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Abstract

In this article we are interested in the propagation speed for solution
of hyperbolic boundary value problem in the WR class. Using the Holm-
gren principle, we show that this speed is finite and we are able to give
an explicit expression for the maximal speed. Due to propagation phe-
nomenon along the boundary specific to the WR class, the maximal speed
can be larger than the propagation speed for the Cauchy problem. This
is consistent with examples of the litterature.
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1 Introduction.

The aim of this paper is to show a result of finite speed of propagation for
mixed hyperbolic problems in the so-called WR class (see [1]). This class con-
tains weakly well-posed mixed problems, more precisely for those problems the
solution loses a derivative in the interior and a derivative on the boundary of
the domain relative to the data of the problem (see [5]).
The property that the information propagation speed remains finite is one of
the main feature of hyperbolic partial differential equations. Indeed it is easy
to show using an integration by parts argument that for the Cauchy problem
with symmetric coefficients, the maximal speed of propagation is the modulus
of the largest eigenvalue of the spatial symbol (see for example [11]).
The generalization of this result to constanly hyperbolic Cauchy problems [2]
and to well-posed mixed problems [[4] p.408-412-[13]] uses the analysis of vari-
able coefficients problems in such a way that, thanks to the Holgrem principle,
one can construct a foliation of the supposed cone of propagation. The main
part of this process is that the straightened mixed problems with initial data
prescribed on a sheet of the foliation inherits the properties of constant hyper-
bolicity and of well-posedness of the mixed problem.
It is this method that we will adapt here to mixed problems in the WR class.
So we will have to show that the straightened mixed problem inherits weak
well-posedness. In the proof of theorem 3.2 we will see that this property need
that the speed of propagation is larger than the speed of propagation in the
well-posed case.
More precisely due to propagation phenomenon along the boundary specific to
the weakly well posed case, we will ask that the speed of propagation is also
larger than the maximal speed of propagation along the boundary. This new
requirement is not surprising, indeed the literature contains many examples of
mixed problems in the WR class for which the propagation speed is larger than
the propagation speed of the Cauchy problem (see for example [2]-[3]-[6]-[7])
and can even be choosen arbitrarily large.
Moreover using the lower bound of the propagation speed in [6], we will be able
to show that the maximal speed of propagation found in this paper is sharp.

2 Notations.

In this article we will consider initial boundary value problems (ibvps in short)
in the half-space Rd+ =

{
(x′, xd) ∈ Rd−1 × R \ xd ≥ 0

}
, for T > 0 we will also

note ΩT = [0, T ]× Rd+ and ωT = ΩT ∩ {xd = 0}.
To simplify the notations we will denote by (t, x′) := (t, x′, 0) the elements of
ωT .
C∞b (ΩT ,Mn×m) (resp. C∞b (ωT ,Mn×m)) will denote the set of matrices of size
n ×m which are smooth bounded with bounded derivatives on ΩT (resp. ωT )
and which admit limits for t and x large.
Since it we be useful for energy estimates we also introduce the weighted Sobolev
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spaces Hs(ΩT ) defined by the norm :

‖ · ‖Hsγ(ΩT ) = ‖e−γt · ‖Hs(ΩT ).

Spaces Hs(ωT ) are defined in a similar way.
Our ibvp of study reads : L(t, x, ∂)u = ∂tu+

∑d
j=1Aj(t, x)∂ju = f , on ΩT

B(t, x′)u = g, on ωT
u(0, x) = u0(x), on Rd+

(1)

where Aj ∈ C∞b (ΩT ,MN×N ), and B ∈ C∞b (ωT ,Mp×N ). The integer p is the
number of positive eigenvalues of Ad (we stress that thanks to assumptions 2.1
and 2.2 below, p does not depend of (t, x)).
In order to simplify the notations we will denote by A(t, x, ξ) (resp. A′(t, x, ξ′))
the spatial (resp. spatial tangential) symbol of L(t, x, ∂) that is to sayA(t, x, ξ) =∑d
j=1 ξjAj(t, x) (resp. A′(t, x, ξ′) =

∑d−1
j=1 ξjAj(t, x)).

From now on we will suppose that the ibvp (1) is constantly hyperbolic, with
non-characteristic boundary that is to say that the following assumptions are
satisfied :

Assumption 2.1 There exist an integer q ≥ 1, smooth functions λ1, ..., λq on
ΩT × Rd \ {0} and positive integers ν1, ..., νq such that :

∀ξ ∈ Sd−1, det (τ +A(t, x, ξ)) =

q∏
k=1

(τ + λk(t, x, ξ))νk ,

with λ1 < ... < λq and the eigenvalues λk(t, x, ξ) of A(t, x, ξ) are semi-simple.

Assumption 2.2 For all (t, x) ∈ ΩT , detAd(t, x) 6= 0.

Let u a solution of (1) in view to include ‖u(t)‖L2(Rd+) in the energy estimate of

u (see [5]) we need the following assumption.

Assumption 2.3 The mixed problem (1) is Friedrichs symmetrizable that is
to say there is a symmetric positive definite matrix regular on ΩT , S(t, x) such
that for all j and for all (t, x) ∈ ΩT , S(t, x)Aj(t, x) is a symmetric matrix.

We introduce the frequency spaces :

Ξ :=
{
ζ = (σ = γ + iτ, η) ∈ C× Rd−1 \ γ ≥ 0

}
,

Ξ0 := Ξ ∩ {γ = 0} .

For (t, x, ζ) ∈ ΩT × Ξ, the resolvent matrix A(t, x, ζ) associated to the ibvp (1)
is defined by :

A(t, x, ζ) = −Ad(t, x)−1 (σ + iA′(t, x, η)) ,

we denote by E−(t, x, ζ) the stable subspace of A(t, x, ζ). Thanks to Hersh
lemma (see [2] p.103) we know that for all ζ ∈ Ξ \ Ξ0, A(t, x, ζ) does not have
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purely imaginary eigenvalues and that dim(E−(t, x, ζ)) is constant equal to p
for all (t, x, ζ) ∈ ΩT × (Ξ \ Ξ0).
Moreover according to [8]-[9], E−(t, x, ζ) admits a continous extension up to
Ξ0. Since it will be useful later on, we introduce a Lopatinskii determinant ∆
defined by

∆(t, x, ζ) = det(BE−(t, x, ζ)),

which is a holomorphic function in σ and smooth in η away from glancing set
G (see [2] p239 for a definition).

Definition 2.1 The hyperbolic region H of L(t, x, ∂) is the set of (t, x′, ζ) ∈
ωT × Ξ0 such that A(t, x′, iτ, η) is diagonalizable with purely imaginary eigen-
values.
The glancing region G is the set of (t, x′, ζ) ∈ ωT × Ξ0 such that A(t, x, iτ, η)
has at least one We denote by Υ the set where the ibvp (1) does not satisfy the
uniform Kreiss Lopatinskii condition ie

Υ = {(t, x′, ζ) ∈ ωT × Ξ \∆(t, x′, ζ) = 0} .

We give here an equivalent definition of the WR class introduced in [1] due to
[12] (see [6] for a proof of equivalence).

Assumption 2.4 The ibvp (1) is said to be in the class WR if the following
conditions are satisfied :
i)The ibvp (1) satisfies the weak Kreiss-Lopatinskii condition ie

∀(t, x′, ζ) ∈ ωT × Ξ \ Ξ0,∆(t, x′, ζ) 6= 0.

ii) Υ 6= ∅ and Υ ⊂ H̊.
iii) For all (t, x′, ζ) ∈ Υ, there is a neighborhood V of (t, x′, ζ) in ωT × Ξ, a
regular basis (E1, ..., Ep)(t, x

′, ζ) of E−(ζ) on V, an invertible matrix of size p,
P (t, x′, ζ) regular on V and a smooth real valued function Θ such that

∀(t, x′ζ) ∈ V, B [E1, ..., Ep] (t, x′, ζ) = P (t, x′, ζ)diag(γ + iΘ(t, x′, ζ), 1...1).

In particular, on can find a Lopatinskii’s determinant under the form :

∀(t, x′, ζ) ∈ V, ∆(t, x′, ζ) = (γ + iΘ(t, x′, ζ))detP (t, x′, ζ).

3 Main result.

Theorem 3.1 If the ibvp (1) satisfies assumptions 2.1-2.2-2.3-2.4 then there
exists a real positive V0 such that for all (t0, x0) in ΩT , if we denote by C the
cone define by :

C =
{

(t, x) ∈ Rd+1 \ |x− x0| ≤ V0(t0 − t)
}
. (2)
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Then the following property is true :
If u ∈ C([0, T ] , L2(Rd+)) is a solution of the ibvp : L(t, x, ∂)u = 0 , on C ∩ ΩT ,

B(t, x′)u = 0 , on C ∩ ωT ,
u = 0 , on C ∩ ΩT ∩ {t = 0},

(3)

then u|C = 0.
Moreover the same propertie is true for all V > V0.

The smallest real V such that theorem 3.1 is true is the sought maximal speed
of propagation. We stress on the fact that this speed of propagation V only
depends of the coefficients of (1). The value of V will be made precise in (6).
As mentionned in the introduction the proof of theorem 3.1 is based on the
Holmgren principle.
Let u be a smooth solution of (3). We will construct a foliation of the cone C
and our goal will be to show that u is zero on any sheet of the foliation that
is to say that u|C = 0. Then we will conclude the proof of theorem 3.1 by a
mollification of the weak solution u.
To prove that u is zero on any sheet of the foliation we will show that the ibvp
which takes the sheet as a space-like variety (see (4) ) remains in the WR class
if we choose V large enough. Then using classical results on ibvp in the WR
class, more precisely that the adjoint problem of an ibvp in the WR class is in
the WR class (see [2] p.137) and a weakly well-posed result of [5] we will be
able to conclude using Green’s formula on ΩT .
The foliation (Eθ)θ∈[0,1] of C used for this proof will be exactly the same as the
foliation given in ([2] p.76) (of course restricted to {xd > 0}) that’s why we will
not give it explicitely in this paper. The only point to keep in mind is that for
all θ the sheet Eθ is a regular graph so one can find a smooth diffeomorphism

ψθ : (t, x)→ (t̃, x)

such that Eθ = ψθ(0,Rd+). The straightened ibvp on the sheet Eθ reads L̃(t̃, x, ∂)u = 0 , Cε ∩ ΩT
B̃(t̃, x′)u = 0 , Cε ∩ ωT
u = 0 , Cε ∩ ΩT ∩ Eθ

(4)

with L̃(t̃, x, ∂) =
(
I +A(t, x,∇xt̃)

)
∂t̃+

∑d
j=1Aj(t, x)∂j , B̃(t̃, x′) = B(t, x′), and

where Cε is defined as in (2) with t0− ε instead of t0 ( this restriction is needed
for the final mollification argument).
We conclude this section by the definition of the resolvent matrix Ã(t̃, x, ζ) of
our new ibvp (4) which is given by

Ã(t̃, x, ζ) = − (Ad(t, x))
−1 (

σ
(
I +A(t, x,∇xt̃)

)
+ iA′(t, x, η)

)
. (5)

We denote by Ẽ−(t̃, x, ζ) the stable subspace of Ã(t̃, x, ζ), H̃ the new hyperbolic
area and Υ̃ the new area in which Kreiss-Lopatinskii condition breaks down
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(those objetcs are defined exactly as in definition 2.1).
Let

VC := sup
ξ∈Sd−1

sup
(t,x)

max
i
|λi(t, x, ξ)|

VB := sup
(t,x′,ζ)∈Υ

|∇ηΘ(t, x′, ζ)|

where λi(t, x, ξ) are defined in the assumption 2.1 and Θ is defined in the as-
sumption 2.4.
Then the maximal speed of propagation is V −1, where V is given by

V = min

(
1

VB
;

1

VC

)
, (6)

we denote by Cres =
{

(r, v) ∈ R× Rd \ |v| < V |r|
}

. As mentionned before the
main point in the proof of theorem 3.1 is the following :

Theorem 3.2 For all (1,∇xt̃) ∈ Cres the ibvp (4) associated to the change of
variable (1,∇xt̃) satisfies assumptions 2.1-2.2-2.3-2.4.

Remark Lax lemma (see [2] p.29) shows that the ibvp (4) satisfies assumption
2.1 (we use the fact that V ≤ 1

VC
), and (4) also satisfies assumption 2.2 because

the change of variable does not change Ad. Moreover one can easily see that
S(t, x) symmetrizes (4) as well as (1).
So we will only prove that (4) satisfies assumption 2.4.

Proof : Let

Ω =
{

(1,∇xt̃) ∈ Cres \
(
L̃(t̃, x, ∂), B̃(t, x′)

)
is in the WR class

}
we will show by connectedness that Ω = Cres.
• Is it clear that (1, 0) ∈ Ω.
• According to [1], Ω is an open set in Cres.
• So we just have to show that Ω is a closed set in Cres.
Let (1, vn) be a sequence in Ω which tends to (1, v) in Cres. We denote by
Ẽn−(t, x, ζ) (resp. Ẽ∞− (t, x, ζ)) the stable subspace associated with the resolvent

matrix after the change of variable (1, vn) (resp. (1, v)) and by ∆̃n
−(t, x, ζ) and

∆̃∞− (t, x, ζ) the corresponding Lopatinskii determinants.
We have to show that for all (t, x′) ∈ ωT , conditions i)− iii) in the assumption
2.4 are satisfied.
� Proof of i) : We argue by contradiction. Let (t̃, x′, ζ) ∈ ωT × (Ξ \ Ξ0) be a

zero of ∆̃∞− , if ∆̃∞− is not identically zero, then (t̃, x′, ζ) is an isolated zero and

thanks to Rouché’s theorem we know that for n large enough ∆̃n
− admits a zero

close to (t̃, x′, ζ) which is a contradiction because (1, vn) is in Ω.

Let us show that ∆̃∞− (t̃, x′, 1, 0) is not zero.
A simple computation shows that,

Ã(t̃, x′, 1, 0) = A(t, x′, i,∇x′ t̃)− i∂dt̃.
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That is to say that ∆̃∞(t̃, x′, 1, 0) is zero if and only if (t̃, x′, 1,∇x′ t̃) ∈ Υ.
But (1,∇xt̃) ∈ Cres so we have :

|∇x′ t̃| ≤ |∇xt̃| <
1

VB
≤ inf

(t̃,x′,1,η)∈Υ
(|η|).

where we used Euler formula for the homogenous function Θ to state the last
inequality, which contradicts the fact that (t̃, x′, 1,∇x′ t̃) is in Υ.
Since the following points are true for all n will feel free to drop out n in our
notations.
� Proof of ii) :
The proof of ii) is also based on the explicit computation,

Ã(t̃, x, ζ) = A(t, x, iτ, η + τ∇x′ t̃)− iτ∂dt̃ (7)

which shows that H̃ (resp. Υ̃) is the translation of H (resp. Υ) by the vector
τ∇x′ t̃.
So, if Υ ⊂ H̊ it is also the case for Υ̃ and H̃.
� Proof of iii) :
We will prove an equivalent condition iii′) (see [1]) :
iii′) Let (t, x′, ζ) ∈ Υ̃ then ∂τ ∆̃(t, x′, ζ) is not zero.
Using (7) we have the following relation beetween the Lopatinskii’s determinant
∆̃(t, x′, iτ, η) = ∆(t, x′, iτ, η + τ∇x′ t̃), in particular for (t, x′, ζ) ∈ Υ̃,

0 = ∂τ ∆̃(t, x′, ζ) =
[
i∂τ∆ +∇x′ t̃.∇η∆

]
(t, x′, iτ , η + τ∇x′ t̃). (8)

Following [[6], proposition 3.5], one can suppose that

∇η∆(t, x′, iτ , η + τ∇x′ t̃) = i [∂τ∆∇ηΘ] (t, x′, iτ , η + τ∇x′ t̃).

So because ∂τ∆(t, x′, iτ , η + τ∇x′ t̃) is not zero (8) becomes :

∇x′ t̃.∇ηΘ(t, x′, iτ , η + τ∇x′ t̃) = −1, (9)

but the restriction |∇x′ t̃| < 1
VB

makes (9) impossible.

�

We will now work on the adjoint ibvp of (4) : L̃∗(t̃, x, ∂)v = 0 , Cε ∩ ΩT
C̃(t̃, x′)v = 0 , Cε ∩ ΩT ∩ {xd = 0}
v = h , Cε ∩ ΩT ∩ Eθ

(10)

where L̃∗(t̃, x, ∂) = −∂t̃ −
∑d
j=1Aj(t, x)t∂j −

∑d
j=1 ∂jAj(t, x)t, and the normal

matrix Ad is decomposed in the following way

Ad(t, x
′) = C(t, x′)tM(t, x′) +N(t, x′)tB(t, x′) (11)

with M and N in C∞b (ωT ) .
Theorem 1.5 and 4.4 in [[2] p.29 and p137] show that since (4) satisfies assump-
tions 2.1-2.2-2.3-2.4, the same is true for its adjoint ibvp (10). We now give a
result of weak well possedness for ibvps in the class WR.
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Theorem 3.3 [5] If the ibvp (1) with homogeneous initial data satisfies as-
sumptions 2.1-2.2-2.3-2.4 and moreover if for all j, Aj ∈ W 2,∞(ΩT ,MN ),
B ∈W 2,∞(ωT ,Mp×N ), then for all source terms f and g such that f ∈ L2(ΩT ),
∇t,x′f ∈  L2(ΩT ), g ∈ H1(ωT ) and moreover satisfies f|t=0 = g|t=0 = 0, there
exists an unique solution of the ibvp u ∈ L2(ΩT ), u|xd=0 ∈ L2(ωT ) which admits
the following energy estimate :

e−2γt ‖u(t)‖2L2(Rd+) + γ‖u‖2L2
γ(ΩT ) + ‖u|xd=0‖2L2

γ(ωT ) (12)

.
1

γ
‖f‖2L2

γ(ΩT ) +
1

γ3
‖∇t,x′f‖2L2

γ(ΩT ) + ‖g‖2L2
γ(ωT ) +

1

γ2
‖∇g‖2L2

γ(ωT )

Moreover the same result for inhomogeneous initial data is true if we ask that
for all j, Aj ∈ C∞b (ΩT ,MN ), B ∈ C∞b (ωT ,Mp×N ) and that the initial data
h ∈ H2(Rd+) satisfies the compatibility condition B(0, x′)h|xd=0 = g|t=0.

The end of the proof of theorem 3.1 is very similar to the proof of the finite
speed of propagation for the Cauchy problem given in ([2] p.73-79) and ([4]
p.320-324), which is the reason why we will not reproduce here all the details.
Let u be a smooth solution of the ibvp (3) and v the solution of (10) given by
theorem 3.3 for ibvp with non homogeneous initial data. Let Lθ be the lens
between Eθ and {t = 0}, then thanks to Green formula it follows :

0 = −
∫
Lθ∩{t=0}

〈u, v〉dx−
∫
Lθ∩{xd=0}

〈Ad(t, x′, 0)u, v〉dtdx′ (13)

+

∫
Eθ
〈(ν0 +A(t, x, ~n))u, v〉dtdx

where ν = (ν0, ~n) is the outgoing unitary normal of Eθ.
Since u is solution of (3), u|t=0 is zero so the first integral in (13) is also zero.
Moreover using the decomposition (11), the fact that u is solution of (3) and v
is solution of (10) then the second integral in (13) is also zero.
So (13) reads ∫

Eθ
〈(ν0 +A(t, x, ~n))u, v〉dtdx = 0,

and we can conclude as in ([2] p.73-79) using the fact that v|Eθ = h and the
invertibility of (ν0 +A(t, x, ~n)) to show that u|Eθ = 0, and that u = 0 on C
because u is smooth enough.
To complete the proof of theorem 3.1 we have now to deal with the case where
the solution u of (3) is in C([0, T ] ;L2(Rd+)). But, using a smoothing procedure
by a mollifier and theorem 1.2 of [10], we can easily construct a sequence of
continous solutions (un)n∈N such that for n large enough un is a solution of (3)
that is to say that un is zero on C. Moreover the energy estimate (12) shows
that un tends to u in C([0, T ] ;L2(Rd+)).

�
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Thanks to theorem 4.5 in [6] which shows that V −1 is a lower bound of the
speed of propagation in the case where the Aj ’s and B do not depend on (t, x),
we can conclude that the speed V −1 is sharp.
We refer to [6] for an example of ibvp for which the maximal speed of propagation
equals either VC or VB according to the boundary matrix B.
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