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Abstract. A critical aspect in the design of microarray studies is the determination of

the sample size necessary to declare genes differentially expressed across different experi-

mental conditions. In this paper, we propose a sequential approach where the decision to

stop the experiment depends on the accumulated microarray data. The study could stop

whenever sufficient data have been accumulated to identify gene expression changes across

several experimental conditions. The gene expression response is modeled by a robust linear

regression model. We then construct a sequential confidence interval for the intercept of

this model, which represents the median gene expression at a given experimental condition.

We derive the stopping rule of the experiment for both continuous and discrete sequential

approaches and give the asymptotic properties of the stopping variable. We demonstrate

the desirable properties of our sequential approach, both theoretically and numerically. In

our application to a study of hormone responsive breast cancer cell lines, we estimated the

stopping variable for the sample size determination to be smaller than the actual sample size

available to conduct the experiment. This means that we can obtain an accurate assessment

of differential gene expression without compromising the cost and size of the study. Alto-

gether, we anticipate that this approach could have an important contribution to microarray

studies by improving the usual experimental designs and methods of analysis.

KEY WORDS: Microarray Study; Sample Size; Sequential Design; Robust Regression; Dose-

response.
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1 INTRODUCTION

Microarray chips and other high-throughput technologies have changed radically the na-

ture of genomics assays by allowing the simultaneous screening of thousands of genes in

a single experiment. Statistical inference about change patterns in microarrays has led to

the competing applications of numerous statistical approaches and computing algorithms for

several problems: class comparison, class discovery and class prediction (Simon 2003). A

particular aspect of these experiments, which has received less attention, is the planning of

the experimental design that should enable experimenters to have efficient and valid infer-

ence about expression profiling. Particular designs of interest for class comparison problems

include two- and multi-class experiments, where the classes are the experimental conditions,

for example different types of tumor tissue, stages of tumor progression, doses of an exposure,

or time-points. There have been a number of papers discussing the general issues related

to experimental designs (for reviews, see Churchill 2002; McShane, Shih and Michalowska

2003), the paradigm being to use fixed-sample size plans. The theory of experimental design

can be used to optimize the information gained from an experiment (Kerr and Churchill

2001a,b; Glonek and Solomon 2004) and to determine the number of arrays required to

conduct the experiment. However, this leads generally to very crude sample size estimates,

whose determination depends on quantities such as the variability of gene expression across

the different experimental conditions and the false discovery rate (FDR) (Benjamini and

Hochberg (1995), that are generally unknown before the study (Pan, Win and Le 2002; Zien

et al. 2003; Gadbury et al. 2004; Pawitan et al. 2005; Muller et al. 2004; Dobbin and Simon
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2005). Therefore, there is no guarantee that the study will have sufficient efficiency to detect

the expression profiles of interest. To address this problem, Warnes and Liu (2005) developed

a procedure to estimate sample size that uses an estimate of the standard deviation for each

gene based on control samples from existing studies. Tibshirani (2006) proposed a method

for assessing sample sizes based on a permutation-based analysis of pilot data, which avoids

strong parametric assumptions and allows prior information about the required quantities.

The authors emphasized a two-stage approach but it remains unclear how the data from the

pilot and main studies should be analyzed.

A more formal multistage strategy that does not rely on the distribution of primary

measurements from other studies or from a pilot study is the sequential approach. In clinical

trials, sequential designs are well-known to offer numerous ethical and economic advantages

due to the possibility of early stopping either for futility or obvious advantage of a treatment

(Jennison and Turnbull 2000). Indeed, the sample size which is unknown at the start of

the study period is determined subsequently in part by the nature of the sequentially ac-

cumulating data. Such approaches could be particularly beneficial in the design of efficient

microarray experiments for several reasons. First, many biologists use sequential designs

implicitly by collecting an initial sample (a pilot study for example) and by performing a

first analysis. In some experiments, additional samples will be collected and further analyses

will be carried out, but without proper adjustment for the multiple analyses. Sequential

approaches are also known to require less observations than fixed-sample size approaches to

reach the same conclusion. This will be very advantageous for microarray studies both be-

cause of their cost (DNA chips retail for about $1,000 each) and the difficulties to obtaining
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sample material. Finally, determining an appropriate sample size to conduct a microarray

experiment is often impossible and sequential approaches give a more rational solution by

accumulating information to provide an estimate of the sample size, an estimate that can be

given with its precision (because it is a random variable). Despite these obvious advantages,

sequential designs have received very little attention in the field of microarray studies and

more generally in the field of genomics.

To the best of our knowledge, only two papers discussed their application in the con-

text of microarray studies. The first one introduced a sequential procedure for classification

problems (Fu, Dougherty, Mallick and Carroll 2005). It provides stopping criteria that ensure

with a certain level of confidence that at stopping the misclassification probability of any

future subject into a particular experimental group will be smaller than a pre-determined

threshold. Although interesting, this approach does not apply directly to class compari-

son problems. The second paper deals with class comparison problems and proposed the

construction of nonparametric prediction intervals to identify differentially expressed genes

(Gibbons et al. 2005). A fixed number of control samples (normal tissues) is first obtained,

followed by sequential collection of the experimental samples (tumor tissues), one by one

or by groups. The control samples are then used to construct a predictive interval for the

mean gene expression or other summary statistic of the experimental samples. The proce-

dure stops when the probability that this summary statistic calculated for one specific gene

(or a group of genes) in the experimental samples is outside the prediction limits with high

probability. This approach is not truly sequential because the probability of being outside

the predictive bounds is determined for different sizes of the experimental samples but does
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not depend on the accumulated information on gene expression data. To our knowledge,

neither of these approaches has been applied in real situations.

In this paper, we propose a formal theory for sequential microarray design in the

context of class comparison problems. Section 2 describes the main novelties: that the de-

cision to stop the experiment really depends on the data that are accumulating, and that

the statistical properties of the stopping rule proposed are thoroughly studied both theoret-

ically and by simulation. Our approach builds on the general linear regression framework,

which is a very common strategy for microarray studies. Besides the sequential aspect, we

use nonparametric regression to provide robustness against outliers and distribution-free in-

ference, which is particularly advantageous in small sample size microarray problems. The

principle of our approach is the construction of confidence interval for the model parameter,

corresponding to a particular level of gene expression. The case of correlated observations is

also discussed and treated by adjustment of the data. The definition of the stopping rule of

the sequential procedure for a given precision is presented in Section 3. We develop both the

case of continuous and discrete monitoring and the asymptotic properties of the stopping

variable. In section 4, we analyze gene expression profiles at various doses of estrogen ex-

posure in breast cancer cell-lines. Additional finite properties of our approach, in particular

the use of continuous vs. discrete sampling and the potential bias due to batch effects are

studied in Section 5 by simulation. Finally, section 6 concludes with a general discussion of

our approach and its feasibility and applicability in practice.
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2 METHODS

2.1 The Linear Model Framework

Linear models have become a classical statistical framework for the analysis of two chan-

nels cDNA arrays, especially with the development of the statistical package LIMMA in

R (Smyth 2004). For example, Kerr et al. (2001) used linear models and the analysis of

variance (ANOVA) to estimate expression differences and assess the variability of their es-

timates. They assumed a fixed effects model for the log gene intensity which accounts for

the variability due to the array, dye effect, treatment (or experimental condition) and gene

effect. Differentially expressed genes are those that exhibit significant treatment by gene in-

teractions, while normalization is effected by including a dye term in the model. The random

error of the model represents variations due to unknown sources and is typically assumed to

be normally distributed. Other authors have proposed linear models on a gene by gene basis,

with a separate error for each gene, but still including normalization as part of their linear

model (Jin et al. 2001; Wolfinger et al. 2001). Their models also include a random effect

for the arrays. These modelling aproaches have raised several questions, in part because

the inference about gene effects is performed jointly with the normalization process and the

estimation of multiple other effects (Yang and Speed 2002). In contrast, other linear models

have been proposed for the log-ratios of intensity from experiments in which normalization

has been carried out separately for each slide, typically using a non-linear adjustment, which

could not be captured in a linear model (Yang and Speed 2002). The only terms that are

included in these models relate to mRNA samples and their treatment. The general form of
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the model is:

Y n = Xnβ + εn (1)

where for all n ≥ 1, Y ≡ Y n = (Y1, . . . , Yn)
′ is the log2 ratio of gene expression from all slides,

X ≡ Xn ≡ Xn×p is a known n×p design matrix of experimental conditions, β = (β1, . . . , βp)
′

is the vector of unknown parameters to be estimated, and ε ≡ εn = (ε1, . . . , εn)
′ is the

error term. The principle of this model, in general, is to compare the means of the log-

gene expression distribution under different conditions (treatments). If ε follows a normal

N(0,I) distribution, then ordinary least squares provides the maximum likelihood estimator

of β. However, it is clear from microarray data that the normality assumptions are often

violated for interesting genes. Unusual probes and outlying probe level measurements often

occur to upset normality. To avoid the distributional assumptions and to protect against

outlying measurements, we propose a robust inferential method for model (1) by using

quantile regression.

An overview of robust statistics literature can be found in Hampel, Ronchetti, Rousseeuw

and Stahel (1986), Jurečková and Sen (1996) and Huber (2003). Our approach is based on

regression quantile estimators of β (Koenker and D’Orey 1987; Dodge and Jurečková 1995).

Instead of focusing on the changes in the mean gene expression, the quantile regression

approach allows one to test whether there is a change in the τth quantile of y for any given

τ ∈ (0,1). When the conditional distributions of y are non-Gaussian, the mean might not

be the best summary, and a change in distributions may not be detected.

Inference for linear quantile regression models has become a subject of intense investigation

in the past years. Any solution of the following minimization problem (x′
i denotes the ith
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row of the matrix X)

β̂(θ) ≡ β̂
n
(θ) = arg min

β∈Rp

n∑

i=1

ρθ (Yi − x′
iβ) (2)

is called a θ-regression quantile with ρθ(x) = x(θ − I(x < 0)) where I(P) takes the value 1

or 0 depending on whether the condition P is satisfied or not. Here we used the L1−norm

estimator, also known as LAD (least absolute deviation) estimator, obtained by taking θ =

1/2, chosen as an alternative to least squares estimators in the presence of heavy-tailed

distribution. It is known that this estimator performs better in the presence of a heavy-

tailed distribution. Following Jurečková (1984), under regularity conditions, we have as

n → ∞,

√
n
(
β̂n

1 (θ) − β1

)
D−→ N

(
0,

q2(θ)

4

)
, (3)

where q(θ) = 1/f(Q(θ)) is the quantile density function with Q(θ) denoting the quantile

function. The asymptotic variance of β̂
n
(θ) is unknown because it depends on the distri-

bution function f of the error term in the model, which itself is unknown. So, we estimate

this asymptotic variance using the regression invariant and scale equivariant kernel-type es-

timator of q(θ) in model (1) based on the regression quantiles. This estimator of q(θ), for

0 < θ < 1, is defined by

Ẑn(θ) =
1

ν2
n

∫ 1

0

β̂n
1 (w) k

(
θ − w

νn

)
dw,

where (νn)n≥1 is a sequence of properly chosen bandwidths and k denotes the kernel function.

The quality of a density estimate is now widely recognized to be primarily determined by

the choice of bandwidth. The asymptotic behavior of this estimator has been studied by
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Dodge and Jurečková (1995). It was proven that under regular conditions, as n → ∞,

√
nνn

(
Ẑn(θ) − q(θ)

)
= Op(1) and

√
nνn

(
Ẑn(θ) − q(θ)

)
D−→ N

(
0, q2(θ) K)

)
, (4)

where K =
∫

K2(x) dx with K(x) =
∫ x

−∞
k(y) dy. Because of the choice of LAD estimator,

θ is fixed at 0.5.

2.2 Confidence interval of the model intercept

To construct the expected confidence interval of given bounded length, we estimate q(1/2)/2

by

Ŵn(1/2) =
Ẑn(1/2)

2
.

Using (4) with θ = 1/2 we have as n → ∞,

Ŵn(1/2)
P−→ 1

2 f(0)
.

So (3) and Slutsky’s theorem imply

√
n
(
β̂n

1 (1/2) − β1

)

Ŵn(1/2)

D−→ N (0, 1) as n → ∞.

Hence, a (1 − α)% confidence interval for β1 is given by

In =

[
β̂n

1 (1/2) − z1−α/2√
n

Ŵn(1/2), β̂n
1 (1/2) +

z1−α/2√
n

Ŵn(1/2)

]
. (5)

2.3 Non Independent Observations

In section 2.1, we assumed that the errors are i.i.d. When it is not the case, we can

replace the model (1) by

Y n = Xnβ + h (λ, Xnβ) εn (6)
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where εn are i.i.d and independent of Xn and h (λ, Xnβ) models the correlations between the

error terms, which can depend on the known variables and the new parameter λ (Maronna,

Martin and Yohai 2006). For example, in our application λ represents the correlation between

gene expressions within the same replicate. The same regression model (1) can then be

applied to the following transformed variables

Y ′
n = Y n h−1 (λ, Xn β) and X ′

n = Xn h−1 (λ, Xn β) . (7)

An example of function h is given in our application. In the following, we will assume we

are working with the transformed variables if there is evidence for correlation between the

observations (for example, observations within the same technical or biological replicate).

3 SEQUENTIAL APPROACH

The goal of our analyses is to detect a significant change in gene expression across various

experimental conditions. From the asymptotic distribution of the intercept given in equa-

tion (4), it is straightforward to see that genes that are differentially expressed will have

β1 significantly different from 0. Therefore, a sequential procedure can be designed such

that experiment stops whenever gene expression changes resulting from exposure to several

conditions have been measured with a desired precision. We describe more formally this

concept based on the work of several authors (Jurečková 1991; Jurečková and Sen 1996;

Hušková 1994 among others) in the following section. Our contribution consists in the use

of a robust estimator of linear regression parameters without assuming a distribution for the

error term.
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3.1 Stopping rule for continuous monitoring

We construct a confidence interval In for the first component of the linear model based on a

robust estimator of β1 which satisfies:

Ln ≤ 2d and PF (In ∋ β1) ≥ 1 − α, (8)

where Ln denotes the length of In. Starting with an initial sample size n0, the experiment

stops when the number of replicates Nd is the smallest n > n0 such that the length L(Nd) <

2 d.

The length Ln of the interval In in (5) satisfies

√
nLn = 2 z1−α/2Ŵn(1/2)

P−→ z1−α/2

f(0)
as n → ∞. (9)

So, for a given sample size n and for a given α, the length of the confidence interval In is

a random variable. The sequential procedure consists of adding one new observation at a

time (i.e. one technical replicate at the high dose in our experiment) until the stopping rule

Ln ≤ 2d (d > 0 fixed) is satisfied.

Comparing In to I∗
n = [ β̂n

1 (1/2)−d, β̂n
1 (1/2)+d ] with fixed d > 0 using (5), our stopping

rule can be expressed as

n ≥
z2
1−α/2Ŵ

2
n(1/2)

d2
.

To avoid an erroneous determination of Ŵ 2
n(1/2), we must choose an initial sample size n0

which is sufficiently large. Then, the stopping variable Nd satisfying the previous conditions

on n can be defined by

Nd = min

{
n ≥ n0

∣∣∣∣∣ n ≥
z2
1−α/2Ŵ

2
n(1/2)

d2

}
, d > 0. (10)

12



If we have a given sufficiently large sequence of observations, then Nd would be a nonde-

creasing function of d. The monotonicity of Nd follows directly from the definition of Nd.

3.2 Stopping rule for discrete monitoring: group sequential ap-

proach

For discrete monitoring (group sequential approach), the (1 − α) confidence interval for β1

at the kth analysis is given by

Imk =

[
β̂mk

1 (1/2) − Ck(α)√
mk

Ŵmk(1/2), β̂mk
1 (1/2) +

Ck(α)√
mk

Ŵmk(1/2)

]
. (11)

Imk =
[
β̂mk

1 (1/2) − dk, β̂
mk
1 (1/2) + dk

]
. (12)

where m is the size of each group (assumed equal) and Ck(α) is the critical value for the kth

analysis.

Then, the new stopping variable Ndk
for the group sequential approach can be defined by

Ndk
= mk = min

{
n ≥ n0

∣∣∣∣∣ n ≥ Ck(α)2Ŵ 2
n(1/2)

d2
k

}
, dk > 0. (13)

In group sequential methods, the critical values Ck(α) can be determined by using an α-

spending function (Jennison and Turnbull, 2000, Chap. 7). The principle is to partition the

Type I error into K probabilities π1, π2, ...πK , where K is the number of analyses performed,

which sum to α. Thus, πk represents the probability of stopping at analysis k to reject H0

when this hypothesis is true, also termed the error spent at stage k. It can be determined

using an error spending function which satisifies f(0)=0 and f(t) = α for t ≥ 1. The value
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f(t) indicates the cumulative Type I error that is spent when a fraction t of the maximum

anticipated information has been obtained, denoted Imax. When this maximum information

has been reached, the sequential procedure will stop, either accepting or rejecting the null

hypothesis.

The Type I error allocated to each analysis is

π1 = f(I1/Imax), πk = f(Ik/Imax) − f(Ik−1/Imax), k = 2, 3, ..., K (14)

where Ik is the amount of information at analysis k. Without lack of generality, we took

Ik = mk and Imax = mK.

The critical values need to satisfy the constraint

Pr{|Z1| < c1, ..., |Zk−1| < ck−1, |Zk| ≥ ck|H0} = πk (15)

where |Zk| is the standardized test statistic at the kth analysis. In our case, the Zk statistics

correspond to the β̂mk
1 (1/2) divided by its standard deviation. The critical values can deter-

mined numerically assuming a given α − spendingfunction. In the following, we consider

O’Brien and Fleming test (1979). Another form of this approach has been proposed by Lan

and DeMets (Insert reference) with the following spending function

f(t) = min{2 − 2φ(z1−α/2/
√

t), α} (16)

where t = Ik/Imax and φ is the standard normal distribution.

3.3 Asymptotic properties of the stopping variable

Our first result shows that our construction of Nd fulfills the requirements (8). We first

state our main result and the proofs are given in the appendix. These properties are satisfied
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for the continuous and discrete cases and our notation below refers to the continuous case.

Theorem 1. Under regularity conditions in the distribution function, the sequence of ma-

trices Xn and the kernel estimator, we have

1. EF (Nd) → +∞ as d → 0+.

2. PF (Nd < +∞) = 1 for any d > 0.

3. Nd/nd
P−→ 1 as d → 0+, where nd = z2

1−α/2 σ2/d2 and

σ = σ1/2 = 1/(2f(0)).

4. PF (INd
∋ β1) ≥ 1 − α for α ∈ (0, 1) fixed as d → 0+.

The next theorem concerns the asymptotic behaviour of the stopping variable.

Theorem 2. Let η ∈ (1/4, 1/3) and νn be such that νn = n2η−1. Under regularity conditions

we have as d → 0+ :

d1−2η
(√

Nd −
z1−α/2 σ

d

)
D−→ N

(
0, σ2(1−2η) z

2(1−2η)
1−α/2

∫
K2(x) dx

)
.

Proofs of theorems 1 and 2 require an intermediate result covering essentially the prob-

lem of uniform continuity in probability (Anscombe condition, Anscombe 1952) of the least-

absolute regression estimator and the asymptotic kernel variance estimator. The proof of

Theorem 2 is given in the Appendix. To avoid the presentation of lengthy mathematical

results, the proof of the Anscombe condition is given as a technical report at posted at

www.amstat.org/publications/jasa/supplemental materials.
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Proof of Theorem 1.

1) It follows by construction that Nd increases as d decreases ; this together with the fact

that Ln > 0 with probability 1 implies that

∀m ≥ 0, lim
d→0+

PF {Nd < m} ≤ lim
d→0+

PF {LNd
< 2 d} = 0,

and thus Nd
P−→ ∞ as d → 0+. So using the monotone convergence theorem we have:

lim
d→0

EF (Nd) = EF

(
lim
d→0

Nd

)
= ∞.

2) For every n ≥ n0 we have:

PF {Nd > n} ≤ PF

{
n < d−2 z2

1−α/2 Ŵ 2
n(1/2)

}
.

From (4) we deduce that
Ŵn(1/2)

n

P→ 0 as n → ∞, hence

PF{Nd = ∞} = lim
n→∞

PF{Nd > n} ≤ lim
n→∞

PF{n < d−2 z2
1−α/2 Ŵ 2

n(1/2)} = 0.

Therefore

PF{Nd = ∞} = 0 and PF{Nd < +∞} = 1 for every d > 0.

3) Note that with probability 1, we have

z2
1−α/2Ŵ

2
Nd

(1/2)

d2
≤ Nd < max

(
n0 + 1,

z2
1−α/2Ŵ

2
Nd−1(1/2)

d2
+ 1

)
.

Recalling that nd =
z2
1−α/2 σ2

d2
, we obtain

Ŵ 2
Nd

(1/2)

σ2
<

Nd

nd
< max

(
n0

nd
,
Ŵ 2

Nd−1(1/2)

σ2

)
+

1

nd
. (17)
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Moreover, using the fact that

Ŵn(1/2)
P−→ σ as n → ∞, Nd

P−→ ∞ as d → 0+

and uniform continuity in probability of Ŵn(1/2), we obtain

ŴNd
(1/2)

σ

P−→ 1 and
ŴNd−1(1/2)

σ

P−→ 1 as d → 0+. (18)

By (18), as d → 0+, we have

max

(
n0

nd

,
Ŵ 2

Nd−1(1/2)

σ2

)
−→ max(0, 1) = 1.

Finally, by (17) we obtain the expected result, i.e.

Nd

nd

P−→ 1 as d → 0+.

4) Moreover, because β̂n
1 is asymptotically normal and uniformly continuous in probability,

we obtain,
√

Nd

(
β̂Nd

(1/2) − β1

)

ŴNd
(1/2)

=

(
σ

ŴNd
(1/2)

)(
Nd

nd

)1/2



√

nd

(
β̂Nd

(1/2) − β1

)

σ





=

(
σ

ŴNd
(1/2)

)(
Nd

nd

)1/2






√
nd

(
β̂nd

(1/2) − β1

)

σ
+

√
nd

(
β̂Nd

(1/2) − β̂nd
(1/2)

)

σ






D−→ N (0, 1) as d → 0+.

As d → 0+, we have:

lim
d→0+

PF

{∣∣∣β̂Nd
(1/2) − β1

∣∣∣ ≤ z1−α/2 ŴNd
(1/2)N

−1/2
d

}
= 1 − α. (19)

By (19) and (13) we finally have:

lim
d→0+

PF

{
β̂Nd

(1/2) − d ≤ β1 ≤ β̂Nd
(1/2) + d

}
≥ 1 − α .
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4 THE MICROARRAY EXPERIMENT

Recently, Lobenhofer et al. (2004) illustrated the interest of model-based approaches for

microarray analysis in a study that tried to identify genes that respond to estrogen treatment

and evaluated more particularly the doses of estrogen capable of inducing a transcriptional

response in breast cancer cell lines. In terms of our methodology, this dataset possesses

several major points of interest. First, we believe that their fixed sample size design is

not optimal and the differentially expressed genes could have been detected using fewer

replicates. Second, the design can be analyzed using discrete monitoring, the group can

be a technical replicate (m=2) or a biological replicate (m=4). Due to the small sample

size of this experiment, we decided to use the technical replicate as the group. Third, the

observations can be correlated within each technical and biological replicate. Finally, this

study was among the rare ones to clearly establish a dose-response effect in a gene expression

experiment and therefore, the variable dose has a real scientific interest and needs to be

modeled appropriately.

In this study, the gene expression levels of a hormone responsive breast cancer cell

line (MCF-7) are measured after stimulation with various concentrations of estrogen, above

(high-dose effect) and below (low-dose effect) normal physiologic levels and compared with

the corresponding levels of expression in control samples (Lobenhofer et al. 2004). The

data were downloaded from the website http://dir.niehs.nih.gov/microarray/datasets/home-

pub.htm.

The cell lines were treated with estrogen at four concentrations (10−8 M, 10−10 M,
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high doses) and (10−13 M, 10−15 M, low doses) or with concentration-matched ethanol sol-

vent (control samples). The RNA sample from each estrogen treatment and its correspond-

ing control were compared using custom-made cDNA microarrays, ToxChip version 1.0, in

a dye-swap fashion. Each chip had 1920 clones double-printed in 2 subarrays, so each clone

was duplicated on the array. The dye swap and the duplicated spots lead to four technical

replicates for each biological replicate. There were two biological replicates, so eight mea-

surements at each dose. In this analysis, we focused on seven genes that were validated by

real-time PCR. Five genes were confirmed upregulated and two were downregulated. These

genes are known to be involved in different cancer pathways. Because the threshold dose

can be observed below the level 10−8 M, we just included in our analysis the 2 low doses and

only 1 high dose (10−10 M). Thus, there were a total of 24 measurements available for each

gene (3 doses x 8 measurements).

The data were pre-processed before analysis as described in Lobenhofer et al. (2004).

In brief, the gridding quality of microarray images was checked for misalignment using the

gridcheck function in the R/maanova package. Spots with higher background intensity than

foreground were removed from the analysis. The normalization process included an intensity-

lowess transformation and channel-mean centering of the data.

The data were then transformed to remove the possible correlation between the observa-

tions belonging to the same biological replicate, following the principle described in section

2.3. To estimate the function h in (6, 7), we proceeded as follows using the pooled data of the

seven genes. First, we estimated the residuals from the quantile regression model specified

in (1) including the dose and dye effects as explanatory variables. Then, we estimated the
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variance-covariance matrix of the residuals using a linear model with a compound symmetry

correlation structure defined as a block-diagonal matrix in which each block is 4 × 4 with 1

for the diagonal entries and λ for the off-diagonal entries.

Each block of dimension (4×4) represents a biological replicate and we assumed the same

correlation structure for each gene as well as the same correlation between two technical

replicates. To analyze the data, we fitted the regression model (1) with the dose and dye

effects as covariables using quantile regression on the transformed response and covariates.

Then, we computed a robust confidence interval In of fixed length (sections 2-3) for the model

intercept. The initial sample size n0 was fixed at 16, which corresponds to the number of

measurements at the two low doses. Then we determine sequentially the number of groups

of technical replicates at the high dose, where each group had two observations (duplicated

spots). The experimental process stops for Ndk
the smallest n > n0 is such that the length

of In (Ln < 2 d). The results are presented in table 1 for α = 0.001, the value chosen by

Lobenhofer et al. (2004) to adjust for multiple comparisons in their study.

For each gene, the precision parameter dk (k = 1, . . . , 4) is determined by the constraint

on the stopping variable Ndk
=

C2
k(α)Ŵ 2

n(1/2)

d2
k

. It is lower than 24 and can take only the

following values 16, 18, 20, 22 or 24. The estimator Ŵ 2
n(1/2) denotes the kernel regression

estimator of the standard deviation of the intercept parameter.

These results indicate the minimal number of technical replicates Ndk
required to esti-

mate the gene expression level with a fixed precision. We observe that for a relatively small

precision parameter (dk values), the stopping value remains lower than 24 (the maximum

number of technical replicates available for the 3 doses). Genes 1, 2, 3, 4 and 5 were signif-
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icant upregulated differentially expressed (p < 0.001) and genes 6 and 7 are downregulated

differentially expressed. These seven genes were confirmed to be differencially expressed

by quantitative PCR. In conclusion, our analysis showed that the experimenter could have

stopped the experiment after collecting only 22 replicates and would have reached the same

conclusion as in Lobenhofer et al. (2004).

5 SIMULATION STUDY

To better evaluate the performance of our sequential method, we conducted a small

simulation study. Our goal was to assess more specifically the sensitivity of our sequential

approach to three factors: (1) the use of continuous vs. discrete sequential procedures; (2)

the distribution of the error term in the model; (3) the presence of a batch effect. The design

of the simulation study mimicked the experimental design used in our application. The X

and ε were generated independently, where X follows under discrete monitoring a discrete

uniform distribution taking the values 0, 3 and 5 and under continuous monitoring a uniform

distribution with values belonging to the interval (0, 5). In the discrete monitoring, each

group included sequentially had a size of 8 observations and the group was added at one

specific dose. We also considered the possibility of a batch effect, the value of which changed

whenever a new group was added (discrete monotoring) or when eight observations were

successively added (continuous monitoring). The data were generated from the following

linear model:

Y = β1 + β2Dose + β3Batch + δ ε
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where β1 is the intercept denoting the gene expression at an initial dose, β2 is the slope

parameter coding for the change in gene expression with dose effect. The terms β3 and δ

correspond to the additive and multiplicative effects of the batch. The source of variation

ε is a random vector of independent and identically distributed errors with a distribution

function which is either Normal N(0, σ2
∗) or Laplace L(0, σ2

∗). The reason for choosing this

latter distribution is to show the robustness of the L1 estimator in presence of long-tailed

error distributions.

The regression parameters (β1, β2 and β3) were fixed respectively to 1, −0.2 and 0.1

and σ∗ was set to 0.3 and 0.4, as observed in the application. The precision parameter d

was determined such that the theoretical stopping rule value nd = z2
1−α/2 σ2/d2 was equal to

32 or 56, where σ2 denotes the theoretical asymptotic variance of the β1 estimator. In all

simulations, we used νn = n−δ, with δ = 1 − 2 η = 0.42 ∈ (1/3, 1/2). In this situation, the

conditions of the theorems giving the limiting behavior of the kernel estimator are satisfied.

The Epanechnikov kernel was used but we obtained similar results with the Gaussian kernel.

The initial sample size was fixed at n0 = 16 in all simulations and the number of Monte-Carlo

simulations was 1, 000. Results are presented for the normal error distribution in Table 2

and for Laplace error distribution in Table 3.

Continuous vs. discrete sequential procedure with no batch effect. We obtained

almost unbiased parameter estimates of the regression parameters when the procedure was

continuous. The use of a discrete procedure does not alter the parameter estimates but the

standard deviation of the estimates is slightly larger in that case. The standard deviation
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of the intercept, estimated by the kernel procedure, is generally slightly underestimated

compared to the theoretical value in both sequential procedures. The sample size required

to stop the experiment is larger under the discrete procedure. In some cases, one or two

additional groups (of eight observations) are needed to stop the experiment compared to

the continuous procedure. The length of the confidence interval is inversely proportional to

the stopping rule value and, consequently, it is smaller under the discrete procedure. The

coverage probability was very close to the 99.9% nominal level in the continuous procedure

but was lower than that in the discrete procedure. This is because more groups are used

than expected, and therefore the critical values used in the group sequential procedure were

not optimal.

Batch effect. The parameter estimates (intercept and slope) are not altered by the presence

of the batch effect and are still almost unbiased. The additive effect of the batch is also well

estimated in the model. The length of the confidence intervals is larger when there is a batch

effect, which is expected because the multiplicative effect of the batch increased the variance

of the error distribution in the regression model. The batch effect also affected the coverage

probabilities which are smaller than the nominal 99.9% level even in the continuous case.

The bias in the coverage probablties is larger with the discrete sequential procedure.

Normal vs. Laplace error distribution. The results are very similar with normal and

Laplace error terms. The parameter estimate is not very sensitive to the distriution of the

error term, which shows the value of a robust estimator.
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6 Discussion

Our paper establishes a general theoretical framework for sequential approaches in mi-

croarray experiments. Our theoretical developments as well as our real and simulated data

demonstrate its advantages as compared to fixed-sample size approaches. More particularly,

our application showed that we were able to replicate Lobenhofer et al.’s results (2004) and

reach the same conclusions with fewer technical replicates. Sequential designs, in contrast

to fixed-sample size designs, can achieve efficiency by making just enough measurements to

evaluate the experimental endpoints with the desired precision. Numerically, we also proved

that our approach is valid in finite samples and is robust to the choice of the error term distri-

bution in the linear model. The use of discrete instead of continuous monitoring did not alter

the parameter estimates of the model. However, for small sample size problems (nd < 25), as

observed in our application, the use of discrete monitoring slightly increased the sample size

needed to stop the experiment. Our sequential approach is therefore slightly liberal and some

adjustment of the critical values are required to achieve the correct nominal type I error rate.

The major question related to this type of approach is its feasibility and applicability

in practice. We partly answered this question through our application and small simulations.

In the application, we sampled sequentially the technical replicates with two observations

each. Sampling groups of biological replicates, each with four observations, would have been

more relevant, but was not possible due to the relatively small sample size available for

the experiment. The initial sample size was fixed to 16 and therefore the range of possible
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stopping variables was quite limited. Despite this limitation, our sequential procedure was

always able to converge and gave confidence intervals that were relatively precise for this

type of problem. The small simulations confirmed the robustness of our approach to outliers

and departure from normality. In many biological experiments, especially those involving

technologies such as microarrays, data have generally a low signal-to-noise ratio that makes

analysis more complex and very sensitive to outliers. Therefore, our approach warrants more

general application in microarray studies. Our simulations also demonstrated the accuracy

of the procedure to estimating the model parameters and its good behavior in the presence

of batch effects.

Besides the statistical properties mentioned above, it is important to discuss the technical

feasibility and applicability of the method. In a recent NCIC (National Cancer Institute

of Canada) project, we planned to apply a novel microarray experimental design where

four batches of eight microarrays will be sequentially realized with the aim to study tumor

progression in prostate cancer patients. The first two batches allow one to perform a first

screen of methylation profiles and draw hypotheses regarding the role of several genetic

pathways. Each batch corresponds to a particular stage, so the next batches will make

precise the role of these pathways in tumor progression. In our simulations, we introduced

a method that took direct account of batch effects. Alternatively, one could adjust the data

prior to analysis at the pre-processing step of the experiment (Johnson, Li and Rabinovic

2007). Because most array technologies are based on comparative hybridization, one can use

the control sample for the adjustment. Therefore, we think batch effects are not a major

problem to deal with, when present in the experiment.
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At this stage of development, our approach can also be applied to find individual genes

differentially expressed across several experimental conditions (treatment vs. control, differ-

ent doses or time-points) and rank them according to their importance for the given class

comparison problem. For example, a classical z test can be performed on the intercept and

can serve as a criterion to rank the most important genes in the microarray experiment. We

also plan an extension of this method to the joint analysis of multiple genes that could be

differentially expressed in a coordinated manner. For example, the work from Gibbons et al.

(2005) can be easily adapted to our method. We are also planning to integrate the correla-

tion structure directly in the analysis rather than adjusting for it to gain some efficiency.

Altogether, we anticipate that this approach could have a significant contribution to mi-

croarray data analysis by improving the usual experimental designs and methods of analysis.

APPENDIX: PROOFS

Before demonstrating the proof of Theorem 2, we provide some auxiliary results on the

asymptotic normality of Nd. We now study the asymptotic behavior of the stopping rule

Nd. We assume that νn = n2 η−1 for some η ∈ (1/4, 1/3).

Lemma 1. Let η ∈ (1/4, 1/3) and νn be such that νn = n2η−1. Under regularity conditions,

we have as d → 0+ :

(i)

Nη
d

(
ŴNd

(1/2) − σ
)

D−→ N
(
0, σ2 K

)
, (20)
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(ii)

Nη
d

(
ŴNd−1(1/2) − σ

)
D−→ N

(
0, σ2K

)
, (21)

(iii) for all ǫ′ > 0 :

P




Nη
d

∣∣∣∣∣∣




√

Nd −
√

Nd − 1√
K σ



 d

z1−α/2

∣∣∣∣∣∣
> ǫ′




 −→ 0. (22)

Proof of Lemma 1.

(i) By (4) we obtain

√
nνn

(
Ŵn(1/2) − σ

)
D−→ N

(
0, σ2K

)
. (23)

Taking νn = n2 η−1, we have

√
NdνNd

(
ŴNd

(1/2) − σ
)

=

(
Nd

z2
1−α/2σ

2/d2

)η(
z2
1−α/2σ

2

d2

)η (
ŴNd

(1/2) − σ
)

. (24)

By the third result of Theorem 1 we have, as d → 0+,

Nη
d

z2η
1−α/2 σ2η

d2η

P−→ 1 (25)

and by (23), as d → 0+,

P
{
nη
(
Ŵn(1/2) − σ

)
≤ y
}
−→ Φ



 y√
K σ



 , ∀y ∈ R, (26)

where Φ denotes the cumulative distribution function of the standard normal distribution.

In addition to (25) and (26), the theorem of Anscombe (1952) allows us to conclude that,

∀y ∈ R,

P

{
σ2η z2η

1−α/2

d2η

(
ŴNd

(1/2) − σ
)
≤ y

}
−→ Φ



 y√
K σ



 as d → 0+.
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Therefore, as d → 0+, we have

σ2η z2η
1−α/2

d2η

(
ŴNd

(1/2) − σ
)

D−→ N
(
0, K σ2

)
. (27)

Using (25), (27) and Slutsky’s Theorem on (24), we obtain

Nη
d

(
ŴNd

(1/2) − σ
)

D−→ N
(
0, σ2 K

)
as d → 0+,

(ii) Relation (21) is derived in the same way.

(iii) We now prove (22). For x > 1, we have 0 ≤ √
x −

√
x − 1 ≤ 1/(2

√
x − 1). We thus

have, for all ǫ′ > 0,

P




Nη
d




√

Nd −
√

Nd − 1√
K σ



 d

z1−α/2

> ǫ′




 ≤ P




Nη
d

d (Nd − 1)−1/2

2
√

K z1−α/2 σ
> ǫ′




 .

Moreover, as d → 0+, we have

Nη
d

d (Nd − 1)−1/2

√
K z1−α/2 σ 2

∼ Nd
η−1/2

2
√

nd

√
K

.

Consequently, by Theorem 1 (3), we have as d → 0+,

Nd
η−1/2

2
√

nd

√
K

P−→ 0.

Proof of Theorem 2. One one hand, as Nd = min

{
n ≥ n0 | Ŵn(1/2) ≤

√
n d

z1−α/2

}
, with

d > 0, we have

ŴNd
(1/2) ≤

√
Nd d

z1−α/2

,
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and, therefore as d → 0+,

lim sup P




Nη
d

(√
Nd d

z1−α/2

− σ

)
1√
K σ

≤ y






≤ lim sup P




Nη
d

(
ŴNd

(1/2) − σ
) 1√

K σ
≤ y




 .

By Lemma 1 (i), we have as d → 0+,

lim sup P




Nη
d

(√
Nd d

z1−α/2

− σ

)
1√
K σ

≤ y




 ≤ Φ(y). (28)

On the other hand, according to the definition of the stopping rule Nd, we have

ŴNd−1(1/2) >

√
Nd − 1 d

z1−α/2
,

and therefore, as d → 0+,

lim inf P




Nη
d

(
ŴNd−1(1/2) − σ

) 1√
K σ

≤ y






≤ lim inf P




Nη
d

(√
Nd − 1 d

z1−α/2

− σ

)
1√
K σ

≤ y




 .

Using Lemma 1 (ii) and Lemma 1 (iii), we obtain, as d → 0+,

lim inf P




Nη
d

(√
Nd d

z1−α/2

− σ

)
1√
K σ

≤ y




 ≥ Φ(y). (29)

Therefore, by (28) and (29), we have ∀y ∈ R

P




Nη
d

(√
Nd d

z1−α/2

− σ

)
1√
K σ

≤ y




 −→ Φ(y) as d → 0+.
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Since d
√

Nd
P−→ z1−α/2 σ, the proof is complete.
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Jurečková, J. (1984), “Regression quantiles and trimmed least squares estimator under

a general design,” Kybernetika, 20, 345 – 357.
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Table 1: Results from group sequential discrete monitoring microarray experminent.

label name d Nd β̂
Nd

1
SD

(
β̂

Nd

1

)
99.9% CI

Gene 1 SDF1 0.375 22 1.175 0.283 (0.976, 1.374)
Gene 2 MYB 0.410 20 0.971 0.457 (0.578,1.364)
Gene 3 CDC28 0.243 18 0.668 0.111 (0.582,0.755)
Gene 4 LRP8 0.480 22 0.479 0.547 (0.094,0.864)
Gene 5 CDC25A 0.265 18 0.081 0.042 (0.048,0.113)
Gene 6 TMP3 0.215 18 -0.369 0.257 (-0.569,-0.169)
Gene 7 PRKCZ 0.226 20 -0.445 0.260 (-0.669,-0.221)

NOTE: d: precision parameter; Nd: stopping variable estimator; β̂
Nd

1
: LAD intercept esti-

mator; SD
(
β̂

Nd

1

)
: kernel regression estimator of the standard deviation of β̂

Nd

1
; CI: 99.9%

Confidence Interval of the intercept.

1



Table 2: Simulation results with normal error in regression model (Standard deviations are in parenthesis)

σ∗ d Batch nd Median Mean Intercept Mean Slope Mean Batch σ Mean CI CIL CP
Nd True=1 True= −0.2 True=0.1 = σ1/2 WNd

99.9%
Continuous

0.3 0.2187 0 32 32 0.9970 -0.1986 − 0.3760 0.3522 (0.7835 , 1.2104) 0.4269 1.0000
(0.7611) (0.1351) (0.0485) − (0.1083)

0.3 0.2187 1 32 35 0.9851 -0.2017 0.1070 0.3760 0.3521 (0.7625 , 1.2078) 0.4453 1.0000
(2.9536) (0.2199) (0.0678) (0.1117) (0.1320)

0.4 0.2916 0 32 32 0.9991 -0.1995 − 0.5013 0.4756 (0.7177 , 1.2806) 0.5629 1.0000
(0.7738) (0.1783) (0.0644) − (0.1480)

0.4 0.2916 1 32 34 0.9994 -0.2017 0.1034 0.5013 0.4715 (0.6972 , 1.3016) 0.6044 0.9753
(1.1264) (0.3309) (0.0781) (0.1414) (0.1818)

0.3 0.1653 0 56 48 0.9968 -0.1981 − 0.3760 0.3352 (0.8269 , 1.1666) 0.3397 0.9988
(1.3801) (0.1159) (0.0418) − (0.1046)

0.3 0.1653 1 56 55 0.9996 -0.1980 0.0989 0.3760 0.3384 (0.8099 , 1.1893) 0.3794 0.9782
(2.4446) (0.2198) (0.0545) (0.0950) (0.1349)

0.4 0.2204 0 56 53 0.9979 -0.1988 − 0.5013 0.4568 (0.7725 , 1.2233) 0.4508 0.9988
(1.4393) (0.1486) (0.0539) − (0.1413)

0.4 0.2204 1 56 52 1.0025 -0.1987 0.0981 0.5013 0.4418 (0.7533 , 1.2517) 0.4984 0.9855
(2.2060) (0.2804) (0.0733) (0.1147) (0.1824)

Discrete
0.3 0.2187 0 32 40 0.9896 -0.1953 − 0.3760 0.3570 (0.7866 , 1.1927) 0.4061 0.9876

(0.8261) (0.1590) (0.0752) − (0.1062)
0.3 0.2187 1 32 48 0.9909 -0.1954 0.0994 0.3760 0.3731 (0.7803 , 1.2015) 0.4212 0.9517

(1.2895) (0.2255) (0.0820) (0.0680) (0.1151)
0.4 0.2916 0 32 40 0.9913 -0.1989 − 0.5013 0.4711 (0.7201 , 1.2624) 0.5423 0.9959

(0.8871) (0.2159) (0.1033) − (0.1428)
0.4 0.2916 1 32 48 0.9749 -0.1933 0.1048 0.5013 0.4971 (0.6950 , 1.2548) 0.5598 0.9509

(1.3299) (0.3133) (0.1128) (0.0927) (0.1531)
0.3 0.1653 0 56 56 0.9995 -0.1992 − 0.3760 0.3309 (0.8329 , 1.1662) 0.3333 0.9948

(1.4688) (0.1363) (0.0665) − (0.1088)
0.3 0.1653 1 56 72 0.9984 -0.2000 0.1017 0.3760 0.3456 (0.8188 , 1.1780) 0.3592 0.9684

(2.3661) (0.2074) (0.0732) (0.0631) (0.1145)
0.4 0.2204 0 56 56 0.9947 -0.1954 − 0.5013 0.4404 (0.7676 , 1.2217) 0.4541 0.9886

(1.4287) (0.1913) (0.0913) − (0.1396)
0.4 0.2204 1 56 72 0.9923 -0.1948 0.0974 0.5013 0.4621 (0.7594 , 1.2252) 0.4658 0.9606

(2.2734) (0.2614) (0.0946) (0.0802) (0.1533)

NOTE: σ∗: standard deviation of the error term; d: precision parameter; Batch (takes the value 1 and 0 according to whether the batch effect is

included or not); nd = z2
1−α/2 σ2/d2 is the theoretical stopping variable value in the continuous case and for the discrete case this is the sample size to

calculate Imax and the corresponding critical values; σ = σ1/2 = 1/2 f(0) is the asymptotic standard deviation of the intercept regression estimator;

WNd
: kernel regression estimator of σ; CI: mean 99.9% Confidence Interval of the intercept; CIL: Length of the CI; CP: Coverage Probability. The

results are based on the simulation study with 1,000 replications.
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Table 3: Simulation results with Laplace error in regression model (Standard deviations are in parenthesis)

σ∗ d Batch nd Median Mean Intercept Mean Slope Mean Batch σ Mean CI CIL CP
Nd True=1 True= −0.2 True=0.1 = σ1/2 WNd

99.9%
Continuous

0.3 0.1234 0 32 31 0.9948 -0.1968 − 0.2121 0.1967 (0.8819 , 1.1078) 0.2260 1.0000
(0.8613) (0.0656) (0.0252) − (0.0685)

0.3 0.1234 1 32 33 0.9874 -0.1969 0.1085 0.2121 0.1938 (0.8626 , 1.1122) 0.2496 0.9844
(0.9950) (0.1316) (0.0332) (0.0620) (0.0805)

0.4 0.1645 0 32 31 0.9861 -0.1931 − 0.2828 0.2562 (0.8343 , 1.1379) 0.3036 1.0000
(0.8309) (0.0937) (0.0361) − (0.0903)

0.4 0.1645 1 32 33 0.9711 -0.1936 0.1117 0.2828 0.2603 (0.8089 , 1.1333) 0.3244 0.9847
(1.0535) (0.1671) (0.0431) (0.0779) (0.1083)

0.3 0.0933 0 56 48 0.9900 -0.1955 − 0.2121 0.1887 (0.8983 , 1.0818) 0.1836 0.9990
(1.3714) (0.0577) (0.0225) − (0.0649)

0.3 0.0933 1 56 49 0.9833 -0.1970 0.1098 0.2121 0.1843 (0.8779 , 1.0888) 0.2109 0.9702
(2.4277) (0.1112) (0.0313) (0.0480) (0.0812)

0.4 0.1240 0 56 49 0.9882 -0.1943 − 0.2828 0.2507 (0.8671 , 1.1094) 0.2423 1.0000
(1.5013) (0.0768) (0.0311) − (0.0877)

0.4 0.1240 1 56 44 0.9858 -0.1958 0.1074 0.2828 0.2431 (0.8527 , 1.1190) 0.2663 0.9796
(2.2752) (0.1418) (0.0411) (0.0684) (0.1087)

Discrete
0.3 0.1234 0 32 40 0.9934 -0.1958 − 0.2121 0.2020 (0.8870 , 1.0997) 0.2127 0.9959

(0.9797) (0.0764) (0.0375) − (0.0676)
0.3 0.1234 1 32 48 0.9842 -0.1946 0.1047 0.2121 0.2111 (0.8703 , 1.0981) 0.2278 0.9692

(1.3594) (0.1119) (0.0446) (0.0357) (0.0739)
0.4 0.1645 0 32 40 0.9860 -0.1908 − 0.2828 0.2640 (0.8457 , 1.1263) 0.2806 0.9948

(0.9060) (0.1019) (0.0529) − (0.0897)
0.4 0.1645 1 32 48 0.9771 -0.1906 0.1060 0.2828 0.2785 (0.8183 , 1.1359) 0.3176 0.9571

(1.3292) (0.1555) (0.0615) (0.0478) (0.1015)
0.3 0.0933 0 56 64 0.9907 -0.1943 − 0.2121 0.1913 (0.9015 , 1.0800) 0.1785 0.9907

(1.8276) (0.0677) (0.0340) − (0.0679)
0.3 0.0933 1 56 72 0.9879 -0.1965 0.1042 0.2121 0.2004 (0.8890 , 1.0869) 0.1979 0.9638

(2.4965) (0.1011) (0.0397) (0.0353) (0.0758)
0.4 0.1240 0 56 56 0.9846 -0.1917 − 0.2828 0.2467 (0.8678 , 1.1013) 0.2335 0.9897

(1.5957) (0.0878) (0.0431) − (0.0867)
0.4 0.1240 1 56 72 0.9746 -0.1904 0.1060 0.2828 0.2685 (0.8399 , 1.1092) 0.2693 0.9590

(2.4501) (0.1356) (0.0537) (0.0479) (0.0977)

NOTE: σ∗: standard deviation of the error term; d: precision parameter; Batch (takes the value 1 and 0 according to whether the batch effect is

included or not); nd =
z2

1−α/2
σ2

d2 is the theoretical stopping variable value in the continuous case and for the discrete case this is the sample size to
calculate Imax and the corresponding critical values; σ = σ1/2 = 1

2 f(0) is the asymptotic standard deviation of the intercept regression estimator;

WNd
: kernel regression estimator of σ; CI:mean 99.9% Confidence Interval of the intercept; CIL: Length of the CI; CP: Coverage Probability. The

results are based on the simulation study with 1,000 replications.

3



Proof of the uniform continuity in probabibility condition of

least-absolute regression estimator and asymptotic kernel variance

estimator

We recall that an infinite sequence of random variables {Yn}n≥1 is uniformly continuous

in probability ⇐⇒ ∀ε > 0 ∀η > 0 ∃ ν ∃ c > 0 such that ∀n > ν

P

{
max

|n′−n|<cn
|Yn′ − Yn| > ε

}
< η.

Furthermore, adopt the following regularity conditions related to the distribution function

F (C1 – C3), the sequence of matrices Xn (C4 – C7) and the estimators (C8 – C10):

• Dn = n−1X ′n Xn ≡
(
dnij
)
1≤i,j≤p ≡

(
d ij
)
1≤i,j≤p and

D−1
n ≡ (d ijn )1≤i,j≤p ≡ (d ij)1≤i,j≤p the inverse matrix, which is supposed to exist.

• θ be a real number in (0, 1).

• ψθ(x) = θ−I(x < 0) and ρθ(x) = xψθ(x), where I(P) takes the value 1 and 0 depending

on whether the condition P is satisfied or not.

• Q be the quantile function of ε1 assuming that Q(1/2) = 0.

• q be the quantile density function, also known as the sparsity function, defined by

q(θ) = Q′(θ) =
1

f (Q(θ))
.

• σθ =
√
θ (1− θ) q(θ) and σ = σ1/2.

• z1−α/2 be the α – quantile of a N(0, 1) distribution.

1



• ‖.‖ be the Euclidean norm.

C1 . F is twice continuously differentiable and its derivative function f is positive in {x : 0 < F (x) < 1}.

C2 . There exist c2 > 0, θ0 ∈ (0, 1/2) and a ∈ (0, 1/4) such that q(θ) ≤ c2

(θ (1− θ))1+a for θ ∈

(0, θ0) ∪ (1− θ0, 1).

C3 . There exist c3 and K positive numbers such that

∣∣∣∣f ′(x)

f(x)

∣∣∣∣ ≤ c3 |x| for |x| ≥ K.

C4 . Let a be the parameter introduced in condition C2. We assume max
1≤i≤n

‖xi‖ = O
(
n(2(b−a)−δ)/(1+4b)

)
for some b > 0 and δ > 0 such that 0 < b − a < ε/2 as n → ∞. From now on,

θ∗n = n−1/(2(1+4b)).

C5 . lim
n→∞

Dn = D a positive definite matrix, (whence Dn is non singular when n is large

enough).

C6 . n−1

n∑
i=1

‖xi‖4 = O(1) as n→∞.

C7 . xi1 = 1 for i = 1, . . . , n.

Let (νn)n≥1 be a decreasing sequence of positive numbers (bandwidth) satisfying one or more

of the following conditions:

C8 . n νn →∞ as n→∞.

C8 ’ . n ν2
n →∞ as n→∞.

C9 . n ν3
n → 0 as n→∞.

Our last condition relates to the kernel function.

2



C10. Let k denotes a continuous function with compact support such that
∫
k(v) dv = 0 and∫

v k(v) dv = −1 ; we denote K(x) =
∫ x
−∞ k(y) dy and K =

∫
K2(x) dx.

Condition C2 is used to control the heaviness of the tail of the distributions. All these

conditions are realistic in many biological microarray experiments.

Theorem 1.

(i) Suppose that the conditions C1 – C7 are satisfied. Then the sequence

(√
n
(
β̂n1 (θ)− β1 −Q(θ)

))
n≥1

is uniformly continuous in probability.

(ii) Suppose that the conditions C1 – C10 are satisfied. Then the sequence

(
√
n νn

(
Ŵn(θ)− q(θ)

2

))
n≥1

is uniformly continuous in probability, where Ŵn(θ) is the chosen estimator of q(θ)/2.

The development of Gutenbrunner and Jurečková (1992) and Jurečková (1984) is not

sufficient in our case. We need further results and prove that the remainder term in their

development remains small when taking the supremum in the decomposition : this is the

object of Lemma 1 and Theorem 2, on which the proof of Theorem 1 is based. We begin by

Lemma 1. Let C be a given constant, γ ∈ (0, a) (a defined in condition C2) and

Bn = max

(
1

n2(a−γ)/(1+4b)
,

1

n(2−γ)(b−a)/(1+4b)
,

1

n(b−γ)/(1+4b)

)
. (1)
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Under assumptions C1 – C7, for every µ > 0, there is Aµ > 0 such that for n→∞, we have

P
{

sup |rn (β, θ)| ≥ AµBn : ‖β‖ ≤ C
√

log n, θ∗n ≤ θ ≤ 1− θ∗n
}

= O

(
1

nµ

)
(2)

where

rn (β, θ) =
1√

θ(1− θ)σθ

n∑
i=1

[
ρθ

(
εiθ −

σθxi
′β√
n

)
− ρθ (εiθ)

]

+
1√

n (θ(1− θ))

n∑
i=1

xi
′ βψθ(εiθ)−

β′Dnβ

2

and εiθ = εi −Q(θ) for i = 1, . . . , n.

Proof. We decompose the proof into two steps. In the first one we show that for any

λ > 0 we have

P {|rn(β, θ)| ≥ (λ+ 1)Bn} ≤
1

nλ
. (3)

In the second one, we show how to deduce (2) from (3).

We will denote Cn = C
√

log n.

Step I.

First, we choose θ ∈ [θ∗n, 1− θ∗n] and β such that ‖β‖ ≤ Cn. The Markov inequality implies

P {|rn(β, θ)| ≥ sn} ≤ exp (−usn)Mrn(u)

where Mrn(u) = E (exp (u |rn (β, θ)|)), see Rogers and Williams (1994), p. 111.

Denote

ζni ≡ ζni(β, θ) =
σθx

′
iβ√
n

4



and

Ri(β, θ) =
1√

θ(1− θ)σθ

[
ρθ

(
εiθ −

σθxi
′β√
n

)
− ρθ (εiθ)

]

+
1√

n θ(1− θ)
xi
′ βψθ(εiθ)−

(x′i β)2

2n
, i = 1, . . . , n.

Replacing ρθ(x) = |x| {(1− θ) I (x < 0) + θ I (x > 0)} in the previous equation, we have

Ri(β, θ) +
(x′i β)2

2n
=

1√
θ(1− θ)σθ

[(εiθ − ζni) I (ζni < εiθ < 0)

+ (ζni − εiθ) I (0 < εiθ < ζni)] .

(4)

So that for ζni > 0 we have

Ri(β, θ) +
(x′i β)2

2n
=

1√
θ(1− θ)σθ

(ζni − εiθ) I (0 < εiθ < ζni) (5)

and for ζni < 0 the similar relation holds

Ri(β, θ) +
(x′i β)2

2n
=

1√
θ(1− θ)σθ

(εiθ − ζni) I (ζni < εiθ < 0) . (6)

Remark. Due to the similarity of relation (5) and (6), we will only treat the case of ζni > 0.

We have, for i = 1, . . . , n,∣∣∣∣∣Ri(β, θ) +
(x′i β)2

2n

∣∣∣∣∣ ≤ 1√
θ(1− θ)

√
n
|x′i β|

≤ 1√
θ(1− θ)

√
n

max
i=1,...,n

|x′i β| .

(7)

We also have,

1√
θ(1− θ)

≤ 1

θ∗n
,
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so that by condition C4 , we obtain, as n→∞∣∣∣∣∣Ri(β, θ) +
(x′i β)2

2n

∣∣∣∣∣ = O

(
n1/(2(1+4b))Cn n

(2(b−a)−δ)/(1+4b)

√
n

)

= O

(
Cn

n(2a+δ)/(1+4b)

)
,

where the constant implied by the O symbol is uniform in β and θ.

From now on, c denotes an absolute positive constant. This proof requires some prelim-

inary results :

Lemma 2. Suppose that the conditions C1 – C7 are satisfied. Then, for 0 < u <
n(2a+δ)/(1+4b)

√
log n

,

there is a positive constant c such that

logMRi(u) ≤ uE (|Ri(β, θ)|) + cu2Var (Ri(β, θ)) .

Lemma 3. Under assumptions C1 – C7, as n→∞, we have

n∑
i=1

E (|Ri (β, θ)|) = O

(
1

n2 (b−a)/(1+4b)

)
, (8)

uniformly for θ ∈ (θ∗n, 1− θ∗n) and ‖β‖ ≤ Cn.

Lemma 4. Under assumptions C1 – C7, as n→∞, we have

n∑
i=1

Var (Ri (β, θ)) = O

(
1

n2 b/(1+4b)

)

uniformly for θ ∈ (θ∗n, 1− θ∗n) and ‖β‖ ≤ Cn.
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Remark. An appendix sketches the proofs of these three lemmas.

We have, see Lemma 2,

log (Mrn(u)) ≤ uE

(
n∑
i=1

|Ri (β, θ)|

)
+ c u2 Var

(
n∑
i=1

Ri (β, θ)

)

where rn =
n∑
i=1

Ri and so

Mrn(u) ≤ exp

(
u

n∑
i=1

E (|Ri (β, θ)|) + c u2

n∑
i=1

Var (Ri (β, θ))

)
.

Let λ be any positive real number and let sn = (λ + 1)Bn and u = log n/Bn. We have

u = O
(
n2 a/(1+4b)

)
and so we may apply Lemma 2. It then follows from Lemmas 3 and 4

that there is a rank n0 independent of θ and β such that for all n ≥ n0,

P {|rn(β, θ)| ≥ (λ+ 1)Bn} ≤

exp

(
−(λ+ 1) log n+K

log(n)

Bn

1

n2(b−a)/(1+4b)
+K2

(
log(n)

Bn

)2
1

n2b/(1+4b)

)
≤

exp

(
−λ log n− log n+K

log n

nγ (b−a)/(1+4b)
+K

log2 n

n2γ/(1+4b)

)
≤ 1

nλ

for some K > 0. Thus, we proved (3).

Step II.

In this step, we prove (2).

We choose n5 intervals of length 1/n5 included in and covering [θ∗n, 1− θ∗n] andO (n5 p log n)

balls of radius 1/n5 included in and covering the ball {β : ‖β‖ ≤ Cn}. We want to bound
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∆i ≡ |Ri (β1, θ1) - Ri (β2, θ2)|. So, we define for l = 1, 2, the intervals Jl with end points

Q(θl) and ζni (βl, θl) +Q(θl).

We further define

Gl(εi) =
f(Q(θl))

θl (1− θl)
(εi −Q(θl)− ζni (βl, θl)) . (9)

Using (4), we have

Ri (β1, θ1)−Ri (β2, θ2) = −(x′i β1)
2

2n
+

(x′i β2)
2

2n

+
1√

θ1 (1− θ1)σθ1
[(εiθ1 − ζni (β1, θ1)) I (ζni (β1, θ1) < εiθ1 < 0)

+ (ζni (β1, θ1)− εiθ1) I (0 < εiθ1 < ζni (β1, θ1))]

− 1√
θ2 (1− θ2)σθ2

[(εiθ2 − ζni (β2, θ2)) I (ζni (β2, θ2) < εiθ2 < 0)

+ (ζni (β2, θ2)− εiθ2) I (0 < εiθ2 < ζni (β2, θ2))]

with εiθ = εi −Q(θ).

Thus

• if ζni (β1, θ1) > 0 and ζni (β2, θ2) > 0, we have for εi ∈ (J1 ∩ J2)

Ri (β1, θ1)−Ri (β2, θ2) = −(x′i β1)
2

2n
+

(x′i β2)
2

2n
+ (G2 (εi)−G1 (εi)) .

• If ζni (β1, θ1) < 0 and ζni (β2, θ2) < 0, we have for εi ∈ (J1 ∩ J2)

Ri (β1, θ1)−Ri (β2, θ2) = −(x′i β1)
2

2n
+

(x′i β2)
2

2n
+ (G1 (εi)−G2 (εi)) .
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• If ζni (β1, θ1) and ζni (β2, θ2) have different signs, we have for εi ∈ (J1 ∩ J2)

Ri (β1, θ1)−Ri (β2, θ2) = −(x′i β1)
2

2n
+

(x′i β2)
2

2n
+ ∆∗i

where

∆∗i =
1√

θ1 (1− θ1)σθ1
(ζni (β1, θ1)− εiθ1)−

1√
θ2 (1− θ2)σθ2

(εiθ2 − ζni (β2, θ2))

if ζni (β1, θ1) > 0 and

∆∗i = − 1√
θ1 (1− θ1)σθ1

(εiθ1 − ζni (β1, θ1)) +
1√

θ2 (1− θ2)σθ2
(ζni (β2, θ2)− εiθ2)

if ζni (β1, θ1) < 0.

Therefore

∆i =

∣∣∣∣∣−(x′i β1)
2

2n
+

(x′i β2)
2

2n
+H(εi)

∣∣∣∣∣
where

H(εi) =



G2 (εi)−G1 (εi) if ζni (β1, θ1) > 0 and ζni (β2, θ2) > 0

G1 (εi)−G2 (εi) if ζni (β1, θ1) < 0 and ζni (β2, θ2) < 0

∆∗i if ζni (β1, θ1) and ζni (β2, θ2) have different signs

0 otherwise.

We now study each case separately :
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1. When ζni (β1, θ1) and ζni (β2, θ2) have different signs, we have

∆i ≤

∣∣∣∣∣−(x′i β1)
2

2n
+

(x′i β2)
2

2n

∣∣∣∣∣+ |∆∗i | ,

where

|∆∗i | ≤ max
l=1,2

(
f(Q(θl)) |ζni(βl, θl)|

θl (1− θl)

)
= max

l=1,2

(
|x′iβl|√

n
√
θl (1− θl)

)

≤ Cn |xi|√
n
√
θl (1− θl)

≤ Cn n
2(b−a)/(1+4b)

√
n
√
θl (1− θl)

and, as θ∗n ≤ θ ≤ 1− θ∗n, we have

|∆∗i | ≤ Cn
n2(b−a)/(1+4b) n1/(2(1+4b))

√
n

=
Cn

n2a/(1+4b)
≤ Bn,

when n is sufficiently large.

2. When ζni (β1, θ1) and ζni (β2, θ2) have the same signs, we have

∆i ≤

∣∣∣∣∣−(x′i β1)
2

2n
+

(x′i β2)
2

2n

∣∣∣∣∣+ |G1 (εi)−G2 (εi)| .

Using the definition of Gl (l = 1, 2), see (9), we obtain

∆i ≤

∣∣∣∣∣−(x′i β1)
2

2n
+

(x′i β2)
2

2n

∣∣∣∣∣+ max
l=1,2

{
f(Q(θl))

θl (1− θl)

}
[|Q(θ2)−Q(θ1)|

+ |ζni (β1, θ1)− ζni (β2, θ2)|] .

Before studying each term separately, we give some prelininary elementary results. For

θ∗n ≤ θ ≤ 1− θ∗n, we have by condition C2

1

θ (1− θ)
≤ 1

(θ∗n)2 ≤ n
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and

1

minθ (f(Q(θ)))
≤ c

(θ (1− θ))1+a
≤ n1+a,

where a < 1/4. Therefore, we have

1

minθ (f(Q(θ)))
≤ n1+1/4 = n5/4.

• Study of |Q(θ1)−Q(θ2)|.

By the mean value theorem, there is θ∗ ∈ [θ1, θ2], such that

|Q(θ1)−Q(θ2)| = |(θ1 − θ2)Q
′(θ∗)| =

∣∣∣∣ θ1 − θ2

f(Q(θ∗))

∣∣∣∣

≤
∣∣∣∣ θ1 − θ2

minθ (f(Q(θ)))

∣∣∣∣ ≤ |θ1 − θ2| n5/4.

We remember that we fixed intervals of length 1/n5 included in and covering [θ∗n, 1− θ∗n] and

balls of radius 1/n5 included in and covering the space {β : ‖β‖ ≤ Cn}. Given this choice

we have

|θ1 − θ2| ≤
1

n5
and ‖β1 − β2‖ ≤

1

n5
.

Therefore

|Q(θ1)−Q(θ2)| ≤
1

n5
n5/4 =

1

n15/4
. (10)

• Study of |ζni (β1, θ1)− ζni (β2, θ2)|.

We note that for ‖β‖ ≤ Cn and θ∗n ≤ θ ≤ 1− θ∗n

|ζni (β1, θ1)− ζni (β2, θ2)| =
∣∣∣∣σθ1 x′i β1√

n
− σθ2 x

′
i β2√
n

∣∣∣∣ ,
11



whence

|ζni (β1, θ1)− ζni (β2, θ2)| ≤
Cn ‖xi‖

∣∣∣√θ1 (1− θ1)−
√
θ2 (1− θ2)

∣∣∣
√
n minθ (f(Q(θ)))

+
Cn ‖xi‖√

n

∣∣∣∣ 1

f(Q(θ1))
− 1

f(Q(θ2))

∣∣∣∣+
c ‖xi‖ ‖β1 − β2‖√
n minθ (f(Q(θ)))

≤ Cn c
n(2(b−a)−δ)/(1+4b) n2 (1+a)/(1+4b)

√
nn5

+ Cn c
n(2(b−a)−δ)/(1+4b)

√
nn15/4

+c
n(2(b−a)−δ)/(1+4b) n(1+a)/(1+4b)

√
nn5

= o

(
Bn

n

)
.

Let I × B be the product of a “small” interval in (θ∗n, 1− θ∗n) and of a “small” ball in the

space of the β’s. For those i’s for which εi 6∈ Q(I), we have ∆i = o (Bn/n); thus their total

contribution is o (Bn).

If i1, . . . , ir are the indices for which εi ∈ Q(I), we have ∆i ≤ r Bn for n sufficiently large.

The quantity p =
∫
Q(I) f(x) dx is the probability that εi ∈ Q(I); since the random variables

εi are independent, we have

P {εi1 ∈ Q(I), . . . , εir ∈ Q(I)} = pr.

Thus, we have (for n sufficiently large):

P

{
sup

(β1,θ1)∈I×B
sup

(β2,θ2)∈I×B

{
n∑
i=1

∆i

}
≥ λBn

}
≤

n∑
r=λ

(
n

r

)
pr(1− p)n−r.

We have also

p =

∫ Q(θ2)

Q(θ1)

f(x) dx.

12



Consequently, using (10), we obtain

p ≤ ‖f‖∞
∫ Q(θ2)

Q(θ1)

dx = ‖f‖∞ |Q(θ2)−Q(θ1)| = O
(
n−3.75

)
.

This implies

P

{
sup

(β1,θ1)∈I×B
sup

(β2,θ2)∈I×B
|rn (β1, θ1)− rn (β2, θ2)| ≥ λBn

}
≤

n∑
r=λ

nr pr = O
(
(n p)λ

)
= O

(
1

n2.75λ

)
.

(11)

Let
(
β(1), θ(1)

)
, . . . ,

(
β(N), θ(N)

)
be a family of chosen points, each in the small boxes I ×

B’s. Their number N is at most n5 p+6. The probability that rn

(
β(k), θ(k)

)
is larger than

(λ + 1)Bn is at most n−λ (cf. (3)); whence the probability that rn is large at one of the

points
(
β(k), θ(k)

)
1≤k≤N

is at most n5 p+6−λ.

Since each pair (β, θ) with the condition ‖β‖ ≤ Cn and θ∗n ≤ θ ≤ 1− θ∗n is in a small box

associated to one of the
(
β(k), θ(k)

)
, our second step (11) shows that rn has, with a large

probability, close values at (β, θ) and
(
β(k), θ(k)

)
.

Then, we obtain for λ > 5p+ 6 and sufficiently large n,

P {sup |rn (β, θ)| ≥ (λ+ 1)Bn + λBn : ‖β‖ ≤ Cn, θ
∗
n ≤ θ ≤ θ∗n}

= O
(
n5 p+6−λ + n−2.75λ

)
= O

(
1

nµ

)
since µ = λ− (5p+ 6) > 0, whence the result.
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Theorem 2. Under conditions C1 – C7, we have for every µ > 0, there is Aµ such that for

n→∞, we have

P

{∥∥∥∥∥
√
n

σθ

(
β̂
n
(θ)− β̃(θ)

)
− 1
√
n
√
θ (1− θ)

D−1
n

n∑
i=1

xiψθ (εiθ)

∥∥∥∥∥ ≥ AµBn

}
= O

(
1

nµ

)
.

Proof. As β̂
n
(θ) minimizes

n∑
i=1

ρθ (Yi − x′iβ) with respect to β, the quantity

T nθ :=

√
n

σθ

(
β̂
n
(θ)− β̃(θ)

)
(12)

minimizes (with respect to β) the function

Gnθ(β) =
1√

θ (1− θ)
1

σθ

n∑
i=1

[
ρθ

(
εiθ −

σθx
′
iβ√
n

)
− ρθ(εiθ)

]
.

In the sequel Rn = O∗ (Bn) as n → ∞, where (Rn)n is a sequence of random variables and

(Bn)n is a sequence of numbers, means that for any λ > 0 there is Aλ > 0 and nλ such that

for all n ≥ nλ

P {|Rn| ≥ AλBn} ≤ n−λ.

Lemma 1 may be thus rewritten as,

min
‖β‖≤Cn

Gnθ(β) = min
‖β‖≤Cn

{
−β′Znθ +

β′Dn β

2

}
+O∗ (Bn)

uniformly in θ∗n ≤ θ ≤ 1− θ∗n, where

Znθ =
1

√
n
√
θ (1− θ)

n∑
i=1

xi ψθ(εiθ).

It will be necessary to give a probabilistic bound for supθ∗n≤θ≤1−θ∗n Znθ. By conditions C4,

C6 and the fact that θ∗n > n−1 Theorem 1.2 of Shorack (1991) can be used. We thus have

sup
θ∗n≤θ≤1−θ∗n

Znθ ≤ c sup
θ∗n≤s≤1−θ∗n

W (s)√
s (1− s)

+Op(1)

14



for some constant c, where W (s) is a Brownian bridge. We apply the result (15) (page 599)

of Shorack & Wellner (1986) with dn = θ∗n, en = 1− θ∗n and obtain

sup
θ∗n≤θ≤1−θ∗n

Znθ = Op(
√

log log n). (13)

Let Unθ = D−1
n Znθ. We have

−β′Znθ +
β′Dn β

2
=

(β −Unθ)
′ Dn (β −Unθ)

2
− U

′
nθDnUnθ

2
.

Since Dn is positive definite, we have

Unθ = arg min
β∈Rp

{
−β′Znθ +

β′Dn β

2

}
and

min
β∈Rp

{
−β′Znθ +

β′Dn β

2

}
= −ZnθD

−1
nθ Znθ

2
.

We also obtain using (13),

Unθ = Op(
√

log log n).

uniformly on θ∗n ≤ θ ≤ 1− θ∗n.

Hence, applying Lemma 1 we have

sup
(θ,β)∈S

|rn(β, θ)| =

sup
(θ,β)∈S

{∣∣∣∣Gnθ(β)− (β −Unθ)
′Dn (β −Unθ)

2
+
U ′nθDnUnθ

2

∣∣∣∣} = O∗(Bn),

where S =
{

(θ,β) ∈ R× Rp ; ‖β‖ ≤ C
√

log n, θ∗n ≤ θ ≤ 1− θ∗n
}

.

Inserting Unθ for β, we have

sup
θ∗n≤θ≤1−θ∗n

{
Gnθ(Unθ) +

U ′nθDnUnθ

2

}
= O∗(Bn). (14)

15



which implies that

min
‖β‖≤Cn

Gnθ(β) = min
‖β‖≤Cn

{
(β −Unθ)

′ Dn (β −Unθ)−U ′nθDnUnθ

2

}

= −ZnθD
−1
n Znθ

2
.

Consider the ball Bnθ with center Unθ and radius
√
Bn |logBn| > 0. We wish to show that,

with high probability the point T nθ (cf. (12)) where the convex function Gnθ is minimum is

in Bnθ. For that purpose, we show that, with high probability, the value of Gnθ at Unθ is

less than the minimum of Gnθ on the boundary of Bnθ. In that case, the convexity of Gnθ

implies that the minimum of Gnθ is attained inside Bnθ. Let us denote by Snθ the boundary

of Bnθ. By Lemma 1, we have

P

{
sup
ζ∈Snθ

∣∣∣∣Gnθ(Unθ + ζ)− ζ
′Dn ζ

2
+
U ′nθDnUnθ

2

∣∣∣∣ ≥ (λ+ 1)Bn

}
≤ n−λ,

which leads to

P

{
sup
ζ∈Snθ

(
Gnθ(Unθ + ζ)− ζ

′Dn ζ

2
+
U ′nθDnUnθ

2

)
≥ (λ+ 1)Bn

}
≤ n−λ. (15)

By (14), we have

P

{∣∣∣∣Gnθ(Unθ) +
U ′nθDnUnθ

2

∣∣∣∣ ≥ (λ+ 1)Bn

}
≤ n−λ,

which implies

P

{
Gnθ(Unθ) +

U ′nθDnUnθ

2
≥ (λ+ 1)Bn

}
≤ n−λ. (16)
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By considering the complementary sets, we notice that{
sup
ζ∈Snθ

Gnθ(Unθ + ζ) ≤ Gnθ(Unθ)

}
⊂

{{
sup
ζ∈Snθ

Gnθ(Unθ + ζ) ≥ −U
′
nθDnUnθ

2
+ (λ+ 1)Bn

}
∪

{
Gnθ(Unθ) ≤ −

U ′nθDnUnθ

2
+ (λ+ 1)Bn

}}
.

Recall that Dn tends to a positive definite matrix when n tends to infinity so that there is

an absolute constant c such that
ζ ′Dn ζ

2
≥ c ‖ζ‖2 when n is sufficiently large; we further

notice that ‖ζ‖2 ≥ Bn log2Bn ≥ 2 (λ+ 1)Bn for n ≥ nλ. This implies that

{
Gnθ(Unθ + ζ) ≥ −U

′
nθDnUnθ

2
+ (λ+ 1)Bn

}
⊂

{
sup
ζ∈Snθ

{
Gnθ(Unθ + ζ)− ζ

′Dn ζ

2

}
≥ −U

′
nθDnUnθ

2
− (λ+ 1)Bn

}
.

By using these inclusions and relations (15) and (16), we have

P

{
sup
ζ∈Snθ

Gnθ(Unθ + ζ) ≤ Gnθ(Unθ)

}
≤ 2n−λ.

By the convexity of the functionGnθ, when supζ∈Snθ Gnθ(Unθ+ζ) > Gnθ(Unθ), the minimum

of the function Gnθ is attained inside the ball Bnθ. We thus have

P
{
‖T nθ −Unθ‖ >

√
Bn| logBn|

}
≤ 2n−λ,

and, since
√
Bn| logBn| < Bn, we obtain Theorem 2.
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Proof of Theorem 1.

(i) Denote

γi = q(θ) (θ − I (εi < Q(θ))) , i = 1, . . . , n.

We have

β̂n
′

1 (θ)− β̂n1 (θ) = β̂n
′

1 (θ)− β1 −Q(θ) + β1 +Q(θ)− β̂n1 (θ)

=
d11
n′

n′

n′∑
i=1

γi −
d11
n

n

n∑
i=1

γi + (R′n′(θ)−R′n(θ))

where, according to Jurečková (1984), R′n(θ) = Op

(
n−3/4

)
.

Let us assume, without loss of generality, that n′ > n. Then

β̂n
′

1 (θ)− β̂n1 (θ) =
d11
n′

n′

n∑
i=1

γi +
d11
n′

n′

n′∑
i=n+1

γi −
d11
n

n

n∑
i=1

γi + (R′n′(θ)−R′n(θ))

=

(
d11
n′

n′
− d11

n

n

) n∑
i=1

γi +
d11
n′

n′

n′∑
i=n+1

γi + (R′n′(θ)−R′n(θ)) .

Let An =

(
1− n d11

n′

n′ d11
n

)
d11
n

n

n∑
i=1

γi and Sn =
d11
n′

n′

n′∑
i=n+1

γi. Then

β̂n
′

1 (θ)− β̂n1 (θ) = Sn − An + (R′n′(θ)−R′n(θ)) .

We shall first focus on the term Sn − An. We have for any fixed λ, 0 < λ < 1,

P

{
max

|n′−n|<cn

∣∣√n(Sn − An)
∣∣ > ε

}
= P

{
max

|n′−n|<cn

∣∣√n(Sn − An)
∣∣ > λε+ (1− λ)ε

}

≤ P

{
max

|n′−n|<cn

√
n |An| > λε

}
+ P

{
max

|n′−n|<cn

√
n |Sn| > (1− λ)ε

}

= P (En) + P (E ′n) .
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We shall now study each term separately. Let us start with P (En). We know from the

assumptions about the model that εi are i.i.d. random variables, so that I (εk < Q(θ)) follows

a binomial distribution with parameters 1 and θ , thus E (γi) = 0 and Var(γi) = q2(θ) θ (1−θ).

Then, by the central limit theorem

1√
n

n∑
i=1

γi

q(θ)
√
θ (1− θ)

D−→ N (0, 1)

and

∀ η > 0, ∃K,n1 such that ∀n ≥ n1, P

{∣∣∣∣∣ 1√
n

n∑
i=1

γi

∣∣∣∣∣ ≥ K

}
≤ η/2.

Denote Hn =

[ ∣∣∣∣∣ 1√
n

n∑
i=1

γi

∣∣∣∣∣ ≥ K

]
.

For n ≥ n1

P

{
max

|n′−n|<cn

√
n |An| > λε

}
= P (En) = P (En ∩Hn) + P (En ∩Hn)

= P

{
max

|n′−n|<cn

√
n|An| > λε ,

∣∣∣∣∣ 1√
n

n∑
i=1

γi

∣∣∣∣∣ < K

}
+ P (En ∩Hn) = I1 + I2.

Realizing that En ∩Hn ⊆ Hn, then

I2 = P (En ∩Hn) ≤ P (Hn) = P

{∣∣∣∣∣ 1√
n

n∑
i=1

γi

∣∣∣∣∣ ≥ K

}
≤ η/2.

For I1, we notice that, when

max
|n′−n|<cn

(
d11
n − d11

n′
n

n′

)
≤ λ ε

K
, (17)

we cannot have at the same time En and Hn. So, I1 = 0 when (17) is satisfied, and obviously

by 1 when (17) is not satisfied.
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From C5 we have

∀δ > 0, ∃n0,∃ c1 such that ∀n ≥ n0 max
|n′−n|<c1n

∣∣∣d11
n − d11

n′
n

n′

∣∣∣ < δ.

Hence if we consider δ =
λ ε

K
and c ≤ c1, we have for all n ≥ min(n0, n1) :

P (En) = I1 + I2 ≤ 0 + η/2 = η/2. (18)

We shall study now the behaviour of the term P (E ′n), i.e.

P

{
max

|n′−n|<cn

√
n
d11
n′

n′

∣∣∣∣∣
n′∑

i=n+1

γi

∣∣∣∣∣ > (1− λ)ε

}
. (19)

By Kolmogorov (max) inequality, we have

P

{
max

|n′−n|<cn

√
n
d11
n′

n′

∣∣∣∣∣
n′−n∑
k=1

γk+n

∣∣∣∣∣ > (1− λ)ε

}
≤

1

(1− λ)2ε2

n (d11
n′ )

2

n′2

n′−n∑
k=1

V ar(γk+n) =
1

(1− λ)2ε2

n (d11
n′ )

2

n′2
(n′ − n) V ar(γ1) ≤

1

(1− λ)2ε2

n (d11
n′ )

2

n′2
c n V ar(γ1).

(20)

It is clear that |n′ − n| < cn implies
( n
n′

)2

<
1

(1− c)2 .

Plugging all these results into (20), we have

P

{
max

|n′−n|<cn

√
n
d11
n′

n′

∣∣∣∣∣
n′−n∑
k=1

γk+n

∣∣∣∣∣ > (1− λ)ε

}
≤ θ(1− θ)

(1− λ)2ε2
q2(θ)

c

(1− c)2

(
d11
n′

)2
.

To find an upper bound for (19) it is sufficient to put k′ = k + n in order to have

P

{
max

|n′−n|<cn

√
n
d11
n′

n′

∣∣∣∣∣
n′∑

k′=n+1

γk′

∣∣∣∣∣ > (1− λ)ε

}
≤ θ(1− θ)

(1− λ)2ε2
×

× q2(θ)
c

(1− c)2

(
d11
n′

)2
. (21)
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It follows from C5 that

d11
n′ → d11 > 0 as n′ →∞,

so that there is n0 such that for all n ≥ n0 d
11
n′ > d11/2.

Let us choose for θ fixed, ε and η. Then c can be chosen such that

c

(1− c)2
≤ η

2

1

(d11/2)2

(1− λ)2 ε2

θ(1− θ)
1

q2(θ)
≤ η

2

1

(d11/2)2 (1− λ)2 ε′ (22)

where ε′ =
ε2

θ(1− θ)
1

q2(θ)
.

Combining (21) and (22) we have

P

{
max

|n′−n|<cn

√
n
d11
n′

n′

∣∣∣∣∣
n′∑

k=n+1

γk

∣∣∣∣∣ > (1− λ)ε

}
≤ η/2. (23)

It is clear that (23) holds for any λ ∈ (0, 1), λ fixed. By (18) and (23) we have

P

{
max

|n′−n|<cn

∣∣√n(Sn − An)
∣∣ > ε

}
≤ η/2 + η/2 = η

We now concentrate on the remainder term. As noticed before, further development is

required to control the remainder term. Let (Bn) be the sequence defined in (1) and let

R
′′
n(θ) be the remainder term of the “improved” decomposition. We have

P

{
max

|n′−n|<cn

∣∣∣R′′n′(θ)−R′′n(θ)
∣∣∣ >√Bn |logBn|

}
≤

∑
|n′−n|<cn

P
{∣∣∣R′′n′(θ)−R′′n(θ)

∣∣∣ >√Bn |logBn|
}
.

Since (Bn) tends to zero, for ε > 0 fixed, there is n1 such that for all n ≥ n1,
√
Bn |logBn| ≤

ε. Thus, by Theorem 2, we have for every µ > 1 :

P

{
max

|n′−n|<cn

∣∣∣R′′n′(θ)−R′′n(θ)
∣∣∣ > ε

}
≤ c n

nµ
→ 0.
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In general terms, given ε and η, we found c, ν such that for all n > ν

P

{
max

|n′−n|<cn
|Yn′(θ)− Yn(θ)| > ε

}
< η,

where Yn(θ) =
√
n
(
β̂n1 (θ)− β1 −Q(θ)

)
.

In this way Anscombe’s condition for uniform continuity in probability of β̂n1 is proved

for the first term of β̂n and θ general.

(ii) The proof follows from Theorem 1.

We proceed in two steps: first collecting tools, then establishing the main Theorem.

Proof of Lemma 2. For 0 < u <
n(2a+δ)/(1+4b)

√
log n

the quantity uRi(β, θ) is bounded. Taylor

expansion of the exponential function around E (uRi(β, θ)) gives

exp (u |Ri(β, θ)|) = exp (E (u |Ri(β, θ)|)) + (u |Ri(β, θ)| − E (u |Ri(β, θ)|))

× exp (E (u |Ri(β, θ)|)) +O
(
(u |Ri(β, θ)| − E (u |Ri(β, θ)|))2) exp (E (u |Ri(β, θ)|)) ,

where the constant implied in the O symbol is absolute since the quantity uRi(β, θ) is

bounded (cf. 7).

By integration, we have

E (exp (u |Ri(β, θ)|)) ≤ exp (uE (|Ri(β, θ)|)) (1 + cVar (u |Ri(β, θ)|)) ,

and since Var |Y | ≤ VarY , we have

E (exp (u |Ri(β, θ)|)) ≤ exp (uE (|Ri(β, θ)|)) (1 + cVar (uRi(β, θ))) .
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Taking the logarithm of both terms the claimed result follows.

Proof of Lemma 3. By (5) we have

E (Ri (β, θ)) = −(x′i β)2

2n
+

1√
θ(1− θ)σθ

E ((ζni − εiθ) I (0 < εiθ < ζni))

= −(x′i β)2

2n
+

1√
θ(1− θ)σθ

∫ ζni

0

(ζni − z) f (z +Q(θ)) dz.

Now

log (f (z +Q(θ))) = log (f (Q(θ))) +

∫ z

0

d

d u
log (f (u+Q(θ))) du. (24)

Applying condition C3 and taking the exponential function in (24), we obtain

f (z +Q(θ)) = f (Q(θ)) exp

(∫ z

0

d

d u
log (f (u+Q(θ))) du

)

= f (Q(θ)) exp

(∫ z

0

O (u+ |Q(θ)|) du
)
.

(25)

Noticing that

σθ |Q(θ)| =
√
θ (1− θ) |Q(θ)|

f(Q(θ))
.

Condition C2 on quantile density function implies a similar upper bound for the quantile

function itself; namely, we have

|Q(θ)| ≤ c

(θ (1− θ))a
,

from where √
θ (1− θ) |Q(θ)| ≤ c

(θ (1− θ))a−1/2
.

Since q(θ) = 1/f(Q(θ)), we have, from condition C2 ;

√
θ (1− θ) |Q(θ)|

f(Q(θ))
≤ c

(θ (1− θ))2 a+1/2
,
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so that, as n→∞,

ζni |Q(θ)| = O

(
1

√
n (θ (1− θ))2 a+1/2

n(2(b−a)−δ)/(1+4b)
√

log n

)
−→ 0.

Hence, using Taylor expansion in the neighbourhood of 0, we have

exp

(
O

(∫ z

0

(u+ |Q(θ)|) du
))

= 1 +O

(∫ z

0

(u+ |Q(θ)|) du
)
, (26)

where the constant in the right hand side is taken uniformly when z is positive and bounded.

Applying (25) and (26), we obtain

f (z +Q(θ)) = f (Q(θ))

(
1 +O

(∫ z

0

(u+ |Q(θ)|) du
))

. (27)

We remember that

E (Ri (β, θ)) = −(x′i β)2

2n
+

1√
θ(1− θ)σθ

∫ ζni

0

(ζni − z) f (z +Q(θ)) dz.

By (27) we obtain

E (Ri (β, θ)) ≤ −
(x′i β)2

2n
+

1√
θ(1− θ)σθ

f(Q(θ))×

×
[∫ ζni

0

(ζni − z) dz + c

∫ ζni

0

(ζni − z)

[∫ z

0

(u+ |Q(θ)|) du
]
dz

]
.

By a simple calculation of the first integral on the right hand side of the previous inequality

we obtain

1√
θ(1− θ)σθ

f(Q(θ))

∫ ζni

0

(ζni − z) dz =
1

σ2
θ

(
ζ2
ni

2

)
=

(x′i β)2

2n
.

Thus

E (|Ri (β, θ)|) ≤
c

σ2
θ

∫ ζni

0

(ζni − z)

[∫ z

0

(u+ |Q(θ)|) du
]
dz.

24



Elementary calculations give us

∫ ζni

0

(ζni − z)

[∫ z

0

(u+ |Q(θ)|) du
]
dz =

ζ4
ni + 4 |Q(θ)| ζ3

ni

24
,

from where

E (|Ri (β, θ)|) ≤
c

σ2
θ

(
σ4
θ (x′i β)4

24n2
+

4 |Q(θ)| σ3
θ (x′i β)3

24n3/2

)

≤ c

(
σ2
θ (x′i β)4

n2
+
|Q(θ)| σθ (x′i β)3

n3/2

)
.

By C2 we have

E (|Ri (β, θ)|) ≤
c |x′i β|

4

n2 (θ (1− θ))1+2 a +
c |x′i β|

3

n3/2 (θ (1− θ))1/2+2 a
.

As we already mentionned, we have the same inequality when ζni < 0, which completes the

proof of Lemma 3.

Proof of Lemma 4. By simple calculations, the variance of Ri (β, θ) given in (4) is

Var (Ri (β, θ)) =
1

θ(1− θ)σ2
θ

[∫ |ζni|
0

(|ζni| − y)2f (y + |Q(θ)|) dy

−

(∫ |ζni|
0

(|ζni| − y)f (y + |Q(θ)|) dy

)2
 .

As above, we can write the inequality

Var (Ri (β, θ)) ≤
1

θ(1− θ)σ2
θ

{
f(Q(θ))

∫ |ζni|
0

(|ζni| − z)2

[
1 +

∫ z

0

(y + |Q(θ)|) dy
]
dz

+f 2(Q(θ))

{∫ |ζni|
0

(|ζni| − z)

[
1 +

∫ z

0

(y + |Q(θ)|) dy
]
dz

}2
 .
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Therefore, applying the method used for the study of E (Ri (β, θ)) we have

n∑
i=1

Var (Ri (β, θ)) ≤
c

n3/2
√
θ(1− θ)

n∑
i=1

|x′i β|
3

= O

(
1

n2 b/(1+4b)

)

uniformly for θ ∈ (θ∗n, 1− θ∗n) and ‖β‖ ≤ Cn, which completes the proof of Lemma 4.
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