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Abstract The high-frequency measurements of
valve activity in bivalves (e.g., valvometry) over a
long period of time and in various environmental
conditions allow a very accurate study of their
behaviors as well as a global analysis of possible
perturbations due to the environment. Valvom-
etry uses the bivalve’s ability to close its shell
when exposed to a contaminant or other abnormal
environmental conditions as an alarm to indicate
possible perturbations in the environment. The
modeling of such high-frequency serial valvom-
etry data is statistically challenging, and here, a
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nonparametric approach based on kernel estima-
tion is proposed. This method has the advantage
of summarizing complex data into a simple den-
sity profile obtained from each animal at every
24-h period to ultimately make inference about
time effect and external conditions on this profile.
The statistical properties of the estimator are pre-
sented. Through an application to a sample of 16
oysters living in the Bay of Arcachon (France),
we demonstrate that this method can be used to
first estimate the normal biological rhythms of
permanently immersed oysters and second to de-
tect perturbations of these rhythms due to changes
in their environment. We anticipate that this ap-
proach could have an important contribution to
the survey of aquatic systems.

Keywords Environmental monitoring -
Nonparametric regression - High-frequency data -
Valvometry - Water quality - Bivalves

Introduction

Protection of the aquatic environment is a top
priority for marine managers, policy makers, and
the general public. Due to an increasing inter-
est in the health of aquatic systems, there is a
compelling need to using remote online sensors
to instantly and widely distribute information on
a daily basis, specifically in marine environment
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(Kroger and Law 2005). Among these sensors,
bio-indicators are increasingly used and are highly
effective in their ability to reveal the presence
of trace amounts (very low concentrations) of
contaminants through accumulation in tissues (see
the US Mussel Watch, http://ccma.nos.noaa.gov/
about/coast/nsandt/welcome.html). The ability of
mollusk bivalves to taste their environment is
one of the possible ways to monitor water qual-
ity. Monitoring their opening and closing activ-
ities over time is yet another way to evaluate
the behavior of the bivalves in reaction to their
environmental exposure. The interest in investi-
gating the bivalve’s activities by recording their
valve movements (e.g., valvometry) is not recent.
Marceau was certainly pioneer in this method
and performed the first recordings of molluscan
valve movements (Marceau 1909). This technique
has been explored in ecotoxicology for more
than 20 years, first under laboratory conditions.
The basic idea of valvometry is to use the bi-
valve’s ability to close its shell when exposed to a
contaminant as an alarm signal (Doherty et al.
1987; Shumway and Cucci 1987; Byrne et al. 1990;
Kramer and Botterweg 1991; Borcherding 1992;
Sluyts et al. 1996; Curtis et al. 2000; Kadar et al.
2001; Nagai et al. 2006). Nowadays, valvometers
are available on the market and use the principle
of electromagnetic induction (Sloff et al. 1983;
Jenner et al. 1989) such as the Mossel Monitor
(Kramer et al. 1989) or the Dreissena Monitor
(Borcherding 1992). There has been a clear re-
search interest in recent years to measuring the
bivalves’ behaviors directly in real conditions
(Riisgard et al. 2006; Robson et al. 2007; Garcia-
March et al. 2008). This is also our case where our
technical innovations include the development of
an online data system (no delayed analysis and
graph production; near-real time data produc-
tion), a remote control, a strong resistance un-
der bad sea conditions, and no limit of distance
between the sampling sites and the laboratory.
Thus, our newly developed technique and analyt-
ical tools are able to monitor and analyze quan-
titatively the bivalve’s behaviors very accurately.
More specifically, we want to describe statistically
the normal bivalve’s activities under laboratory
and/or field conditions in order to provide a ref-
erence from different seas, biotopes, and seasons
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and then to further determine abnormal patterns.
For this purpose, since 2003, we have developed
a new approach using a noninvasive valvometric
technique (high frequency, noninvasive (HFNI)
valvometry) coupled with (a) the integration of
the bivalve’s respiratory physiology and ethol-
ogy and (b) an in-depth statistical analysis that
can handle very large amount of data, a key to
fast online analysis of molluscan bivalve’s behav-
ior at a large scale. Three original key features
have been introduced (Tran et al. 2003). First,
a new valvometric system was built using light-
weight electrodes (approximately 100 mg) linked
by thin flexible wires to high-performance elec-
tronic units. This system allows the bivalves to
be studied in their natural positions with mini-
mal experimental constraints. Second, variations
in the probability of spontaneous closures over the
animals’ biological rhythms were first taken into
account under laboratory conditions by working
during specific periods, for example, when the
probability of spontaneous closing events was
the lowest (Tran et al. 2003) and by controlling
the animals’ respiratory physiology and behav-
ior (Tran et al. 2000, 2001; Massabuau 2001).
Third, a statistical approach was developed, and
it demonstrated its ability to use bivalves’ closure
response as a method for detecting trace amounts
of metals (Tran et al. 2003, 2004, 2007; Fournier
et al. 2004). It is noteworthy that from our results
and observations, Liao et al. (2005, 2006) and
Jou et al. (2009) developed mathematical models
that describe the interaction between spontaneous
valve daily rhythms and various valve response
characteristics. In this study, we established two
field stations, the first in the Bay of Arcachon,
France, in February 2006 and the second one in
the Havannah channel, New Caledonia, in August
2007. These field stations use the light electro-
magnetic and electronic principles as described in
Chambon et al. (2007). Two major challenges we
faced were (a) one data point is generated every
0.1 s at each site, 24 h a day, to optimize the
description of the animals’ behaviors and (b) the
data sampled have a high variability. The objec-
tive of this paper is to apply and develop appro-
priate statistical tools to successfully summarize
and analyze the high-frequency valvometry data.
Although our statistical modeling was conducted
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on the oysters from the Bay of Arcachon, our
statistical approach was also validated on the giant
clams from the site in New Caledonia. Here, we
illustrate some applications using valvometry data
on a group of 16 oysters from the Bay of Arcachon
with valve activity measured over a period of
183 days. On a daily basis, the data and their statis-
tical analysis are presented graphically and made
available to public in the MolluSCAN Eye website
http://www.domino.u-bordeaux.fr/molluscan_eye.

Materials and methods
Experimental sites and animal species

The monitoring site is located in the Bay of
Arcachon, France, at the Eyrac pier (latitude
44°40 N, longitude 1°10 W). Since February 2006,
groups of 16 Pacific oysters, Crassostrea gigas,
measuring from 8 to 10 cm in length are perma-
nently installed on this site. These oysters are all
from the same age group (1.5 years old) and come
from the same local supplier. They also all grew
in the Bay of Arcachon. They were placed in a
traditional oyster farmer bag on a bench in the
bottom and permanently immersed at 3 to 7 m
deep in the water, depending on the tide activity.
We present here a study covering the period from
1st April 2006 to 31 September 2006.

Measurements of valve activity

The first electronic principle of monitoring was
described by Tran et al. (2003) and further
modified by Chambon et al. in 2007. The
modification was necessary for field application in
the ocean and was purely mechanical. It involved
the hardening of the monitoring system to allow
its constant immersion in seawater even in strong
water current conditions and even during storms.
Some information about these specific aspects can
be found on http://www.domino.u-bordeaux.fr/
molluscan_eye. The main challenge was to ensure
the complete autonomy of the system without
in situ human intervention for at least one full
year. In brief, each animal is equipped with two
light coils (sensors), ~53 mg each (unembedded),
fixed on the edge of each valve. These coils mea-

sured 2.5 x 2.5 x 2 mm and were coated with a
resin-sealing before fixation on the valves. One of
the coils emits a high-frequency, sinusoidal signal
which is received by the other coil. In each group
of animals, one measurement was received every
0.1 s (10 Hz) on one of the 16 animals. This
means that each animal’s behavior was measured
every 1.6 s. Every day, a data set with 864,000
pairs of values (one distance value, one stamped
time value) was generated representing a total of
1,728,000 data points. Each oyster’s behavior was
described by a total of 108,000 measurements per
day. The strength of the electric field produced
between the two coils decreases with the distance
according to the transformation 1/D, where D is
the distance between the point of measurement
and the center of the transmitting coil. The mea-
sured signal (Dy,y in millivolts) is converted into
distance in millimeters (D) using the following
calibration model
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Dpy = ——
m (Dyypn)035

— 1.48. (1)

The model parameters were estimated using least-
squares estimation, and the model was very sig-
nificant (R? = 0.99, P value < 0.001).

Data collection and data transmission

On the shore (i.e., by a pier or lighthouse), a
second electronic unit handles the data acquisi-
tion and the programmed emission. The unit is
equipped with a GSM/GPRS modem and uses
Linux operating system for driving the first con-
trol unit, managing the data storage with a time
stamp, accessing the internet, and transferring the
data. A self-developed software module runs on
mobile phone technology. After each 24-h period
(or any other programmed period of time), the
data collected are transmitted to a central work-
station server located at the Marine Biological
Station in Arcachon, France. The valve activity
data are stored in a central database in a merged
data set. Access to this database is provided via an
Intranet or Internet connection (Fig. 1).
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Fig. 1 Synoptic representation of the system, from field
to laboratory. I Opyster equipped with two electrodes,
2 connecting cables from oysters to first-level electronic
card, 3 first-level electronic card in a waterproof case (im-
mersed), 4 electrical connection between the first and the

Tide and diurnal/nocturnal data

Tidal data were collected including a measure-
ment of the height of the water column every hour
and the times of the low and high tides, provided
by the hydrographic and oceanographic service of
the marine (http://www.shom.fr/). To characterize
the diurnal/nocturnal rhythms of the bivalve, we
estimated the time of sunrise and sunset at the
sampling site.

Estimators and models

We propose a kernel-based approach for the
modeling and a statistical treatment of the high-
frequency valvometry data. The main novelty is
the use of a nonparametric regression, which is
particularly advantageous in the context of en-
vironmental studies that often exhibit high vari-
ability. The principle of our approach is first to
produce a density estimation of each animal’s
opening and closing valve activities over a 24-h
period, second to make inference about these in-
dividual profiles using kernel regression, and third
to correlate them with some measured environ-
mental data. A graphical display is also provided
to represent the daily and annual profiles of each
animal, which can be easily read and interpreted
by specialists and nonspecialists. Another possible
choice of estimator is a local polynomial estimator

@ Springer
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second electronic card, 5 second electronic card (emersed),
6 GPRS antennae, 7 GPRS and internet connection,
8 Marine Biological Station of Arcachon, 9 daily update
on Internet

(Fan and Gijbels 1996), but Einmahl and Mason
(2000) and Quian and Mammitzsch (2000) em-
phasized the advantage of kernel regression and
the use of the Nadaraya—Watson approach for
the variance estimator (Nadaraya 1964; Watson
1964). One of the strengths of this estimator con-
sists in its automatic adaptation to designs where
the local polynomial estimator may not perform
reliably overall since its variance may fail to ex-
ist. Also, the Nadaraya—Watson estimator retains
some optimality properties as exposed in Hérdle
and Marron (1985). Moreover, we recently ap-
plied successfully kernel estimation procedure to
high-frequency data in genetics as described in
Briollais et al. (2007) and Durrieu and Briollais
(2009).

Estimation of the probability density function
of valve activities

To determine a general profile of valve activities
during a given period of time (24 h in general),
we estimated the density of probability of the
theoretical states of opening and closing which are
unknown in our sample. There are a number of
statistical problems for which it is necessary to
obtain estimates of the density. For instance, it
is of great interest to reveal features of the data
such as skewness and multimodality which make
possible the identification of different behaviors in
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the whole population (a mixture of several distrib-
utions and clusters). A histogram-type estimator is
the most commonly used estimator, but it could be
strongly affected by the number of classes chosen.
Therefore, we decided to use a nonparametric
kernel density estimator that behaves better sta-
tistically (consistency, asymptotic normality, and
numerical behavior). A kernel estimator of a
function f is defined by Silverman (1986), Wand
and Jones (1995):

~ 1 <& t—T;
fh”(t)znhn§K< hy ) @

where 7 is the sample size and 4, is the bandwidth
(the smoothing parameter) satisfying (C1) h, — 0
and nh, — 00, as n — 00. The kernel K is a sym-
metric function satisfying (C2) ff;o K@tdt=1,
[T2tK@ydt =0, [ |t K(t)dt < +o0, and the
distribution function f is twice differentiable
(C3). We introduce the notation /2" K*(H)dt = 72
to simplify the following formulas, and here, we
considered the Gaussian kernel

1 1
K(I) = E exXp (—512) . (3)

Under conditions (C1)-(C3), the bias and vari-
ance of the estimator f,(.) can be approximated
when n — oo by:

N 2
bias( fy, (1) = % G / PK@Odt+o(hy), (4)

and

1
nh,,

Var(fhﬂ ) = fnr* +o (n;z ) ) (%)

Under conditions (C1)-(C3), the bias tends to
zero and the kernel density estimator fhn is a
consistent estimate of f asymptotically normal
distributed as n — oco:

Vrha(fin (0 = F@)) —> N (0,72 £(0)). (6)

Using Eq. 6, we derive the (1 — )% confidence
interval of f whenn — oo

. £ 2

T, () — Z1—ap2 —fh;(}zt ,

o f 12

Jn, (D) + Z1—ap2 fhﬂ% (7)

where z1_4 is the (1 — «/2)-quantile of the stan-
dard normal distribution.

Nonparametric kernel regression model

The relationship between the distance between
the two electrodes (Y) and the time of the mea-
surement (7)) is modeled using a nonparametric
regression model given by:

Y, =m(T)) + €, fori=1,..,n (8)

where n, m, and € denote the sample size (total
number of couples of values), the regression func-
tion to be estimated, and the model error term,
respectively. The stochastic distribution f of ¢ is
typically unknown and is unlikely to follow any
familiar distribution such as a normal distribution
and is independent of 7. We therefore decided
to use nonparametric statistics. Here, we consider
the case of a fixed equidistant design. Also, the
T;’s have a uniform known design density fr.
However, the limiting bias and variance depend
on unknown quantities which have to be esti-
mated consistently in order to construct the as-
ymptotic confidence intervals. The variation ¢; is
a random variable with a mean value equal to 0
and the stochastic distribution f of these random
variations enable us to characterize the variation
of the random variable Y around m:

[yf(y.0dy

mt) = E(Y)T =1) = &

)

The regression function m thus depends on the
joint density which is unknown. The joint density
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was estimated using a multiplicative kernel and
calculations show that

~ 1 < t—T;
f yf(y,ody:;ZK( - )Yi. (10)
i=1 n

Using the kernel estimator of the joint densities
function, we deducted the regression estimator of
m given by

n
1 2 K (ZZTi Yi
i=1 " .
———— if fr() #0,
g, ) = { " fr@® (11)
1 n
— Y; otherwise.
n

Under conditions (C1)—(C3), the bias and vari-
ance of the estimator 7, are given when n — 0o
by:

bias(riy, () = %hﬁm”(z) / PK@®dt+ o(h?), (12)

and

Var(ny,, () = n111 o’ +o (nit ) , (13)

n n

where o2(t) is the conditional variance
Var(Y/T =t). We chose h, = n™" and replaced
o?(1) by its estimator

n

) _ 1 [_Ti s 2
U(t)_nf(t)ZK< i )(Y, P, (1),

i=1

(14)

We added a new condition (C4) stating that m is
twice differentiable, E(Y?) < oo and n € [1/5, 1[.
Under conditions (C1)—(C4), m, (¢) is a consistent
estimate of m(f) and is asymptotically normally
distributed (Hérdle 1990) when n — oc:

Vnhy (i, (6) = m(D) —> N (B,a*(0)7?),  (15)

where B denotes the bias of 71, (f). Our analy-
ses show that the bias is negligible compared to
the variance estimator (see “Checking the model
behavior”). Then we can set the bias of iy, (f)
equal to zero. Equation 15 allows to compute an
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(1 — @)% confidence interval for m(¢), and it is
given by

1, () COT O + orr?
m — J1= —_—,m 21— —_—
I /2y I a2y e

(16)

where 714/ is the (1 — «/2)-quantile of the stan-
dard normal distribution. From the expression of
my, () (Eq. 11), we can estimate by derivation with
respect to time the speed of opening and closing
by using the derivative over time:

n
K’ (ﬂ) Y:
dny, ) 1 ; fin l

dt - nhn fT(t) (17)

Bandwidth selection

Selecting a proper bandwidth parameter 4, is a
critical step in estimating the density and the re-
gression functions. Although in practice one can
choose the bandwidth subjectively, this can lead
to inaccurate estimation of the density and its
variance. The choice of /,, is much more important
for the behavior of the estimators than the choice
of the kernel function K. Small values of /4, make
the estimate look wiggly and show wrong features,
whereas large values of /,, will lead to an estimate
which is too smooth in the sense that is heavily
biased and may not reveal important structural
features, a bimodality for example. To optimize
h, for the density, we used a plug-in procedure
developed by Sheather and Jones (1991). For the
regression function estimator, we used a cross-
validation (CV) criterion which leads to the score
function
n
CV(hy) =Y (i — thi(Tii )’ (18)
i=1

with respect to h, where mi_;(T;; hy) is the re-
gression function estimator without considering
(T}, Y;). This bandwidth is asymptotically optimal
and yields the same speed of convergence than
other techniques (Hérdle 1991).

All our analyses were performed on a DELL
workstation using both Bash Linux (Fedora 12)
and mathematical codes written in R (Venables
and Ripley 1999, http://www.R-project.org/).
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Results and discussion
Analysis of the oysters’ behaviors

The kernel density estimator (Eq. 2) provides
an estimation of the distribution and probability
of closing and opening states and is computed
each day of our study period. Three examples
are given in Fig. 2. When an oyster has several
sequences of opening and closing states during
the day, the distribution function is bimodal. In
Fig. 2a, the density has two peaks, the first one cor-
responding to a closing state and the second one
to an opening state. The probability of the closing
state for this particular oyster is equal to 0.252,
and the corresponding 95% confidence interval
(Eq. 7) is [0.196, 0.323], so the total duration of
the closing state during the studied day is 6.048 h
and the corresponding 95% confidence interval is
[4.704, 7.752] with h=042.Tn contrast, when the
oyster remains completely closed or open during
the day, the distribution function is unimodal. In
Fig. 2b, it is observed that the oyster has spent
more time open than closed (with an opening
amplitude >4 mm). The probability of closing
for this oyster and this day is equal to 0.00208,
and the corresponding 95% confidence inter-
val is [0, 0.0206], so the total duration of clo-
sure is 0.0672 hours and the corresponding 95%
confidence interval is [0, 0.494] with h = 0.053.
The closing probability for the oyster in Fig. 2¢c
is 0.883, and the 95% confidence interval is
[0.779, 0.986], so the total duration of closure is
21.16 h and the corresponding 95% confidence in-
terval is [18.696, 23.664] with h = 0.41. This means
that this oyster spent more time closed than open
during the day.

The application of the estimator in Eq. 11
gives an estimate of the function m, which mod-
els the opening amplitude as a function of time.
Then, by using asymptotic normality and consis-
tency properties of 7, , we derived the following
95% confidence interval based on (Eq. 16). The
bandwidth estimator has been determined by CV
where the CV functions are convex and have a
clear minimum. This bandwidth provides a good
fit of our data (see Fig. 3).

Then, from the estimator in Eq. 11, we es-
timated the speed of each closing and opening

moves for each oyster (Eq. 17). In Fig. 4, we notice
that the positive speeds correspond to the open-
ing moves and the negative speeds to the closing
moves of the valves. Table 1 gives the values
corresponding to this activity. It shows that oyster
number 1 (Fig. 3a) had three closing states and
their total duration was 6.07 h. The second clos-
ing state is much quicker with a speed equals to
17.96 mm/s and opening speed equals to 2.4 mm/s.
In Fig. 3b, we observe that the oyster had two
micro-closures during the day that were shorter
than 1 min. In Figs. 3c and 4c, this oyster has one
opening move with speed equal to 7.93 mm/s and
a total duration of closing state equal to 21.03 h.
Therefore, the density estimation and the kernel
regression both provide very useful information to
establish the normal bivalve’s activity for a given
period of time and then can be used as a reference
to determine abnormal responses to the environ-
ment (for example, due to water contamination),
as illustrated below.

Association of oysters’ mean behavior
with nycthemeral and tidal biological rhythms

Concerning the nycthemeral rhythms in the Bay
of Arcachon, the difference between diurnal
and nocturnal mean duration of closing was not
significant in our study period (i.e., April to
September 2006) with a Mann and Whitney U test
giving a P value = 0.17. The mean duration of
the closing state for an oyster was 5.06 h per day
with a confidence interval of [1.98, 8.16] (mean +
1 SE) decomposed into 2.63 h ([0.89, 4.39]) for the
night and 2.43 h ([0.69, 4.17]) for the day. Using
the model described in Egs. 8 and 11, we can
also model the biological rhythms of the perma-
nently immersed bivalves. To extract a biological
rhythm, we used a graphical representation of
the period of closing estimates. The principle of
this approach is represented in Fig. 5a, b, which
shows a series of opening and closing states for
each oyster during a 24-h period. The length of
the closing period is proportional to the length of
the solid line. Figure 5c shows this representation
during a full month (May 2006), the x-axis rep-
resents the time in a 24-h time period, and the
y-axis represents the number of days during this
month. For each day, there are 16 lines which
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Table 1 Example of estimated parameters for three different oysters (a), (b), and (c)
Oysters Closing Opening Duration Sunrise Sunset Day/night Tide amplitude Closing Opening
(h) (h) (h) (h) (h) (cm) velocity (mm/s) velocity (mm/s)
a 2.034 4382 2.347 6.650  19.328 Night 424 7.29 2.07
a 14522 15.869 1.346 6.650  19.328 Day 424 17.96 2.4
a 17.191  19.565 2.373 6.650  19.328 Day/night 424 0.011 2.15
b 10.388  10.403 0.014 6.650  19.328 Day 424 0.36 11.77
b 14915 14.924 0.009 6.650  19.328 Day 424 0.24 1.44
c 0.001 21.026  21.026 6.650  19.328 Day/night 424 0.071 7.93

represent the periods of different time intervals
of each oyster’s closing states (solid lines). The
advantage of this representation is to give the time
duration and number of closing and opening states
for each of the 16 oysters for a given time period
in one single graph. We also notice in Figs. 5c, d
and 6 (April to August) that the closing and
opening time periods do not occur randomly. In
particular, this is very clear in Fig. 5d which de-
picts the change of the tide levels beginning at
noon every day. More specifically, these figures
show that the closing activity is highly correlated
with the tidal amplitude and that the closing state

Fig. 5 Principle of
biological rhythm related

(@)

is synchronized with the low tide period. Based
on these observations, we proposed a statistical
method to evaluate the relationship between the
oysters’ closing events and the tide amplitude.
This is the first time that the bio-rhythms of the
permanently immersed oysters is studied.

Correlation between tide amplitude
and valve closing states

We determined the moment of the day where
the oysters close their valves and correlated this
event with the tide parameters in our entire study

to tide (May 2006): ] R e

a closing periods of three
—

different oysters (filled
and open bars denote
respectively the closing

T ..—--:[r--’r"’jl--"-"* ™™ Pl o Al 41 LR

and opening periods);

b superposing of the three
oysters closing/opening

periods for 2 days (May

16 and 17); ¢ superposing (
of the oyster

Opening amplitude

O
~—

closing/opening periods

for 31 days (for each day,

there are 16 lines which
represent the periods of

different time intervals of
the closing/opening states
for the 16 oysters);

d representation of the
tide levels per hour. The
values of the x-axis
represent the hours

per day

Time (hour

12

- 4

Time (hour)

@ Springer



166

Environ Monit Assess (2011) 182:155-170

Fig. 6 Biological rhythm (
related to tide:

a superposing of the
oyster closing/opening
periods from April 1 to
August 31 following the
same graph principle as in
Fig. 5 (filled and open
bars denote respectively
the closing and opening
periods), b the tide levels
per hour from April to
August 2006

April

May

June ’-"-_'==__

July

August

Time (hour)

period. For any particular day, there are 16 broken
lines representing the time intervals of the closing
states for the 16 oysters. Figure Sb represents
for example this information for 3 oysters and
during a 2-day period. Figure 5c compiles this in-
formation for the 16 oysters for a 1-month period.
The boundaries of the closing state interval were
calculated using a threshold value that takes into
account the distance between the two valves. We
denote the estimated vector of threshold values
for the 16 oysters by

§= (51, .... $16)
where fori =1, ..., 16
§; = min(Y;) + (max(¥;) — min(Y})) x 5%. (19)

Using the tide data (http:/www.shom.fr/), we
defined the interval C as the time period between
two high tides occurring every lunar day. Using
the vector of thresholds, we estimated for each
day k, the vector 7 corresponding to the time at
which the first closing event occur for an oyster i
in the interval C:

fk = (flk, vy fik, cees flkﬁ)

@ Springer

16 20 240 4 8 12 16 20 24
Time (hour)
where fori =1, ..., 16
(2)f = min {t; € CFlry (1)) < sk} (20)

Then, we estimated the mean of each oyster’s time
at the first closing period in the interval C denoted
by (?)l’-C and the standard error for the 16 oysters.
In Fig. 7, we plotted (?){f as a function of time
of the low tide for each day of the study period.
We found evidence for a very significant linear
relationship (least square estimators of the slope
and the intercept being respectively equal to 0.995
and —0.36; R?> =0.94, P value < 0.001). So, we
have showed that on average, the oyster’s first
closing hour is significantly correlated with the
time of low tide.

Detection of unusual behaviors

Animals’ reactions to changes in their environ-
ment can be very variable. One way to assess
unusual oysters’ activity due to environmental
changes is to estimate the proportion of oysters
which close their valves at a moment of the day
where they usually are open. For example, the
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First closing hour
2

=] 4 a 12 16 20 24
Low tide hour

Fig. 7 Relationship between the time of the low tide and
the average of first closing period (16 oysters) for each
day (April and September). Error bars denote the standard
errors from the mean denoted by asterisk

proportion of oysters closing their valves during
the high tide period £1 h should be very small.
This proportion estimated for our study period
was 0.064 + 0.0068 (mean + 1SE) whereas in the
low tide period 1 h, this proportion was equal

to 0.45+0.015 (mean + ISE), SE denoting the
standard error. Figure 8 shows some results for the
proportion of oysters closing their valves during
the high tide period over our study period. We
can easily detect the days when this rhythm was
the most modified: April 5, 2006 (p = 41%), July
30, 2006 (p = 36%), August 16, 2006 (p = 51%),
and August 29,2006 (p = 42%). To better charac-
terize the animals’ behaviors during these periods,
we defined two time periods, one corresponding
to a reference activity (46 days between June 1
and July 15, 2006) and another one corresponding
to the modified activity during the consumption
ban (i.e., 46 days between August 1 and Septem-
ber 15, 2006; Ifremer 2006). The proportion of
oysters closing their valves during the high tide
interval +£1 was significantly different between
the two periods (Mann and Whitney U test,
P value = 5.508 £ — 06). An estimation of the
probability that this proportion be superior or
inferior to a fixed threshold, for example 25%,
was 0.048 and 0.29 for the normal and perturbed
period, respectively. It suggests that changes in
the bio-rhythms might be associated with field
perturbations. The reasons for these changes re-
main to be determined although there is some

Fig. 8 Percentage of 1.0
oysters that closed their
valves in the time interval
high tide 1 h for each
day (April to September 0.8 -
2006) ’
o 067
g
=}
g
£
0.4 1
0.2 1 ) { N
0.0
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T T T T T T T
April May June July August September  Months

@ Springer



168

Environ Monit Assess (2011) 182:155-170

evidence that the oyster C. gigas can modified its
normal behavior in presence of the harmful algae
Alexandrium minutum (Tran et al. 2010). Similar
results were also provided by Basti et al. (2009) in
the manila clam Ruditapes philippinarum.

Checking the model behavior

We numerically checked the asymptotic distribu-
tion of m(x) and its first derivative. We selected
one oyster from our sample and chose two time
points randomly between 0 and 24 h over a period
of N = 450 days. Figure 9 shows that the distribu-
tion of the bias of 71, is normally distributed and
centered around 0. The mean of the bias is 0.001
with a confidence interval of [—0.01, 0.014], we
employed a Mann and Whitney U test to compare
the mean of the bias to 0, and the test yielded a
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Fig. 9 Convergence in distribution of estimator of the

fixed design regression estimator on N = 450 days at 1.5 h
(a) and 10 h (b)

@ Springer

1b

0.4

h
o]

03
0.3

0.1 0.2
I 1
0.1 0.2
1 1

0.0

0.0

11117 17 17T 1T T T 1T T 1T
-5 50 5 10 15 15 -5 0 5 10 15

Fig. 10 Convergence in distribution of fixed design deriv-
ative estimator on N = 450 days at 1.5 h (a) and 10 h (b)

P value = 0.887. Figure 10 also shows that the first
derivative of 7, is normally distributed.

Conclusion

This work demonstrates the possibility to develop
a general mathematical and statistical approach
for analyzing high-frequency serial valvometry
data in the context of an environmental study.
The main interest of this work is to provide
efficient analytical tools to synthesizing and ana-
lyzing the bivalves’ behaviors directly exposed to
their natural environment. We present an applica-
tion to a group of 16 oysters living in the Bay of
Arcachon, studied in 2006. Our statistical model-
ing based on density estimation and nonparamet-
ric kernel regression allows a significant reduction
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in the calculations needed for the estimation of
the oysters’ activity over a long period of time and
provides a very informative summary from a huge
flow of data produced at high frequency. This
methodology also enables us to make some statis-
tical inference and correlate the serial valvometry
data with serial environmental data in order to
explain unusual behaviors of the animals stud-
ied. For example, we can identify several days
in our study period at which the oysters exhib-
ited abnormal activities, corresponding to periods
of oyster banning from human consumption. We
think that our statistical approach provides a very
useful tool for measuring the oysters’ behaviors
and also assessing changes in these behaviors due
to perturbations in their environment. Therefore,
we anticipate that this approach could have an
important contribution to the survey of aquatic
systems.
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