Delta_{1 *}\right]$

$$
\pi_{T}\left[B\left(\boldsymbol{\theta}_{T}, \Delta\right) \cap \Theta_{T}\right] \geq c_{1, T} \pi_{1, T}\left[B(\mathbf{0}, \Delta) \cap s_{1}(1) \times\{0\}^{d_{T}-1}\right] \geq \frac{c_{1}}{c^{*}} \Delta .
$$

Furthermore, for $T \geq T_{*}$ and $\Delta \in\left[0, \Delta_{d *}\right]$

$$
\pi_{T}\left[B\left(\boldsymbol{\theta}_{T}, \Delta\right) \cap \Theta_{T}\right] \geq c_{d, T} \pi_{d, T}\left[B\left(\boldsymbol{\theta}_{T}, \Delta\right) \cap s_{d}(1) \times\{0\}^{d_{T}-d}\right] \geq \frac{c_{d}}{2^{d^{2}} c^{*}} \Delta^{d}
$$

Assumption (P-1) is then fulfilled for any $\gamma \geq 1$ with

$$
\begin{aligned}
& C_{1}=\max \left\{0,\left(R(0)-\inf _{\theta \in \Theta_{T}} R(\boldsymbol{\theta})\right) T^{1 / 2} \log ^{-3} T, 4 \leq T<T_{*}\right\} \\
& C_{2}=\min \left\{1, \frac{c_{1}}{c^{*}}, \frac{c_{d}}{2^{d^{2}} c^{*}}\right\} \\
& C_{3}=\min \left\{1,4 \Delta_{1 *}, T_{*} \Delta_{d *}\right\} .
\end{aligned}
$$

Let $q_{\eta, T}$ be the constant function 1, this means that the proposal has the same distribution π_{T}. Let us bound the ratio (4.2).

$$
\begin{align*}
\beta_{\eta, T}(X)=\inf _{\theta \in \Theta_{T}} \frac{q_{\eta, T}(\boldsymbol{\theta})}{\pi_{\eta, T}(\boldsymbol{\theta} \mid X)} & =\inf _{\boldsymbol{\theta} \in \Theta_{T}} \frac{\sum_{k=1}^{d_{T}} c_{k, T} \int}{\Theta_{k, T}} \exp \left(-\eta r_{T}(z \mid X)\right) \pi_{k, T}(\mathrm{~d} z) \\
& \geq \sum_{k=1}^{d_{T}} c_{k, T} \int_{\Theta_{k, T}} \exp \left(-\eta r_{T}(\boldsymbol{\theta} \mid X)\right) \tag{5.2}
\end{align*}
$$

Now note that

$$
\begin{equation*}
\left|x_{t}-f_{\theta}\left(\left(x_{t-i}\right)_{i \geq 1}\right)\right| \leq\left|x_{t}\right|+\sum_{j=1}^{d(\boldsymbol{\theta})}\left|\theta_{j}\right|\left|x_{t-j}\right| \leq \log T \max _{j=0, \ldots, d(\theta)}\left|x_{t-j}\right| . \tag{5.3}
\end{equation*}
$$

Plugging the bound (5.3) on (5.2) with $\eta=\eta_{T}$

$$
\beta_{\eta_{T}, T}(\boldsymbol{x}) \geq \sum_{k=1}^{d_{T}} c_{k} \int_{\Theta_{k}} \exp \left(-\eta_{T} r_{T}(z \mid \boldsymbol{x})\right) \pi_{k}(\mathrm{~d} z) \geq \exp \left(-\frac{T^{1 / 2}}{4} \max _{j=0, \ldots, d_{T}}\left|x_{t-j}\right|\right)
$$

we deduce that

$$
\begin{equation*}
\frac{1}{\beta_{\eta_{T}, T}(\boldsymbol{x})} \leq \sum_{k=0}^{d_{T}} \exp \left(\frac{T^{1 / 2}\left|x_{t-j}\right|}{4}\right) \tag{5.4}
\end{equation*}
$$

Taking (5.4) into account, using Assumption (E-3), that $K=1$ and applying the Cauchy-Schwarz inequality we get

$$
\begin{aligned}
A_{T} & =3 K \int_{\mathcal{X}^{Z}} \frac{1}{\beta_{\eta_{T}, T}(\boldsymbol{x})} \int_{\mathcal{X}^{Z}} \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|f_{\boldsymbol{\theta}}(\boldsymbol{y})-f_{\hat{\theta}_{\eta_{T}, T}(\boldsymbol{x})}(\boldsymbol{y})\right| \pi_{0}(\mathrm{~d} \boldsymbol{y}) \pi_{0}(\mathrm{~d} \boldsymbol{x}) \\
& \leq 3\left(d_{T}+1\right) d_{T}^{1 / 2} \pi_{0}\left[\exp \left(\frac{T^{1 / 2}\left|X_{1}\right|}{4}\right)\right] \pi_{0}\left[\left|X_{1}\right|\right] \sup _{\theta \in \Theta_{T}}\|\boldsymbol{\theta}\| \\
& \leq 6 \log ^{3 / 2} T \pi_{0}\left[\exp \left(\frac{T^{1 / 2}\left|X_{1}\right|}{4}\right)\right] \pi_{0}\left[\left|X_{1}\right|\right] .
\end{aligned}
$$

As X_{1} is centered and normally distributed of variance $\gamma_{0}, \pi_{0}\left[\left|X_{1}\right|\right]=\left(2 \gamma_{0} / \pi\right)^{1 / 2}$ and $\pi_{0}\left[\exp \left(T^{1 / 2}\left|X_{1}\right| / 4\right)\right]=\gamma_{0} T^{1 / 2} \exp \left(\gamma_{0} T / 32\right) / 4$.
From $n \geq M^{*}(T, \varepsilon)=9 \gamma_{0}^{3} T^{2} \exp \left(\gamma_{0} T / 16\right) /\left(2 \pi \varepsilon^{2} \log ^{3} T\right)$ the result of Theorem 4.1 is reached. This bound of $M(T, \varepsilon)$ is prohibitive from a computational viewpoint. That is why we limit the number of iterations to a fixed n^{*}.
What we obtain from MCMC is $\bar{\eta}_{\eta_{T}, T, n}(\boldsymbol{y} \mid X)=\overline{\boldsymbol{\theta}}_{\eta_{T}, T, n}^{\prime}(X) \boldsymbol{y}_{1: d_{T}}$ with $\overline{\boldsymbol{\theta}}_{\eta_{T}, T, n}(X)=$ $\sum_{i=0}^{n-1} \boldsymbol{\theta}_{\eta_{T}, T, i}(X) / n$. Remark that $\bar{f}_{\eta_{T}, T, n}(\cdot \mid X)=f_{\bar{\theta}_{\eta_{T}, T, n}(X)}$. The risk is expressed as

$$
R\left(\bar{f}_{\eta_{T}, T, n}(\cdot \mid X)\right)=\frac{\left(2\left(\overline{\boldsymbol{\theta}}_{\eta_{T}, T, n}(X)-\boldsymbol{\theta}\right)^{\prime} \Gamma(Y)\left(\overline{\boldsymbol{\theta}}_{\eta_{T}, T, n}(X)-\boldsymbol{\theta}\right)+2 \sigma^{2}\right)^{1 / 2}}{\pi^{1 / 2}}
$$

5.2 Numerical work

Consider 100 realisations of an autoregressive processes X simulated with the same $\boldsymbol{\theta} \in s_{d}(\delta)$ for $d=8$ and $\delta=3 / 4$ and with $\sigma=1$. Let $\boldsymbol{c}^{(i)}, i=1,2$ the sequences defining two different priors in the model order:

1. $c_{k}^{(1)}=k^{-2}$, the sparsity is favoured,
2. $c_{k}^{(2)}=\mathrm{e}^{-k}$, the sparsity is strongly favoured.

For each sequence \boldsymbol{c} and for each value of $T \in\left\{2^{j}, j=6, \ldots, 12\right\}$ we compute $\overline{\boldsymbol{\theta}}_{\eta_{T}, T, n^{*}}$, the MCMC approximation of the Gibbs estimator.

```
Algorithm 2: Independence Sampler
    input The sample \(X_{1: T}\) of \(X\), the prior \(\boldsymbol{c}\), the learning rate \(\eta\), the generators \(\pi_{k, T}\)
        for \(k=1, \ldots, d_{T}\) and a maximum iterations number \(n^{*}\).;
    Output: \(\overline{\boldsymbol{\theta}}_{\eta, T, n^{*}}\).
    \(\boldsymbol{\theta}_{\eta, T, 0}=\mathbf{0}\);
    for \(i=1\) to \(n^{*}-1\) do
        generate \(k \in\left\{1, \ldots, d_{T}\right\}\) using the prior \(\boldsymbol{c}\);
        generate \(\boldsymbol{\theta}_{\text {candidate }} \sim \pi_{k, T}\);
        generate \(U \sim \mathcal{U}(0,1)\);
        if \(U \leq \alpha_{\eta, T, X}\left(\boldsymbol{\theta}_{\eta, T, i-1}, \boldsymbol{\theta}_{\text {candidate }}\right)\) then
            \(\boldsymbol{\theta}_{\eta, T, i}=\boldsymbol{\theta}_{\text {candidate }}\) else
                \(\boldsymbol{\theta}_{\eta, T, i}=\boldsymbol{\theta}_{\eta, T, i-1} ;\)
    return \(\overline{\boldsymbol{\theta}}_{\eta, T, n^{*}}(X)=\sum_{i=0}^{n^{*}-1} \boldsymbol{\theta}_{\eta, T, k}(X) / n^{*}\).
```

The acceptance rate is computed as $\alpha_{\eta, T, X}\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}\right)=\exp \left(\eta r_{T}\left(\boldsymbol{\theta}_{1} \mid X\right)-\eta r_{T}\left(\boldsymbol{\theta}_{2} \mid X\right)\right)$. The Algorithm 1 used by the distributions $\pi_{k, T}$ generates uniform random vectors on $s_{k}(1)$ by the method described in [6]. It relies in the Levinson-Durbin recursion algorithm. We also implemented the numerical improvements of [3].
Set $\varepsilon=0.1$. Figures 1 and 2 display the $(1-\varepsilon)$-quantiles in data $R\left(\overline{\boldsymbol{\theta}}_{\eta_{T}, T, n^{*}}(X)\right)-$ $(2 / \pi)^{1 / 2} \sigma^{2}$ for $\boldsymbol{c}^{(1)}$ and $\boldsymbol{c}^{(2)}$ respectively. The blue curves were plotted with $n^{*}=100$, the green ones with $n^{*}=1000$ and as a reference, the red curve is proportional to $\log ^{3} T / T^{1 / 2}$.

Figure 1: Order prior $c_{k}^{(1)}=k^{-2}$

Figure 2: Order prior $c_{k}^{(2)}=\mathrm{e}^{-k}$.

Note that, for the proposed algorithm the prediction risk decreases very slowly when the number T of observations grows and the number of MCMC iterations remains constant. If $n^{*}=1000$ the decaying rate is faster than if $n^{*}=100$ for smaller values of T. For $T \geq 2000$ we observe that both rates are roughly the same in the logarithmic scale. This behaviour is similar in Figures 1 and 2. As expected, the risk of the approximated predictor does not converge as $\log ^{3} T / T^{1 / 2}$.

6 Discussion

There are two error sources in our method: prediction (of the exact Gibbs predictor) and approximation (using the MCMC). The first one decays when T grows and the obtained guarantees for the second one explode. We found a possibly pessimistic upper bound for $M(T, \epsilon)$. The exponential growing of this bound is the main weakness of our procedure. The use of a better adapted proposal in the MCMC algorithm needs to be investigated. The Metropolis Langevin Algorithm (see [4]) gives us an insight in this direction. However it is encouraging to see that, in the analysed practical case, the risk of $\bar{f}_{\eta_{T}, T, n^{*}}(\cdot \mid X)$ does not increase with T.

Acknowledgements

The author is specially thankful to François Roueff, Christophe Giraud, Peter WeyerBrown and the two referees for their extremely careful readings and highly pertinent remarks which substantially improved the paper. This work has been partially supported by the Conseil régional d'Île-de-France under a doctoral allowance of its program Réseau de Recherche Doctoral en Mathématiques de l'Île de France (RDM-IdF) for the period 2012-2015 and by the Labex LMH (ANR-11-IDEX-003-02).

7 Technical proofs

7.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the same tools as those used by [2] up to Lemma 3. For the sake of completeness we quote the essential ones.

We denote $\mathcal{M}_{+}^{1}(F)$ the set of probability measures on the measurable space (F, \mathcal{F}). Let $\rho, v \in \mathcal{M}_{+}^{1}(F), \mathcal{K}(\rho, v)$ stands for the Kullback-Leibler divergence of v from ρ.

$$
\mathcal{K}(\rho, v)= \begin{cases}\int \log \frac{\mathrm{d} \rho}{\mathrm{~d} v}(\boldsymbol{\theta}) \rho(\mathrm{d} \boldsymbol{\theta}) & , \text { if } \rho \ll v \\ +\infty & , \text { otherwise }\end{cases}
$$

The first lemma can be found in [8], equation 5.2.1.
Lemma 1 (Legendre transform of the Kullback divergence function). Let (F, \mathcal{F}) be any measurable space. For any $v \in \mathcal{M}_{+}^{1}(F)$ and any measurable function $h: F \rightarrow \mathbb{R}$ such that $v[\exp (h)]<\infty$ we have,

$$
v[\exp (h)]=\exp \left(\sup _{\rho \in \mathcal{M}_{+}^{1}(F)}(\rho[h]-\mathcal{K}(\rho, v))\right)
$$

with the convention $\infty-\infty=-\infty$. Moreover, as soon as h is upper-bounded on the support of v, the supremum with respect to ρ in the right-hand side is reached for the Gibbs measure $v\{h\}$.

For a fixed $C>0$, let $\widetilde{\xi}_{t}^{(C)}=\max \left\{\min \left\{\xi_{t}, C\right\},-C\right\}$. Consider $\widetilde{X}_{t}=H\left(\widetilde{\xi}_{t}^{(C)}, \widetilde{\xi}_{t-1}^{(C)}, \ldots\right)$. We denote $\widetilde{X}=\left(\widetilde{X}_{t}\right)_{t \in \mathbb{Z}}$ and $\widetilde{R}(\boldsymbol{\theta})$ and $\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})$ the respective exact and empirical risks associated with \widetilde{X} in $\boldsymbol{\theta}$.

$$
\begin{aligned}
\widetilde{R}(\boldsymbol{\theta}) & =\pi_{0}\left[\ell\left(\widetilde{\tilde{X}}_{t}^{\theta}, \widetilde{X}_{t}\right)\right], \\
\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X}) & =\frac{1}{T-d(\boldsymbol{\theta})} \sum_{t=d(\boldsymbol{\theta})+1}^{T} \ell\left(\widetilde{\tilde{X}}_{t}^{\theta}, \widetilde{X}_{t}\right),
\end{aligned}
$$

where $\widehat{\tilde{X}}_{t}^{\theta}=f_{\theta}\left(\left(\widetilde{X}_{t-i}\right)_{i \geq 1}\right)$.
This thresholding is interesting because truncated CBS are weakly dependent processes (see Section 4.2 of [2]).
A Hoeffding type inequality introduced in Theorem 1 of [20] provide useful controls on the difference between empirical and exact risks of a truncated process.

Lemma 2 (Laplace transform of the risk). Let ℓ be a loss function meeting Assumption (L-1) and $X=\left(X_{t}\right)_{t \in \mathbb{Z}}$ any CBS process. For all $T \geq 2$, any $\left\{f_{\theta}, \boldsymbol{\theta} \in \Theta_{T}\right\}$ satisfying Assumption ($\mathrm{E}-1$), Θ_{T} such that $d_{T} \leq T / 2$, any truncation level $C>0, \eta \geq 0$ and $\boldsymbol{\theta} \in \Theta_{T}$ we have,

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\eta\left(\widetilde{R}(\boldsymbol{\theta})-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right)\right)\right] \leq \exp \left(\frac{4 \eta^{2} k^{2}(T, C)}{T}\right) \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(\eta\left(\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})-\widetilde{R}(\boldsymbol{\theta})\right)\right)\right] \leq \exp \left(\frac{4 \eta^{2} k^{2}(T, C)}{T}\right) \tag{7.2}
\end{equation*}
$$

where $k(T, C)=2^{1 / 2} C K\left(1+L_{T}\right)(a(H)+\tilde{a}(H))$.
The following lemma is a slight modification of Lemma 6.5 of [2]. It links the two versions of the empirical risk: original and truncated.

Lemma 3. Suppose that Assumption (L-1) holds for the loss function ℓ and that Assumption $(\mathbf{N}-1)$ holds for the CBS process $X=\left(X_{t}\right)_{t \in \mathbb{Z}}$. For all $T \geq 2$, any $\left\{f_{\theta}, \boldsymbol{\theta} \in \Theta_{T}\right\}$ meeting Assumption $(\mathrm{E}-1)$ with Θ_{T} such that $d_{T} \leq T / 2$, any truncation level $C>0$ and any $0 \leq \eta \leq T / 4\left(1+L_{T}\right)$ we have,

$$
\mathbb{E}\left[\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right)\right] \leq \exp (\eta \varphi(T, C, \eta)),
$$

where

$$
\varphi(T, C, \eta)=2 K\left(1+L_{T}\right) \phi(a(H))\left(\frac{a(H) C}{\exp (a(H) C)-1}+\eta \frac{4 K\left(1+L_{T}\right)}{T}\right)
$$

Finally we present a result on the aggregated predictor defined in (3.1). The proof is partially inspired of that of Theorem 3.2 from [2].

Lemma 4. Let ℓ be a loss function such that Assumption (L-1) holds and let $X=$ $\left(X_{t}\right)_{t \in \mathbb{Z}}$ be a CBS process. For each $T \geq 2$ let $\left\{f_{\theta}, \boldsymbol{\theta} \in \Theta_{T}\right\}$ be a collection of predictors and $\pi_{T} \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)$ any prior probability distribution on Θ_{T}. We build the predictor $\hat{f}_{\eta, T}(\cdot \mid X)$ following (3.1) with any $\eta>0$. For any $\varepsilon>0$ and any truncation level $C>0$, with π_{0}-probability at least $1-\varepsilon$ we have,

$$
\left.\begin{array}{rl}
R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right) \leq & \inf _{\rho \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)}\{\rho[R]
\end{array}+\frac{2 \mathcal{K}\left(\rho, \pi_{T}\right)}{\eta}\right\}+\frac{2 \log \left(\frac{2}{\varepsilon}\right)}{\eta}, ~+\frac{1}{2 \eta} \log \left(\mathbb{E}\left[\exp \left(2 \eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right]\right)+\frac{1}{2 \eta} \log \left(\mathbb{E}\left[\exp \left(2 \eta\left(\widetilde{r}_{T}-\widetilde{R}\right)\right)\right]\right) .
$$

Proof of Lemma 4

We use Tonelli's theorem and Jensen's inequality with the convex function g to obtain an upper bound for $R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right)$

$$
\begin{aligned}
& R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right)=\int_{X^{Z}} g\left(\int_{\Theta_{T}}\left(f_{\theta}\left(\left(y_{t-i}\right)_{i \geq 1}\right)-y_{t}\right) \pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}(\mathrm{d} \boldsymbol{\theta})\right) \pi_{0}(\mathrm{~d} \boldsymbol{y}) \\
& \quad \leq \int_{X^{\mathbb{Z}}}\left[\int_{\Theta_{T}} g\left(f_{\theta}\left(\left(y_{t-i}\right)_{i \geq 1}\right)-y_{t}\right) \pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}(\mathrm{d} \boldsymbol{\theta})\right] \pi_{0}(\mathrm{~d} \boldsymbol{y}) \\
& \quad=\int_{\Theta_{T}}\left[\int_{X^{\mathbb{Z}}} g\left(f_{\theta}\left(\left(y_{t-i}\right)_{i \geq 1}\right)-y_{t}\right) \pi_{0}(\boldsymbol{y})\right] \pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}(\mathrm{d} \boldsymbol{\theta})=\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}[R]
\end{aligned}
$$

In the rest of the proof we search for upper bounding $\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}[R]$.
First, we use the relationship:

$$
\begin{equation*}
R-r_{T}(\cdot \mid X)=\left(\widetilde{R}-\widetilde{r}_{T}(\cdot \mid \widetilde{X})\right)+(R-\widetilde{R})-\left(r_{T}(\cdot \mid X)-\widetilde{r}_{T}(\cdot \mid \widetilde{X})\right) \tag{7.3}
\end{equation*}
$$

For the sake of simplicity and while it does not disrupt the clarity, we lighten the notation of r_{T} and \widetilde{r}_{T}. We now suppose that in place of $\boldsymbol{\theta}$ we have a random variable distributed as $\pi_{T} \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)$. This is taken into account in the following expectations. The identity (7.3) and the Cauchy-Schwarz inequality lead to

$$
\begin{gather*}
\mathbb{E}\left[\exp \left(\frac{\eta}{2}\left(R-r_{T}\right)\right)\right]=\mathbb{E}\left[\exp \left(\frac{\eta}{2}\left(\widetilde{R}-\widetilde{r}_{T}\right)\right) \exp \left(\frac{\eta}{2}\left((R-\widetilde{R})-\left(r_{T}-\widetilde{r}_{T}\right)\right)\right)\right] \\
\leq\left(\mathbb{E}\left[\exp \left(\eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right] \mathbb{E}\left[\exp \left(\eta\left((R-\widetilde{R})-\left(r_{T}-\widetilde{r}_{T}\right)\right)\right)\right]\right)^{1 / 2} \\
\leq\left(\mathbb{E}\left[\exp \left(\eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right] \mathbb{E}\left[\exp \left(\eta \sup _{\theta \in \Theta_{T}}\left|(R-\widetilde{R})(\boldsymbol{\theta})-\left(r_{T}-\widetilde{r}_{T}\right)(\boldsymbol{\theta})\right|\right)\right]\right)^{1 / 2} \tag{7.4}
\end{gather*}
$$

Denote $\widetilde{\pi}_{0}$ the distribution of \widetilde{X}. It depends on C, H and the distribution of ξ_{0} whereas π_{0} depends on H and the distribution of ξ_{0}. Observe that $R(\boldsymbol{\theta})=\pi_{0}\left[r_{T}(\boldsymbol{\theta} \mid X)\right]=$ $\int_{X^{z}} r_{T}(\boldsymbol{\theta} \mid \boldsymbol{x}) \pi_{0}(\mathrm{~d} \boldsymbol{x})$ and $\widetilde{R}(\boldsymbol{\theta})=\widetilde{\pi}_{0}\left[\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right]=\int_{X^{Z}} \widetilde{r}_{T}(\boldsymbol{\theta} \mid \tilde{x}) \widetilde{\pi}_{0}(\mathrm{~d} \tilde{\boldsymbol{x}})$. Jensen's inequality for the exponential function gives that

$$
\begin{align*}
\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}|R(\boldsymbol{\theta})-\widetilde{R}(\boldsymbol{\theta})|\right) & \leq \exp \left(\eta \mathbb{E}\left[\sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right]\right) \\
& \leq \mathbb{E}\left[\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right)\right] \tag{7.5}
\end{align*}
$$

From (7.5) we see that

$$
\begin{align*}
& \mathbb{E}\left[\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|(R-\widetilde{R})(\boldsymbol{\theta})-\left(r_{T}-\widetilde{r}_{T}\right)(\boldsymbol{\theta})\right|\right)\right] \\
& \leq \mathbb{E}\left[\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}|R(\boldsymbol{\theta})-\widetilde{R}(\boldsymbol{\theta})|\right) \exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right)\right] \\
& \leq\left(\mathbb{E}\left[\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right)\right]\right)^{2} . \tag{7.6}
\end{align*}
$$

Combining (7.4) and (7.6) we obtain

$$
\begin{align*}
& \mathbb{E}\left[\exp \left(\frac{\eta}{2}\left(R-r_{T}(\cdot \mid X)\right)\right)\right] \leq\left(\mathbb{E}\left[\exp \left(\eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right]\right)^{1 / 2} \\
& \mathbb{E} {\left[\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right)\right] } \tag{7.7}
\end{align*}
$$

Let $L_{\eta, C}=\log \left(\left(\mathbb{E}\left[\exp \left(\eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right]\right)^{1 / 2} \mathbb{E}\left[\exp \left(\eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right)\right]\right)$. Remark that the left term of (7.7) is equal to the integral of the expression enclosed in brackets with respect to the measure $\pi_{0} \times \pi_{T}$. Changing η by 2η and thanks to Lemma 1 we get

$$
\pi_{0}\left[\exp \left(\sup _{\rho \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)}\left(\eta \rho\left[R-r_{T}(\cdot \mid X)\right]-\mathcal{K}\left(\rho, \pi_{T}\right)\right)\right)\right] \leq \exp \left(L_{2 \eta, C}\right) .
$$

Markov's inequality implies that for all $\varepsilon>0$, with π_{0} - probability at least $1-\varepsilon$

$$
\sup _{\rho \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)}\left(\eta \rho\left[R-r_{T}(\cdot \mid X)\right]-\mathcal{K}\left(\rho, \pi_{T}\right)\right)-\log \left(\frac{1}{\varepsilon}\right)-L_{2 \eta, C} \leq 0 .
$$

Hence, for any $\pi_{T} \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)$ and $\eta>0$, with $\pi_{0^{-}}$probability at least $1-\varepsilon$, for all $\rho \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)$

$$
\begin{equation*}
\rho\left[R-r_{T}(\cdot \mid X)\right]-\frac{1}{\eta} \mathcal{K}\left(\rho, \pi_{T}\right)-\frac{1}{\eta} \log \left(\frac{1}{\varepsilon}\right)-\frac{L_{2 \eta, T}}{\eta} \leq 0 . \tag{7.8}
\end{equation*}
$$

By setting $\rho=\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}$ and relying on Lemma 1, we have

$$
\begin{aligned}
\mathcal{K}\left(\pi_{T}\left\{-\eta r_{T}\right\}, \pi_{T}\right) & =\pi_{T}\left\{-\eta r_{T}\right\}\left[\log \frac{\mathrm{d} \pi_{T}\left\{-\eta r_{T}\right\}}{\mathrm{d} \pi_{T}}\right]=\pi_{T}\left\{-\eta r_{T}\right\}\left[\log \frac{\exp \left(-\eta r_{T}\right)}{\pi_{T}\left[\exp \left(-\eta r_{T}\right)\right]}\right] \\
& =\pi_{T}\left\{-\eta r_{T}\right\}\left[-\eta r_{T}\right]-\log \left(\pi_{T}\left[\exp \left(-\eta r_{T}\right)\right]\right) \\
& =\pi_{T}\left\{-\eta r_{T}\right\}\left[-\eta r_{T}\right]+\inf _{\rho \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)}\left\{\rho\left[\eta r_{T}\right]+\mathcal{K}\left(\rho, \pi_{T}\right)\right\}
\end{aligned}
$$

Using (7.8) with $\rho=\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}$ it follows that, with $\pi_{0^{-}}$probability at least $1-\varepsilon$,

$$
\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}[R] \leq \inf _{\rho \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)}\left\{\rho\left[r_{T}(\cdot \mid X)\right]+\frac{\mathcal{K}\left(\rho, \pi_{T}\right)}{\eta}\right\}+\frac{\log \left(\frac{1}{\varepsilon}\right)}{\eta}+\frac{L_{2 \eta, T}}{\eta}
$$

We obtain an inequality similar to (7.8) with $\rho\left[R-r_{T}\right]$ replaced by $\rho\left[r_{T}-R\right]$, and hence, from a union bound, with $\pi_{0^{-}}$probability at least $1-\varepsilon$,

$$
\begin{aligned}
\pi_{T}\left\{-\eta r_{T}(\cdot \mid X)\right\}[R] \leq & \inf _{\rho \in \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)}\left\{\rho[R]+\frac{2 \mathcal{K}\left(\rho, \pi_{T}\right)}{\eta}\right\}+\frac{2 \log \left(\frac{2}{\varepsilon}\right)}{\eta} \\
+ & \frac{1}{2 \eta} \log \left(\mathbb{E}\left[\exp \left(2 \eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right]\right)+\frac{1}{2 \eta} \log \left(\mathbb{E}\left[\exp \left(2 \eta\left(\widetilde{r}_{T}-\widetilde{R}\right)\right)\right]\right) \\
& +\frac{2}{\eta} \log \left(\mathbb{E}\left[\exp \left(2 \eta \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left|r_{T}(\boldsymbol{\theta} \mid X)-\widetilde{r}_{T}(\boldsymbol{\theta} \mid \widetilde{X})\right|\right)\right]\right) .
\end{aligned}
$$

Proof of Theorem 3.1

Let $\pi_{0, C}$ denote the distribution on $\mathcal{X}^{\mathbb{Z}} \times \mathcal{X}^{\mathbb{Z}}$ of the couple (X, \widetilde{X}). Fubini's theorem and (7.1) of Lemma 2 imply that

$$
\begin{align*}
\mathbb{E}\left[\exp \left(2 \eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right]=\pi_{0, C} \times \pi_{T}\left[\exp \left(2 \eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right] & =\pi_{T} \times \pi_{0, C}\left[\exp \left(2 \eta\left(\widetilde{R}-\widetilde{r}_{T}\right)\right)\right] \\
& \leq \exp \left(\frac{16 \eta^{2} k^{2}(T, C)}{T}\right) . \tag{7.9}
\end{align*}
$$

Using (7.2), we analogously get

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(2 \eta\left(\widetilde{r}_{T}-\widetilde{R}\right)\right)\right] \leq \exp \left(\frac{16 \eta^{2} k^{2}(T, C)}{T}\right) \tag{7.10}
\end{equation*}
$$

Consider the set of probability measures $\left\{\rho_{\theta_{T}, \Delta}, T \geq 2,0 \leq \Delta \leq \Delta_{T}\right\} \subset \mathcal{M}_{+}^{1}\left(\Theta_{T}\right)$, where $\rho_{\boldsymbol{\theta}_{T}, \Delta}(\boldsymbol{\theta}) \propto \pi_{T}(\boldsymbol{\theta}) 1_{B\left(\boldsymbol{\theta}_{T}, \Delta\right) \cap \Theta_{T}}(\boldsymbol{\theta})$. Lemma 4, together with Lemma 3, (7.9) and (7.10) guarantee for all $0<\eta \leq T / 8\left(1+L_{T}\right)$ that

$$
\begin{array}{r}
R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right) \leq \inf _{0 \leq \Delta \leq \Delta_{T}}\left\{\rho_{\theta_{T}, \Delta}[R]+\frac{2 \mathcal{K}\left(\rho_{\theta_{T}, \Delta}, \pi_{T}\right)}{\eta}\right\}+\frac{16 \eta k^{2}(T, C)}{T}+\frac{2 \log \left(\frac{2}{\varepsilon}\right)}{\eta}+ \\
4 \varphi(T, C, 2 \eta) . \tag{7.11}
\end{array}
$$

Thanks to assumptions (L-1) and (E-3), for any $T \geq 2$ and $\boldsymbol{\theta} \in B\left(\boldsymbol{\theta}_{T}, \Delta\right)$

$$
\begin{equation*}
R(\boldsymbol{\theta})-R\left(\boldsymbol{\theta}_{T}\right) \leq K \pi_{0}\left[\left\|f_{\boldsymbol{\theta}}\left(\left(Y_{t-i}\right)_{i \geq 1}\right)-f_{\boldsymbol{\theta}_{T}}\left(\left(Y_{t-i}\right)_{i \geq 1}\right)\right\|\right] \leq K \mathcal{D} d_{T}^{1 / 2} \Delta \tag{7.12}
\end{equation*}
$$

For $T \geq 4$ Assumption (P-1) gives

$$
\begin{equation*}
\mathcal{K}\left(\rho_{\boldsymbol{\theta}_{T}, \Delta}, \pi_{T}\right)=\log \left(\frac{1}{\pi_{T}\left[B\left(\boldsymbol{\theta}_{T}, \Delta\right) \cap \Theta_{T}\right]}\right) \leq-n_{T}^{1 / \gamma} \log (\Delta)-\log \left(C_{2}\right) \tag{7.13}
\end{equation*}
$$

Plugging (7.12) and (7.13) into (7.11) and using again Assumption (P-1)

$$
\begin{align*}
& R\left(\hat{\eta}_{\eta, T}(\cdot \mid X)\right) \leq R\left(\boldsymbol{\theta}_{T}\right)+\inf _{0 \leq \Delta \leq \Delta_{T}}\left\{\mathcal{E}_{1} d_{T}^{1 / 2} \Delta-\frac{2 n_{T}^{1 / \gamma} \log (\Delta)}{\eta}\right\}+\frac{\mathcal{E}_{2} \eta\left(1+L_{T}\right)^{2} C^{2}}{T} \\
&+\frac{\mathcal{E}_{3}\left(1+L_{T}\right) C}{\exp (a(H) C)-1}+\frac{2 \log \left(\frac{2}{\varepsilon}\right)-2 \log \left(C_{2}\right)}{\eta}+\frac{\mathcal{E}_{4}\left(1+L_{T}\right)^{2} \eta}{T} \tag{7.14}
\end{align*}
$$

where $\mathcal{E}_{1}=K \mathcal{D}, \mathcal{E}_{2}=32 K^{2}(a(H)+\tilde{a}(H))^{2}, \mathcal{E}_{3}=8 K \phi(a(H)) a(H)$ and $\mathcal{E}_{4}=32 K^{2} \phi(a(H))$.
We upper bound d_{T} by $T / 2, n_{T}$ by $\log ^{\gamma} T$ and substitute $\Delta=C_{3} / T$. Since it is difficult to minimize the right term of (7.14) with respect to η and C at the same time, we evaluate them in certain values to obtain a convenient upper bound.
At a fixed ε, the convergence rate of $\left[2 \log (2 / \varepsilon)-2 \log \left(C_{2}\right)\right] / \eta+\mathcal{E}_{4}\left(1+L_{T}\right)^{2} \eta / T$ is at best $\log T / T^{1 / 2}$, and we get it doing $\eta \propto T^{1 / 2} / \log T$. As $\eta \leq T / 8\left(1+L_{T}\right)$ we set $\eta=\eta_{T}=T^{1 / 2} /(4 \log T)$.
The order of already chosen terms is $\log ^{3} T / T^{1 / 2}$, doing $C=\log T / a(H)$ we preserve it. Taking into account that $R\left(\boldsymbol{\theta}_{T}\right) \leq \inf _{\theta_{\in \in} \Theta_{T}} R(\boldsymbol{\theta})+C_{1} \log ^{3} T / T^{1 / 2}$ the result follows.

7.2 Proof of Proposition 1

Proof of Proposition 1

Considering that assumption (L-1) holds we get

$$
\left|R\left(\bar{f}_{\eta, T, n}(\cdot \mid X)\right)-R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right)\right| \leq K \int_{X^{z}}\left|\bar{f}_{\eta, T, n}(\boldsymbol{y} \mid X)-\hat{f}_{\eta, T}(\boldsymbol{y} \mid X)\right| \pi_{0}(\mathrm{~d} \boldsymbol{y})
$$

Observe that the last expression depends on $X_{1: T}$ and $\Phi_{\eta, T}(X)$. We bound the expectation to infer a bound in probability.
Tonelli's theorem and Jensen's inequality lead to

$$
\begin{align*}
& v_{\eta, T}\left[\left|R\left(\bar{f}_{\eta, T, n}(\cdot \mid X)\right)-R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right)\right|\right] \leq \\
& K \int_{\mathcal{X}^{Z}} \int_{\mathcal{X}^{\mathbb{Z}}}\left[\int_{\Theta_{T}^{\mathbb{N}}}\left|\bar{f}_{\eta, T, n}(\boldsymbol{y} \mid \boldsymbol{x})-\hat{f}_{\eta, T}(\boldsymbol{y} \mid \boldsymbol{x})\right|^{2} \mu_{\eta, T}(\mathrm{~d} \boldsymbol{\phi} \mid \boldsymbol{x})\right)^{1 / 2} \pi_{0}(\mathrm{~d} \boldsymbol{y}) \pi_{0}(\mathrm{~d} \boldsymbol{x}) \tag{7.15}
\end{align*}
$$

We are then interested in upper bounding the expression under the square root. Theorem 3.1 of [16] implies that for any \boldsymbol{x}

$$
\begin{aligned}
& \int_{\Theta_{T}^{\mathbb{N}}}\left|\bar{f}_{\eta, T, n}(\boldsymbol{y} \mid \boldsymbol{x})-\hat{f}_{\eta_{T}, T}(\boldsymbol{y} \mid \boldsymbol{x})\right|^{2} \mu_{\eta, T}(\mathrm{~d} \boldsymbol{\phi} \mid \boldsymbol{x}) \leq \\
& \qquad \sup _{\boldsymbol{\theta} \in \Theta_{T}}\left(f_{\boldsymbol{\theta}}(\boldsymbol{y})-\hat{f}_{\eta, T}(\boldsymbol{y} \mid \boldsymbol{x})\right)^{2}\left(\frac{4}{\beta_{\eta, T}(\boldsymbol{x})}-3\right)\left(\frac{1}{n}+\frac{2}{n^{2} \beta_{\eta, T}(\boldsymbol{x})}\right) .
\end{aligned}
$$

Plugging this on (7.15), using that $m \geq 1$ and that

$$
\left(\left(4-3 \beta_{\eta, T}(x)\right)\left(2+\beta_{\eta, T}(x)\right)\right)^{1 / 2} \leq 3
$$

we obtain the following

$$
\begin{aligned}
v_{\eta, T}\left[\mid R\left(\bar{f}_{\eta, T, n}(\cdot \mid X)\right)-\right. & \left.R\left(\hat{f}_{\eta, T}(\cdot \mid X)\right) \mid\right] \leq \\
& \frac{3 K}{n^{1 / 2}} \int_{\mathcal{X}^{\mathrm{Z}}} \frac{1}{\beta_{\eta, T}(\boldsymbol{x})} \int_{\mathcal{X}^{\mathrm{Z}}} \sup _{\theta \in \Theta_{T}}\left|f_{\boldsymbol{\theta}}(\boldsymbol{y})-\hat{f}_{\eta, T}(\boldsymbol{y} \mid \boldsymbol{x})\right| \pi_{0}(\mathrm{~d} \boldsymbol{y}) \pi_{0}(\mathrm{~d} \boldsymbol{x}) .
\end{aligned}
$$

The result follows from Markov's inequality.

References

[1] Pierre Alquier and Xiaoyin Li. Prediction of quantiles by statistical learning and application to gdp forecasting. In Jean-Gabriel Ganascia, Philippe Lenca, and Jean-Marc Petit, editors, Discovery Science, volume 7569 of Lecture Notes in Computer Science, pages 22-36. Springer Berlin Heidelberg, 2012.
[2] Pierre Alquier and Olivier Wintenberger. Model selection for weakly dependent time series forecasting. Bernoulli, 18(3):883-913, 2012.
[3] Christophe Andrieu and Arnaud Doucet. An improved method for uniform simulation of stable minimum phase real arma (p, q) processes. Signal Processing Letters, IEEE, 6(6):142-144, june 1999.
[4] Yves F. Atchadé. An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift. Methodol. Comput. Appl. Probab., 8(2):235-254, 2006.
[5] Jean-Yves Audibert. PAC-Bayesian Statistical Learning Theory. PhD thesis, Université Pierre et Marie Curie-Paris VI, 2004.
[6] Edward R. Beadle and Petar M. Djurić. Uniform random parameter generation of stable minimum-phase real arma (p, q) processes. Signal Processing Letters, IEEE, 4(9):259-261, september 1999.
[7] Peter J. Brockwell and Richard A. Davis. Time series: theory and methods. Springer Series in Statistics. Springer, New York, 2006. Reprint of the second (1991) edition.
[8] Olivier Catoni. Statistical learning theory and stochastic optimization, volume 1851 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004. Lecture notes from the 31st Summer School on Probability Theory held in Saint-Flour, July 8-25, 2001.
[9] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University Press, Cambridge, 2006.
[10] Clémentine Coulon-Prieur and Paul Doukhan. A triangular central limit theorem under a new weak dependence condition. Statist. Probab. Lett., 47(1):61-68, 2000.
[11] Arnak S. Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity. Machine Learning, 72(1-2):39-61, 2008.
[12] Jérôme Dedecker, Paul Doukhan, Gabriel Lang, José Rafael León R., Sana Louhichi, and Clémentine Prieur. Weak dependence: with examples and applications, volume 190 of Lecture Notes in Statistics. Springer, New York, 2007.
[13] Jérôme Dedecker and Clémentine Prieur. New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields, 132(2):203-236, 2005.
[14] Hans Rudolf Künsch. A note on causal solutions for locally stationary arprocesses. 1995.
[15] Krzysztof Łatuszyński, Blazej Miasojedow, and Wojciech Niemiro. Nonasymptotic bounds on the estimation error of memc algorithms. Bernoulli, 2013.
[16] Krzysztof Łatuszyński and Wojciech Niemiro. Rigorous confidence bounds for MCMC under a geometric drift condition. J. Complexity, 27(1):23-38, 2011.
[17] Gilbert Leung and Andrew R. Barron. Information theory and mixing leastsquares regressions. IEEE Trans. Inform. Theory, 52(8):3396-3410, 2006.
[18] K. L. Mengersen and R. L. Tweedie. Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist., 24(1):101-121, 1996.
[19] Eric Moulines, Pierre Priouret, and François Roueff. On recursive estimation for time varying autoregressive processes. Ann. Statist., 33(6):2610-2654, 2005.
[20] Emmanuel Rio. Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. C. R. Acad. Sci. Paris Sér. I Math., 330(10):905-908, 2000.
[21] Gareth O. Roberts and Jeffrey S. Rosenthal. General state space Markov chains and MCMC algorithms. Probab. Surv., 1:20-71, 2004.

