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TIME SERIES PREDICTION VIA AGGREGATION : AN ORACLE BOUND

INCLUDING NUMERICAL COST

ANDRÉS SÁNCHEZ-PÉREZ

Abstract. We study the problem of forecasting a time series for a Causal Bernoulli Shifts

(CBS) model using a parametric family of predictors. The aggregation technique pro-

vides a forecaster of this parameter with well established and quite satisfying theoretical

properties expressed in the form of an oracle inequality for the prediction risk. The main

advantage of this result is that it does not require to specify a particular model on the data.

The numerical computation of the aggregated predictor usually relies on a Markov chain

Monte Carlo method whose performances should be evaluated. In particular, it is crucial

to bound the number of simulations needed to achieve a numerical precision of the same

order as the prediction error. In this direction we present a fairly general result which can

be seen as an oracle inequality which includes the numerical cost of the predictor compu-

tation. Again it is not required to specify a particular model on the data. The numerical

cost appears by letting the oracle inequality depend on the number of simulations required

in the MCMC approximation. Using different priors, some numerical experiments are then

carried out to support our findings.

1. Introduction

An aggregation method consists in building a new estimator or a new predictor from a col-

lection of different ones (typically via an integration), which is nearly as good as the best

among them, given a risk criterion (see [11]). The problem has been treated in different

scenarios, with a few contributions in the dependent context, see [1] or [2], on which we

shall rely in this work. The aggregated predictor is usually computed via a numerical pro-

cedure which raises an implementation issue. We will consider a widely used approach to

deal with it, namely the Markov chain Monte Carlo method.

To evaluate the performance of this approach we proceed in two steps. First we establish

an oracle inequality for the theoretical aggregated predictor in the general context of the

Causal Bernoulli Shifts. We slightly revisit the results of [2] to derive an oracle bound for

the prediction error of the theoretical aggregated predictor. Then we consider the prac-

tical predictor obtained by an MCMC approximation and derive an Oracle bound for it

expressed with the number of simulations in the MCMC method. This is obtained using

a result of Łatuszyński [9], [10], jointly with other properties of the basic MCMC algo-

rithms that we use. Finally we treat the autoregressive process (with unknown order) as an

illustrative example and we present some numerical results.

2. Statement of the problem and main assumptions

Let us observe (X1, . . . ,Xn) from a stationary time series X = (Xt)t∈Z valued in Rr for some

r ≥ 1. In the following we denote by π0 the probability (and the expectation associated to

this probability) of the process X = (Xt)t∈Z.
Let X̂t be a given predictor, that is, a measurable function of the past of X,

1



2 ANDRÉS SÁNCHEZ-PÉREZ

X̂t = f
(
(Xt−i)i≥1

)

. The prediction error is evaluated by

R̃ ( f ) = π0

[

ℓ
(

X̂t,Xt

)]

=

∫

RZ

ℓ
(
f
(
(xt−i)i≥1

)
, xt

)
π0 (dx) ,

where ℓ be a loss function, which satisfies :

Assumption 1 (Lipschitz Loss). For all x, x′ ∈ Rr,

ℓ
(

x, x′
)

= g
(

x− x′
)

,

for some convex function g which is non-negative, g (0) = 0 and K- Lipschitz :

|g (x)−g (y)| ≤ K‖x− y‖ .

Here and in the following, for a ∈ Rd , ‖a‖ denotes the Euclidean norm of a,

‖a‖ =

√√√
d∑

i=1

a2
i
.

Consider a family of predictors { fθ,θ ∈ Θ}. For each θ ∈ Θ there exists a unique d = d (θ) ∈
N
∗ such that fθ : (Rr)d → (Rr) is a function from which we define

X̂θt = fθ (Xt−1, . . . ,Xt−d) ,

as a possible predictor of Xt from its past.

A natural way to evaluate the performance of the predictor associated to θ is to compute

the risk

R (θ) = R̃ ( fθ) = π0

[

ℓ
(

X̂θt ,Xt

)]

.

The main goal of this work is to build a predictor function f̂n, possibly in the form f
θ̂n

,

inferred from a sample (X1, . . . ,Xn) such that R̃
(

f̂n
)

or R
(

θ̂n

)

is close to inf
θ∈Θ

R (θ) with π0-

probability close to 1. The only assumptions that we shall suppose on the process X are

the following :

Definition 1 (CBS). A time series is defined as Causal Bernoulli Shifts (CBS) if it satisfies

the representation

Xt = H (ξt, ξt−1, ξt−2, . . .) ,∀t ∈ Z ,

where (ξs) is an i.i.d. sequence of Rr′ -valued random variables called innovations, for

some r′ ≥ 1 and H :
(

R
r′
)N→ Rr is a function satisfying

‖H (v)−H
(

v′
)‖ ≤

∞∑

j=0

a j (H)‖v j − v′j‖ ,

for any v =
(

v j

)

j∈N ,v
′
=

(

v′
j

)

j∈N
∈ Rr′ , where

∞∑

j=0
ja j (H) < +∞.

We denote a (H) =
∞∑

j=0
a j (H) , ã (H) =

∞∑

j=0
ja j (H).

Assumption 2. For the CBS defined by (ξs)s∈Z and H, the Laplace transform of ξ0 at a(H)

is finite, i.e. Ψ(a(H)) = E
[

exp(a(H)‖ξ0‖)
]

<∞.
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Let X̄t = H
(

ξ̄t, ξ̄t−1, . . .
)

, for all t, where, for a fixed C > 0, ξ̄t = (ξt ∧C)∨ (−C). We note by

X̄ =
{

X̄t

}

and by r̄n and R̄ the risks associated to X̄. This thresholding will be interesting

because allows to the truncated CBS to enter in the class of weakly dependent processes.

We just introduce a couple of definition before point out what we understand by weakly

dependent process.

Definition 2. Given a probability space (Ω,A,P) and a bounded variable Z in Rq defined

on the probability space, we denote, for any sub σ− algebra S ofA

θ∞ (S,Z) = sup
f∈Λq

1

∣
∣
∣

∣
∣
∣E

[

f (Z) |S ]−E
[

f (Z)
]∣∣
∣

∣
∣
∣ ,

where

Λ
q

1
=






f : Rq→ R,

∣
∣
∣
∣ f

(

z1, . . . ,zq

)

− f
(

z′
1
, . . . ,z′q

)∣∣
∣
∣

q∑

i=1
‖zi − z′

i
‖

≤ 1






.

Definition 3. We introduce the σ− algebra Sp = σ (Xt, t ≤ p) and define the θ∞,n (1) coef-

ficients as

θ∞,k (1) = sup
{

θ∞
(

Sp,
(

X j1 , . . . ,X jl

))

, p+1 ≤ j1 < . . . < jl,1 ≤ l ≤ k
}

.

Assumption 3 (Weak Dependence). There exist finite constants B,C such that almost

surely,

sup
t∈Z
‖Zt‖ ≤ B ,

θ∞,k (1) ≤ C,∀k ∈ N .

Under Assumption 3, (Zt)t∈Z will be called weakly dependent process (WDP), see [7] or

[8]. It is straightforward to see that the truncated CBS is a WDP.

The main assumptions on the family of predictors are the following ones.

Assumption 4 (Lipschitz predictor). Let θ ∈Θ and d = d (θ). There exist b1 (θ) , . . . ,bd (θ) ∈
R+ such that for all (x1, . . . , xd) , (y1, . . . ,yd) ∈ Rrd ,

‖ fθ(x1, . . . , xd)− fθ(y1, . . . ,yd)‖ ≤
d∑

j=1

b j(θ)‖x j − y j‖ .

Denote L = sup
θ∈Θ

d(θ)∑

j=1

b j (θ). We assume that L ≤ log(n)−1.

Assumption 5 (Uniform θ- Lipschitz). Define Dn = sup
θ∈Θ

d (θ). We assume that

Dn ≤
n

2
and there exists D < +∞ such that,

π0

[∣
∣
∣

∣
∣
∣ f
θ̃

(
Xt−1, . . . ,Xt−Dn

)− fθ
(
Xt−1, . . . ,Xt−Dn

)∣∣
∣

∣
∣
∣

]

≤ D
√

Dn

∣
∣
∣

∣
∣
∣θ̃−θ

∣
∣
∣

∣
∣
∣ , ∀θ, θ̃ ∈ Θ .
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3. Prediction via aggregation

The predictor that we shall propose will be defined as an average of predictors fθ based on

the empirical version of the risk,

rn (θ; X1, . . . ,Xn) =
1

n−d (θ)

n∑

t=d(θ)+1

ℓ
(

X̂θt ,Xt

)

.

For the sake of simplicity we will identify rn (θ) ≡ rn (θ; X1, . . . ,Xn) but without forgetting

that it is a random variable which depends on n observations of the series.

We consider a probability measure π over Θ is labelled as the prior. It will serve to control

the complexity of predictors associated to Θ and to construct one in particular, as detailed

in the following.

3.1. Gibbs predictor. For a measure ν and a measurable function h (called “energy func-

tion”) such that ν
[

exp(h)
]

=

∫

exp(h) dν < +∞ , we denote by ν {h} the measure defined

by

ν {h} (dθ) =
exp(h (θ))

ν
[

exp(h)
]ν (dθ) .

It is a particular Gibbs measure where the inverse temperature is equal to −1.

Definition 4 (Gibbs predictor). Given a λ > 0, called the temperature parameter, we define

the Gibbs predictor as the expectation of fθ, where θ is drawn under π {−λrn}, that is

f̂λ,n = π {−λrn}
[

f·
]

=

∫

Θ

f̂θ
exp(−λrn (θ))

π
[

exp(−λrn (θ))
]π (dθ) .(1)

So far we have presented a quite general framework : a time series that we aim to predict

using a parameter θ, and a generic setting for aggregating in a set where “good” candi-

dates of θ are supposed to lie. All the needed assumptions are listed above (Assumption

1 to 5). We will only require one additional assumption below on Θ and the prior π (see

Assumption 6).

3.2. Theoretical oracle bounds on CBS. The proof of main result of this section is based

on the same tools as those used by [2] up to a point (Lemma 3). For a sake of completeness

we quote the essensial lemmas.

The first one can be found in [6].

Lemma 1. (Legendre transform of the Kullback divergence function). For any ν ∈M1
+

(E),

for any measurable function h : E→ R such that ν
[

exp(h)
]

< +∞ we have,

ν
[

exp(h)
]

= exp




sup

ρ∈M1
+

(E)

(ρ [h]−K (ρ,ν))




,

with convention∞−∞=−∞.M1
+ (E) is the space of probability measures on E. Moreover,

as soon as h is upper-bounded on the support of ν, the supremum with respect to ρ in the

right-hand side is reached for the Gibbs measure ν {h}.
K stands for the Kullback-Leibler divergence.

K (ρ,ν) =






∫

log
dρ

dν
(θ)ρ (dθ) , if ρ≪ ν

+∞ , otherwise
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A Hoeffding type inequality introduced in [15] leads to :

Lemma 2 (Laplace transform of the risk). Under CBS and Assumptions 1, 2 and 4, for

any truncation level C > 0, λ > 0 and θ ∈ Θ we have,

π0

[

exp
(

λ
(

R̄(θ)− r̄n(θ)
))]

≤ exp

(

4λ2k2
n(C)

n

)

,(2)

and

π0

[

exp
(

λ
(

r̄n(θ)− R̄(θ)
))]

≤ exp

(

4λ2k2
n(C)

n

)

,(3)

where kn(C) =
√

2CK(1+ L) (a(H)+ ã(H)).

The following lemma is quoted from [2].

Lemma 3. Under CBS and Assumptions 1, 2 and 4, for any truncation level C > 0 and any

0 ≤ λ ≤ n

4(1+ L)
, we have,

π0

[

exp

(

λsup
θ∈Θ
|rn(θ)− r̄n(θ)| −λφ(C,λ)

)]

≤ 1 ,

where

φ(C,λ) = 2K(1+ L)Ψ(a(H))

(

a(H)C

exp(a(H)C)−1
+λ

4K(1+ L)

n

)

.

We have the following result on the aggregated predictor defined in (1).

Lemma 4. Under CBS and Assumptions 1, 2 and 4, for any truncation level C > 0 and any

0 ≤ λ ≤ n

4(1+ L)
, with probability at least 1− ǫ,

R̃
(

f̂λ,n
)

≤ inf
ρ∈M1

+
(Θ)

{

ρ [R]+
2K (ρ,π)

λ

}

+
16λk2

n(C)

n
+

2log

(

1

2ǫ

)

λ
+4φ(C,2λ) .

See the Appendix for the proof.

We make an additional assumption on the prior π defined on Θ in order to obtain the main

result of the section.

Assumption 6 (Balls of a minimizing sequence). There exists a sequence {an}n≥1 and a

constant C such that an ∈ Θ (which depends on n),

R (an) ≤ inf
θ∈Θ

R (θ)+
log4 (n)
√

n
,

and π [B (an, δ)∩Θ] ≥ CδDn ,∀δ ≤ δ∗n =
1
√

n
,

where B (an, δ) is the Euclidean ball centred at an with radius δ.

Last assumption requires the prior to allocate a sufficiently large mass to low dimensional

subsets of Θ. This is at the origin of the intuition of last condition. Imagine that the set Θ

can be expressed asΘ=
V(n)⋃

k=1

Θk with Θk ⊂RDk for all k and {Dk}k≥1 an increasing sequence.
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Here for simplicity we identify RDk with the subspace






(x, 0, . . . ,0
︸ ︷︷ ︸

DV(n)−Dk

), x ∈ RDk






of DV(n).

Suppose that Θk is endowed with the prior probability measure πk and that π =
V(n)∑

k=1

ckπk.

Given a ∈ Θk and such that its last Dk −Dk−1 coordinates are not all zero (it does not

“belong” to Θk−1), we define a ball centred at a with radius δ as

B (a, δ) =

V(n)⋃

j=k






u ∈ RD j : ‖u− (a,0, . . . ,0
︸ ︷︷ ︸

D j−Dk

)T ‖ ≤ δ






,

and we set

π [B (an, δ)∩Θ] =

V(n)∑

k=1

ck1Θk
(an)πk [B (an, δ)∩Θk] .

Thanks to this decomposition, it will be possible to meet the condition of Assumption 6.

See subsection 4.3 for a precise example.

Theorem 3.1. In the context of CBS, if assumptions 1, 2, 4, 5 and 6 hold, with Dn =

O
(

⌊log3 (n)⌋
)

. Then there exists a constant E, such that for all ǫ > 0, with probability at

least 1− ǫ,

R̃
(

f̂√n,n

)

≤ inf
θ∈Θ

R̃
(

f̂θ
)

+E log4 (n)
√

n
+

2
√

n
log

(

1

2ǫ

)

.

The proof can be found in the Appendix.

Here however we shall focus on the fact that this inequality applies to a theoretical aggre-

gated predictor f̂√n,n. One should indeed investigate how these predictors are computed

in practice and how practical numerical approximations performs in comparison with the

theoretical estimator.

4. Computation of the estimator

We use the Metropolis - Hastings algorithm in order to compute the mean of a target

probability whose density ρ, possibly unnormalised, is relatively easy to calculate. We will

work over X ⊆ Rr equipped with T , the Borel σ- algebra. We will consider probability

measures which are absolutely continuous, and have a known density with respect to the

Lebesgue measure.

4.1. Metropolis - Hastings algorithm. The Metropolis-Hastings algorithm generates a

Markov chainΦ = {Φi}i≥0 with the target distribution as a unique invariant measure, based

on another Markov chain which serves as a proposal (see [13] and [16]). We shall consider

the two following classical setups for the proposal :

• The independent Hastings algorithm where the proposal is i.i.d. with density q

such that for some β > 0

inf
y∈X

q (y)

ρ (y)
≥ β .(4)
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• The Metropolis-Hastings algorithm where the proposal is a Markov chain with

conditional density kernel q on Θ̄× Θ̄ such that

β = inf
(x,y)∈X̄×X̄

ρ (y)

ρ (x)
inf

(x,y)∈X̄×X̄
q (x,y) > 0 .(5)

In both cases we can affirm that algorithm is uniformly ergodic (see [12]), i.e. for all m ∈N

‖Pm (x, ·)−ρ‖ ≤ (1−β)m .

4.2. Theoretical bounds for the computation. Theorem 4.1 from [10] allows to bound

the amount of iterations needed by some ergodic Markov chains (included those generated

by the MCMC method that we use) in order to control the error that we make in approx-

imating the first moment of the stationary distribution by the empirical estimate obtained

from the successive samples of the chain. Applying this result in our context (see the

Appendix) we obtain the following result.

Corollary 1 (Confidence Estimation). Let {Φi}i≥0 be the chain generated by the indepen-

dence Hastings algorithm under hypothesis (4) or by the Metropolis-Hastings algorithm

under (5). Denote by

Φ̄m =
1

m

m−1∑

i=0

Φi ,

Φ̄ = ρ
[

f·
]

.

Let α > 0 and 0 < ǫ < 1 be arbitraty. For any m ≥ M (α,β,ǫ,X), with probability at least

1− ǫ,
∣
∣
∣Φ̄m− Φ̄

∣
∣
∣ ≤ α ,

where :

M (α,β,ǫ,X) =
2(diam(X))2

α2βǫ
+2

√

(diam(X))4

α4β2ǫ2
+

(diam(X))2

α2β2ǫ
,

diam(X) = sup
x,y∈X
‖x− y‖ .

By setting α appropriately, this result says how many iterations of the MCMC method are

required in order to be reach a precisions of the same order as the prediction error enjoyed

by the target Gibbs predictor.

Theorem 4.1. Under the hypothesis of Theorem 3.1, using a numerical method described

by Corollary 1, we conclude that there exists a constant F such that for all

m ≥ M

(

log3 (n)
√

n
,β√n,n, ǫ,X

)

, with probability at least (1− ǫ)2,

R̃
(

f̄√n,n,m

)

≤ inf
θ∈Θ

R̃ ( fθ)+F
log4 (n)
√

n
+

2
√

n
log

(

1

ǫ

)

.

We have noted by f̄√n,n,m the MCMC approximation of f̂√n,n after m iterations. In par-

ticular, and as specified also in Theorem 3.1, λ =
√

n. Remark that, when we target the

distribution π {−λrn} with a suitable MCMC method, the convergence rate depends on a β

which is specific of that distribution, i.e., it is a function of λ and n. That is why parameter

β has two sub-indexes: one corresponding to λ and the other to n.
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Proof of Theorem 4.1

Considering that assumptions 1 and 5 hold we get

|R (θ2)−R (θ1)| ≤ KD
√

DV(n) ||θ2− θ1|| .
Our bounds for the convergence of MCMC algorithm are independent of the observations.

In consequence, the probability of having the risk of the computed predictor as near as

needed of the Gibbs predictor and also that the risk of Gibbs predictor be as near as needed

of the infimum, is the product of both probabilities. Finally, using Corallary 1 and plugging

last inequality in Theorem 3.1, we get the result.

n

4.3. The example of the autoregressive process. We study the autoregressive model of

order p or simply the AR(p), defined as the stationary solution of

Xt =

p∑

j=1

θ jXt− j +σξt ,

where the ξt are i.i.d. with Eξt = 0.

We denote sd(ρ) =

{

(θ1, . . . , θd) : 1−
d∑

k=1

θkzk
, 0 for |z| < ρ−1

}

the set of θs for which the

autoregressive polynomial θ (z)= 1−
d∑

k=1

θkzk has all its roots outside the circle of radius ρ−1.

In this context, the CBS assumption implies that the true parameter θ̄ =
(

θ1, . . . , θp

)

∈ sp(1)

and the process is stable (see [5]).

Let Θ =
⌊log(n)⌋
⋃

d=1

Θd. Suppose that Θd ⊂ RDd for all d where a prior πk is considered.

Regarding the predictors of the form

fθ
(

Xt−1, . . . ,Xt−⌊log(n)⌋
)

= θ
T
(

Xt−1, . . . ,Xt−⌊log(n)⌋
)T
,

remark that, the Gibbs predictor can be expressed as f̂λ,n = f
θ̂λ,n

where θ̂λ,n is the Gibbs

estimator defined as

θ̂λ,n = π {−λrn} [Id] =

∫

Θ

θ
exp(−λrn (θ))

π
[

exp(−λrn (θ))
]π (dθ) .

The MCMC conditions are easier verified on Θ, thus we develop in this subsection the

estimation, but knowing that it does not change any previous result. All are straightforward

applicable.

Without any information about the order of the process (i.e. p) it would be convenient to

favor those θ ∈ Θd with d small. Let

π (dθ) =

⌊log(n)⌋
∑

d=1

cd1Θd
(θ)πd (dθ) ,

where
(

c1, . . . ,c⌊log(n)⌋
)

is the prior on the order and πd is the prior on Θd, for 1 ≤ d ≤
⌊log(n)⌋.
In the following we moreover assume that :

• r = 1.

• The innovations {ξt} have compact support and denote by B a constant such that

Xt ∈ [−B,B] for all t. Assumption 2 is then satisfied.
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• Θd ⊂ Rd
⋍ R

d × {0}⌊log(n)⌋−d ⊂ R⌊log(n)⌋. They are open and bounded by B.

• ℓ is the square, thus assumption 1 holds because Xt and θ are bounded.

• πd ∝ 1Θd
.

• fθ
(
x1, . . . , xd(θ)

)
=

d(θ)∑

i=1

θixi.

Assumption 5 holds because (Using Cauchy-Schwarz and Jensen’s)

π0

[∣
∣
∣
∣

∣
∣
∣
∣ fθ̃

(

Xt−1, . . . ,Xt−⌊log(n)⌋
)

− fθ
(

Xt−1, . . . ,Xt−⌊log(n)⌋
)∣∣
∣
∣

∣
∣
∣
∣

]

= π0





∣
∣
∣
∣
∣
∣
∣
∣

⌊log(n)⌋
∑

i=1

(

θ̃i− θi
)

X⌊log(n)⌋−i

∣
∣
∣
∣
∣
∣
∣
∣





≤

√√√√

π0





⌊log(n)⌋
∑

i=1

X2
i





∣
∣
∣

∣
∣
∣θ̃−θ

∣
∣
∣

∣
∣
∣

≤ B
√

⌊log(n)⌋
∣
∣
∣

∣
∣
∣θ̃−θ

∣
∣
∣

∣
∣
∣ .

Also assumption 6 holds because θ̄ = arginf
θ∈Θ

R (θ), then we could take an = θ̄, and

for n big enough Bp (an, δ) ⊂ Θp, and ∀δ ≤ δ∗n = n−
1
2 we have

π [B (an, δ)∩Θ] ≥ cpπp

[

Bp (an, δ)
]

= cp
π

p
2

Γ

(
p

2
+1

)δp

≥ Cδ⌊log(n)⌋ ,

with C = cp

π
p
2

Γ

(
p

2
+1

) and Γ the gamma function.

Since Bd

(

1
√

d

)

⊆ sd(1) ⊆ Bd

(

2d −1
)

, (see [14]), the prior π could be defined on Θ =

⌊log(n)⌋
⋃

d=1

Θd with, for example, Θd = Bd

(

1
√

d

)

, Θd = sd(1) or Bd

(

2d −1
)

. Clearly Θd =

Bd

(

1
√

d

)

is a more restrictive setting. If p is unknown and Θd = sd(1) or Bd

(

2d −1
)

we

would face the problem of the size of set Θ because assumption 4 would not be verified.

On the contrary, if Θd ⊂ Bd (B), for all 1 ≤ d ≤ ⌊log(n)⌋, it is easy to see that assumption 4

holds.

With the aim of applying the oracle inequality given by Theorem 4.1 that applies to θ̄√n,n,m,

the numerical approximation of the estimator, we will see different priors combined with a

proposal in the Metropolis-Hasting algorithm. As proposal chain we will use the uniform

distribution over the entire Θd (independent of current state).

See that

∣
∣
∣
∣
∣
∣
∣
∣

Xt −
d(θ)∑

j=1

θ jXt− j

∣
∣
∣
∣
∣
∣
∣
∣

≤ |Xt|+
d∑

j=1

∣
∣
∣θ j

∣
∣
∣

∣
∣
∣Xt− j

∣
∣
∣ ≤
√

d+1B
√

1+B2⇒

rn (z; X1, . . . ,Xn) ≤
√

d+1B
√

1+B2 ,
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and then

q (θ)

ρ (θ)
=

⌊log(n)⌋
∑

d=1
cd1Θd

(θ)

⌊log(n)⌋
∑

d=1
cd

∫

Θd

dz

⌊log(n)⌋
∑

d=1
cd

∫

Θd

exp(−λrn (z; X1, . . . ,Xn))dz

⌊log(n)⌋
∑

d=1
cd1Θd

(θ)exp(−λrn (θ; X1, . . . ,Xn))

≥
min

1≤d≤⌊log(n)⌋
{cd}

⌊log(n)⌋
∑

d=1
cdV (Θd)

⌊log(n)⌋
∑

d=1

cd exp

(

−λ
√

d+1B
√

1+B2

)

V (Θd)

≥ min
1≤d≤⌊log(n)⌋

{cd}n−2λB
√

1+B2
.

This bound of β, maybe pessimistic, guaranties anyway that given cd > 0 for all d, the inde-

pendent Hastings algorithm converges and also allows to compute the number of iterations

needed in order to reach the theoretical rate.

5. Numerical work

Concretely two types of sets Θd were considered :

• Θd = Bd

(

1
√

d

)

In order to generate uniform random vectors over the d- ball of radius R we use

following algorithm from [17]:

(1) Generate a random vector Y = (Y1, . . . ,Yd) with i.i.d. N (0,1) components

(2) Generate r = U
1
d , with U ∼U (0,1)

(3) Return Z = Rr
Y

‖Y‖
• Θd = sd (1).

In [4] it is described a method for sampling uniformly from sd (1) using Levinson-

Durbin recursion algorithm. It was numerically improved by [3].

And for each one we run experiments as if :

• p would be known : Θ = Θp and cp = 1,

• or not : Θ =
⌊log(n)⌋⋃

d=1

Θd and cd =
e−d

⌊log(n)⌋∑

k=1

e−k

≥ e−d (e−1).

We iterate the algorithm with m = 1000 times for the four schemes at

n ∈ {64,128,256,512,1024,2048,4096}with p ∈ {2,4,6,8}. Twenty realisations of autore-

gressive processes were simulated for each order. The following graphs resume the behav-

ior of the algorithm these time series in each case.
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5.1. Known order.

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

64 128 256 512 1024 2048 4096
n

lo
g
(

R
(

θ̄
√
n
,n
,M

)

−
σ
2
)

Figure 1: Prediction error. Uniform pro-

posal, p = 8, Θ = s8 (1).

0.44

0.46

0.48

0.5

0.52

0.54

64 128 256 512 1024 2048 4096
n

‖θ̄
√
n
,n
,M

−
θ
‖ 2

Figure 2: Estimation error. Uniform

proposal, p = 8, Θ = s8 (1).

5.2. Unknown order.

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

64 128 256 512 1024 2048 4096
n

lo
g
(

R
(

θ̄
√
n
,n
,M

)

−
σ
2
)

Figure 3: Prediction error. Uniform pro-

posal, p = 8, Θ =
⌊log(n)⌋

⋃

d=1
s8 (1).

0.44

0.46

0.48

0.5

0.52

0.54

64 128 256 512 1024 2048 4096
n

‖θ̄
√
n
,n
,M

−
θ
‖ 2

Figure 4: Estimation error. Uniform

proposal, p = 8, Θ =
⌊log(n)⌋

⋃

d=1
s8 (1).
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6. Conclusion

The use of aggregated techniques determining a forecaster with almost minimal prediction

risk has been considered in this work in the context of stationary time series. An approx-

imation of the Gibbs predictor can be computed using the Metropolis Hastings algorithm.

This allows us to obtain guaranties on the numerical approximation, that we expressed by

a new oracle inequality. We have illustrated this approach through simulations in the case

where AR predictor with weighted order are aggregated.
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Appendix

Proof of Lemma 4

We use the relationship :

R− rn =

(

R̄− r̄n

)

+ (R− rn)−
(

R̄− r̄n

)

.(6)

For any measure µ ∈M1
+ (Rn ×Θ), (6) and the Cauchy-Schwarz inequality lead to

µ

[

exp

(
λ

2
(R− rn)

)]

= µ

[

exp

(
λ

2
(R̄− r̄n)

)

exp

(
λ

2

(

(R− rn)− (R̄− r̄n)
))]

≤
√

µ
[

exp
(

λ(R̄− r̄n)
)]

µ
[

exp
(

λ
(

(R− rn)− (R̄− r̄n)
))]

≤

√

µ
[

exp
(

λ(R̄− r̄n)
)]

µ

[

exp

(

λsup
θ∈Θ

∣
∣
∣(R− rn)(θ)− (R̄− r̄n)(θ)

∣
∣
∣

)]

.(7)

Jensen’s Inequality for the exponential function and Lemma 3 give that

exp

(

λsup
θ∈Θ

∣
∣
∣R (θ)− R̄(θ)

∣
∣
∣

)

= exp

(

λsup
θ∈Θ
|π0 [rn (θ)− r̄n (θ)]|

)

≤ π0

[

exp

(

λsup
θ∈Θ
|rn (θ)− r̄n (θ)|

)]

≤ exp(λφ(C,λ)) ,

and thanks to Lemma 3
√

µ

[

exp

(

λsup
θ∈Θ
|(rn−R)(θ)− (r̄n− R̄)(θ)|

)]

µ
[

exp(λφ(C,λ))
] ≤ 1 .(8)

with µ = π0⊗π and any π ∈M1
+

(Θ).

Lemma 2 implies that

√

π0⊗π
[

exp
(

λ(R̄− r̄n)
)]

≤ exp

(

2λ2k2
n(C)

n

)

.(9)
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Multiplying (7), (8) and (9) with µ = π0⊗π we obtain

π0⊗π
[

exp

(

λ

2
(R− rn)−

2λ2k2
n(C)

n
−λφ(C,λ)

)]

≤ 1 .

Changing λ by 2λ and thanks to Lemma 1 we get

π0




exp




sup

ρ∈M1
+(Θ)

(λρ[R− rn]−K(ρ,π))−
8λ2k2

n(C)

n
−2λφ(C,2λ)








≤ 1 .

Then, Markov’s Inequality implies that for all ǫ > 0,

π0




sup

ρ∈M1
+(Θ)

(

λρ[R− rn]−K(ρ,πp,ℓ)
)

−
8λ2k2

n(C)

n
−2λφ(C,2λ)− log

(

1

ǫ

)

≤ 0




≥ 1− ǫ .

Hence with π0- probability at least 1− ǫ, for all ρ ∈M1
+ (Θ)

ρ [R− rn]− 1

λ
K(ρ,π)−

8λk2
n(C)

n
−2φ(C,2λ)− 1

λ
log

(

1

ǫ

)

≤ 0 .(10)

Setting ρ = π{−λrn} and relying on Lemma 1, we have

K (π {−λrn} ,π) = π {−λrn}
[

log
dπ {−λrn}

dπ

]

= π {−λrn}
[

log
exp(−λrn)

π
[
exp(−λrn)

]

]

= π {−λrn} [−λrn]− log
(
π
[
exp(−λrn)

])

= π {−λrn} [−λrn]+ inf
ρ∈M1

+
(Θ)
{ρ [λrn]+K (ρ,π)}

From (10) it follows that, with π0- probability at least 1− ǫ,

π {−λrn} [R] ≤ inf
ρ∈M1

+
(Θ)

{

ρ [rn]+
K (ρ,π)

λ

}

+
8λk2

n(C)

n
+

log

(

1

ǫ

)

λ
+2φ(C,2λ) .

We also have that with π0- probability at least 1− ǫ,

π {−λrn} [rn] ≤ inf
ρ∈M1

+(Θ)

{

ρ [R]+
K (ρ,π)

λ

}

+
8λk2

n(C)

n
+

log

(

1

ǫ

)

λ
+2φ(C,2λ) .

Similarly to (10), but using (3) instead of (2), we obtain the same inequality with ρ [R− rn]
replaced by ρ [rn −R] and hence, from a union bound, with π0- probability at least 1− ǫ,

π {−λrn} [R] ≤ inf
ρ∈M1

+(Θ)

{

ρ [R]+
2K (ρ,π)

λ

}

+
16λk2

n(C)

n
+

2log

(

1

2ǫ

)

λ
+4φ(C,2λ) .
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Using Tonelli’s Theorem and Jensen’s Inequality with the convex function g

π {−λrn} [R] =

∫

Θ





∫

RZ

g ( fθ (xn−1, i ≥ 0)− xn)π0 (x)





π {−λrn} (dθ)

=

∫

RZ





∫

Θ

g ( fθ (xn−1, i ≥ 0)− xn)π {−λrn} (dθ)




π0 (x)

≥
∫

RZ

g





∫

Θ

( fθ (xn−1, i ≥ 0)− xn)π {−λrn} (dθ)




π0 (x)

= π0

[

g
(

X̂λ,n+1−Xn+1

)]

= R̃
(

X̂λ,n+1

)

.

This, with the previous bound, concludes the proof.

n

Proof of Theorem 3.1
We consider the set of probability measures

{

ρan,δ,n ∈ N,0 ≤ δ ≤ δ∗
} ⊂ M1

+ (Θ), where

ρan,δ

(

θ̃

)

∝ π
(

θ̃

)

1{θ̃∈B(an,δ)∩Θ}.
The result above guarantees that

R̃
(

f̂n
)

≤ inf
0≤δ≤δ∗

{

ρan,δ [R]+2
K (

ρan,δ,π
)

λ

}

+
16λk2

n(C)

n
+2

log

(

1

2ǫ

)

λ
+4φ(C,2λ) .(11)

R̃
(

f̂n
)

≤ inf
0≤δ≤δ∗

{

ρan,δ [R]+2
K (
ρan,δ,π

)

λ

}

+
16λk2

n(C)

n
+2

log

(

1

2ǫ

)

λ
+4φ(C,2λ) .(12)

Thanks to assumptions 1 and 5, for any n ∈ N and θ̃ ∈ B (an, δ)

R
(

θ̃

)

−R (an) ≤ Kπ0

[∣
∣
∣
∣

∣
∣
∣
∣ fθ̃

(

Xt−1, . . . ,Xt−Dn(n)

)

− fan

(
Xt−1, . . . ,Xt−Dn

)
∣
∣
∣
∣

∣
∣
∣
∣

]

≤ KD
√

Dnδ .

Clearly

K (

ρθ,δ,π
)

= log

(

1

π [B (an, δ)∩Θ]

)

≤ −Dn log(δ)− log(C)
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Plugging these two expressions into (12)

R̃
(

f̂n
)

≤ inf
0≤δ≤δ∗n






∫

Θ

R (θ)ρan,δ (dθ)+
16λk2

n(C)

n
+2

K (
ρan,δ,π

)
+ log

(

1

2ǫ

)

λ
+4φ(C,2λ)






≤ inf
0≤δ≤δ∗n

{

R (an)+E1

√

Dnδ+
E2λ (1+ L)2 C2

n
+

+2

−Dn log(δ)− log(C)+ log

(

1

2ǫ

)

λ
+
E3 (1+ L)C

exp(a(H)C)−1
+
E4 (1+ L)2 λ

n






≤ inf
θ∈Θ

R̃

(

X̂θ√
n,n+1

)

+
log4 (n)
√

n
+
E2λ (1+ L)2 C2

n
− 2log (C)

λ
+

2log

(

1

2ǫ

)

λ
+
E3 (1+ L)C

exp(a(H)C)−1
+

+
E4 (1+ L)2 λ

n
+ inf

0≤δ≤δ∗n

{

E1

√

Dnδ−
2Dn log(δ)

λ

}

,

where E1 = KD, E2 = 32K2 (a(H)+ ã(H))2, E3 = 8KΨ(a(H))a(H) and

E4 = 64K2
Ψ(a(H)).

At a fixed ǫ, the rate of convergence of

2 log

(

1

2ǫ

)

λ
+
E4 (1+ L)2 λ

n
is at best

log2 (n)
√

n
, and

we get it doing λ =
√

n. Regarding E1

√
Dnδ−

2Dn log(δ)

λ
, if we don’t want to lose the rate

1
√

n
(up to a power of log(n)) we should pick Dn = O

(

⌊log3 (n)⌋
)

. Finally we do δ =
1
√

n

and C =
log(n)

a(H)
and the result follows.

n

Proof of Corollary 1

Let us first introduce some additional notation. Given the functions h :X→ R and V :X→
[1,∞),

|h|V = sup
x∈X

|h (x)|
V (x)

,

hc (x) = h (x)−π [h] ,

and for any signed measure µ the V- norm is defined as

‖µ‖V = sup
|g|≤V

∣
∣
∣
∣
∣

∫

g (y)µ (dy)

∣
∣
∣
∣
∣
.

Conditions of the cited theorem are satisfied under both circumstances because

(1) X is (1,β,π)- small.

(2) Foster-Lyapunov drift condition holds with V (x) = 1,∀x,K = 1 and λ ∈ [0,1).

(3) Strong aperiodicity follows from the fact that the whole set X is small.

See that
∣
∣
∣

∣
∣
∣Pm (x, ·)−ρ

∣
∣
∣

∣
∣
∣
V
= sup

|h|≤1

∣
∣
∣
∣
∣

∫

h (y)Pm (x,dy)−
∫

h (y)ρ (dy)

∣
∣
∣
∣
∣

≤ (1−β)m .
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If the initial distribution is ξ = δx (i.e. we start always atΦ0 = x),

δx [V] = V (x) = 1 ,

‖δx−ρ‖V = sup
|h|≤1

∣
∣
∣
∣
∣

∫

h (y)δx (dy)−
∫

h (y)ρ (dy)

∣
∣
∣
∣
∣
= 1 ,

⇒min {δx [V] ,‖δx−ρ‖V } = 1, then we can take M = 1 and γ = 1−β in the relation

‖ξPm −ρ‖V ≤ min {ξ [V] ,‖ξ−ρ‖V }Mγm .

Taking also into account that
∣
∣
∣| fc|2

∣
∣
∣
V
= sup

x∈X

(

x−ρ [ f·
])2 ≤ (diam(X))2 ,

we can bound the quantities

b =
ρ [V]

∣
∣
∣| fc|2

∣
∣
∣
V

α2ǫ



1+
2Mγ

1
2

1−γ 1
2



 ≤
4(diam(X))2

α2βǫ
,

c =
M2 min {ξ [V] ,‖ξ−ρ‖V }

∣
∣
∣| fc|2

∣
∣
∣
V

α2ǫ (1−γ)



1+
2Mγ

1
2

1−γ 1
2



 ≤
4(diam(X))2

α2β2ǫ
.

Then M (α,β,ǫ,X) corresponds to the upper bound of
b+
√

b2+4c

2
.

n

References

[1] Pierre Alquier and Xiaoyin Li. Prediction of quantiles by statistical learning and

application to gdp forecasting. In Jean-Gabriel Ganascia, Philippe Lenca, and Jean-

Marc Petit, editors, Discovery Science, volume 7569 of Lecture Notes in Computer

Science, pages 22–36. Springer Berlin Heidelberg, 2012.

[2] Pierre Alquier and Olivier Wintenberger. Model selection for weakly dependent time

series forecasting. Bernoulli, 18(3):883–913, 2012.

[3] Christophe Andrieu and Arnaud Doucet. An improved method for uniform simulation

of stable minimum phase real arma (p,q) processes. Signal Processing Letters, IEEE,

6(6):142–144, june 1999.

[4] Edward R. Beadle and Petar M. Djurić. Uniform random parameter generation of
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