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Design of a fixed-order RST controller for interval systems: application to the

control of piezoelectric actuators

Sofiane Khadraoui, Micky Rakotondrabe and Philippe Lutz

ABSTRACT

This paper presents a technique for designing a robust polynomial
RST controller for parametric uncertain systems. The uncertain
parameters are assumed to be bounded by intervals. The computation
of the controller is addressed by introducing the interval arithmetic. The
controller synthesis is formulated as a set inversion problem that can be
solved using the SIVIA algorithm. The proposed method is afterwards
applied to design a robust controller for a piezoelectric microactuator.
The experimental results show the efficiency of the proposed method.
Finally, a fine stability analysis is performed to analytically prove the
robustness of the designed controller.

Key Words:Parametric uncertainty, interval model, robust perfor-
mance, RST controller design, piezoelectric microactuators.

I. Introduction

During the last decade, the problem of
designing robust control laws for parametric
uncertain systems has attracted much attention
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Practical considerations
have motivated the study of control systems with
unknown but bounded parameter uncertainties.
Indeed, these uncertainties are often due to various
factors such as the sensitivity to environmen-
tal conditions (vibrations, evolution of ambient
temperature, etc.), nonlinearities (hysteresis, time
varying parameters, creep, etc.), sensor limitations
and un-modelled dynamics of systems [1, 5, 6].
If not considered, these uncertainties cause the
degradation of the closed-loop performances or
the loss of stability. It is therefore necessary to
take them into account and to incorporate enough
robustness to the controller in order to maintain
the nominal performances.
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The compensation of these parametric uncer-
tainties is often accomplished by means of adaptive
control [9, 10] or by means of robust control
laws such as H2, H∞ and µ-synthesis [12, 13].
The adaptative control methods require a precise
model which is difficult to obtain. Concerning
the robust H2, H∞ and µ-synthesis approaches,
their efficiency is proved in several applications
(Single input single output (SISO) and multiple
input multiple output (MIMO) systems) while
their major disadvantage is the derivation of
high-order controllers which are time consuming
and which limit their embedding possibilities,
particularly for embedded microsystems. One way
to represent parametric uncertainties is to let
each parameter take its value within a range
called interval [3, 4, 14]. In addition to the
natural way and simplicity of using intervals to
bound uncertain parameters, interval arithmetic
presents a symbolic or a numeric certificate of
the results. Thus, using interval arithmetic for
modeling and control design leads to certified
robust stability and performances if a solution
exists. For instance, the stability analysis of a
characteristic polynomial subjected to uncertain
parameters has been discussed in many works
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[3, 15, 16]. It was often based on the Routh’s criteria
and/or on the Kharitonov’s theorem. The work
in [11] presents the stability of uncertain systems
with interval time-varying delay. Reference [17]
discusses an approach to design robust stabilizing
controllers for interval systems in the state-
space representation. A systematic computational
technique to design robust stabilizing controllers for
interval systems using the constrained optimization
problem was proposed in [18]. While the above
works consider robust stability, robustness on
performances for interval systems has also been
discussed in several works [22, 4, 19, 20, 21, 23].
The work in [22] presents an interesting result
on the inclusion of interval system performances.
Reference [19] proposed a prediction-based control
algorithm and its application to a welding process
modelled by intervals. In [20], a state feedback
controller was first considered to ensure the robust
stability, then a pre-filter that guarantees the
required performances was constructed by applying
a curve fitting technique. In [21], an approach

to design a robust proportionalŰintegral-derivative
(PID) controller for interval transfer function was
derived. However the method was limited to 2nd

order uncertain systems. In our previous work
[23], we proposed to extend the method for nth

order uncertain systems but still with zero-order
numerator. However, the order of the derived
controller was not a priori fixed and thus might
not adapt to the hardware for implementation in
embedded microsystems.

In this paper, we propose the interval modeling
of a generalized nth order uncertain parameter
(without restriction on the numeratorŠs order),
and the design of a robust fixedorder controller
to ensure specified performances. The robust
controller considered in this contribution is a
polynomial RST controller. The polynomials R and
S allow creation of a feedback control in order to
be robust to the uncertainties, while the polynomial
T is introduced in the feedforward to improve the
tracking. The computation of these polynomials
is based on the inclusion performances theorem
[22]. The main advantages of the proposed method
relative to existing works are: i) no restriction is
imposed on the system order; ii) and the order
of the controller is a priori fixed, thus low-order
(robust) controllers can be yielded. Furthermore,
the suggested approach in this paper is simple
and involves less computational complexity. The
controller synthesis problem is formulated as a

set-inversion problem defined as the inclusion
parameter by parameter.

The paper is organized as follows. In Section
II, preliminaries related to interval arithmetic
and systems are recalled. Section III is dedicated
to the computation of the controller using the
proposed approach. In Section IV, we apply the
proposed method to model and control piezoelectric
actuators. The experimental results and discussion
are presented in Section V. Finally, to evaluate the
robustness of the implemented controller, a closed-
loop stability analysis is presented in Section VI.

II. Interval analysis preliminaries

2.1. Definition of interval

An interval [x] can be defined by the set of
all real numbers given as follows:

[x] = [x−, x+] =
{

x ∈ R/x− ≤ x ≤ x+
}

(1)

x− and x+ are the left and right endpoints
respectively. [x] is degenerate if x− = x+ .

The width of an interval [x] is given by:

width([x]) = x+ − x− (2)

The midpoint of [x] is given by:

mid([x]) =
x+ + x−

2
(3)

The radius of [x] is defined by:

rad([x]) =
x+ − x−

2
(4)

2.2. Operations on intervals

The result of an operation between two
intervals is an interval that contains all pos-
sible solutions as follows. Given two intervals
[x] = [x−, x+] , [y] = [y−, y+] and ◦ ∈ {+,−, ., /} ,
we can write:

[x] ◦ [y] = {x ◦ y |x ∈ [x], y ∈ [y]} (5)

Therefore, the sum of two intervals [x] + [y]
is given by:

[x] + [y] = [x− + y−, x+ + y+] (6)

the difference of two intervals [x]− [y] is:

[x]− [y] = [x− − y+, x+ − y−] (7)
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the product of two intervals [x].[y] is:

[x] . [y] =
[

min
(

x−y−, x−y+, x+y−, x+y+
)

,

max
(

x−y−, x−y+, x+y−, x+y+
)] (8)

and finally, the quotient [x]/[y] is given by

[x]/[y] = [x].[1/y+, 1/y−], 0 /∈ [y] (9)

The intersection of two intervals [x] ∩ [y] is
defined by:

1- if y+ < x− or x+ < y− the intersection is
empty set:

[x] ∩ [y] = ∅ (10)

2- Otherwise:

[x] ∩ [y] = [max
{

x−, y−
}

,min
{

x+, y+
}

] (11)

In the latter case, the union of [x] and [y] is
also an interval:

[x] ∪ [y] = [min
{

x−, y−
}

,max
{

x+, y+
}

] (12)

When [x] ∩ [y] = ∅, the union of the two
intervals is not an interval. For that, the interval
hull is defined:

[x]∪[y] = [min
{

x−, y−
}

,max
{

x+, y+
}

] (13)

it is verified that: [x] ∪ [y] ⊆ [x]∪[y] for any
two intervals [x] and [y] .

2.3. Interval systems

Definition II.1 Parametric uncertain systems
can be modelled by interval systems.A SISO
interval system that defines a familly of systems is
denoted [G](s, [p], [q]) and is given by:

[G](s, [p], [q]) =

m∑

j=0

[qj ]s
j

n∑

i=0

[pi]si

=







m∑

j=0

pjs
j

n∑

i=0

pisi

∣

∣pi ∈ [p−i , p
+
i ], pj ∈ [p−j , p

+
j ]







(14)

Such as: [q] = [[q0], ..., [qm]] and [p] =
[[p0], ..., [pn]] are boxes of interval numbers.

The following lemma and theorem concern the
performances of two interval systems and are due
to [22]. Consider two interval systems having the
same structure (orders):

[G1] (s) =

m
∑

j=0

[b1j ] s
j

n
∑

i=0

[a1i] si
(15)

and

[G2(s)] =

m
∑

l=0

[b2l] · s
l

n
∑

k=0

[a2k] · sk
(16)

Lemma II.1 (Inclusion of two interval systems)

if







[a1k] ⊆ [a2k] , ∀k = 1 · · ·n
and
[b1l] ⊆ [b2l] , ∀l = 1 · · ·m

⇒ [G1] (s) ⊆ [G2] (s) ;

Theorem II.1 (Performances inclusion theorem)
if [G1] (s) ⊆ [G2] (s) ;

⇒







[g1](t) ⊆ [g2](t) ∀t
{

[ρ] ([G1] (jω)) ⊆ [ρ] ([G2] (jω))
[ϕ] ([G1] (jω)) ⊆ [ϕ] ([G2] (jω))

∀ω

where [gi](t) is the (temporal) impulse response
of system [Gi](s), [ρ] ([Gi] (jω)) is its modulus and
[ϕ] ([Gi] (jω)) is its phase.

Proof II.1 See [22].

Theorem II.1 states that if [G1] (s) is included
in [G2] (s), its temporal response (impulse response,
step response, etc.) will be included in that of
[G2] (s). The same holds for the frequential response
(bode, nyquist, black-nichols). Such inclusion
of responses directly induces the performances
inclusion and can be used to design a robust
controller as we propose in this paper.

III. Problem statement

Consider an interval system [G](s, [a], [b]) to
be controlled by a RST controller (Fig. 1).
The problem consists in finding the different
polynomials R, S and T of the controller that
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ensures some given performances for the closed-loop
[Hcl](s, [a], [b]) (see Fig. 1) whatever the parameters
a and b ranging in [a] and [b] respectively. The main
reason of this choice of the RST controller is that
it is the more general controller structure∗.

cy y

U

 

+-
c

y yε
[R](s)

[G](s,[a],[b])
[S](s)

1
[T](s)

[H  ](s,[a],[b])cl

Fig. 1. Closed-loop transfer [Hcl](s, [a], [b]).

In the sequel, the system [G](s, [a], [b]) will be
denoted by:

[G](s, [a], [b]) =
[N ](s, [b])

[D](s, [a])
(17)

where [N ](s, [b]) and [D](s, [a]) are interval
polynomials defined by:

[N ](s, [b]) = 1 +
m
∑

j=1

[bj ]s
j

[D](s, [a]) =
n
∑

i=0

[ai]s
i

Such as [a] = [[a0], ..., [an]], [b] = [1, [b1], ..., [bm]]
and m ≤ n.

Consider the following performances that we
expect for the closed-loop:

• no overshoot.
• settling time tr5% ∈ [tr−, tr+].
• static error |ε| ≤ η

These specifications can be easily described by
means of an interval model called interval reference
model denoted [H](s):

[H](s) =
[Ke]

1 + [τ ]s
(18)

where [τ ] = [τ−, τ+], [Ke] = [K−

e ,K+
e ].

Settling time and static error of (18)
are defined by [tr5%] = 3.[τ ] and |ε| = |[Ke]− 1|
respectively.

∗The PID controller is a particular case of the RST
controller when R(s) = T (s).

Based on Theorem II.1, the following problem
is therefore addressed.

Problem III.1 Given an interval system [G](s)
and an interval reference model [H](s) that defines
some given performances, find a controller [C](s)
such that [Hcl](s) ⊆ [H](s). In other words, the
problem consists in finding a set of controllers
C(s), gathered in an interval [C](s), such that the
performances of the closed-loop [Hcl](s) are included
in the specified performances.

3.1. Computation of the closed-loop model

[Hcl](s)

Let us define fixed-order RST structure with a
fixed and low degree for each interval polynomials
[R], [S] and [T ]. Polynomials with first-degree are
chosen:

[R](s) = [r1]s+ [r0]
[S](s) = [s1]s+ [s0]
[T ](s) = [t1]s+ 1

(19)

Remark III.1 If further we cannot find a con-
troller [C](s) that satisfies Problem III.1, the degree
of one or more of the polynomials [R], [S] and
[T ] can be increased and the controller synthesis is
performed again.

Let us define the box of the controller
parameters [θ] = [[t1], [r1], [r0], [s1], [s0]].

From Fig. 1, and from the interval system (17)
and the controller RST (19), the interval closed-
loop transfer [Hcl](s, [a], [b], [θ]) is given by:

[Hcl](s, [a], [b], [θ]) =
[T ](s)

[S](s)
[G](s,[a],[b]) + [R](s)

(20)

(20) can be rewritten as follows:

[Hcl](s, [a], [b], [θ]) =
[T ](s).[N ](s, [b])

[S](s).[D](s, [a]) + [R](s).[N ](s, [b])
(21)

After replacing the different polynomials,
we obtain the interval closed-loop transfer
[Hcl](s, [a], [b], [θ]):

[Hcl] (s, [a], [b], [θ]) =

([t1]s+1)(1+
m∑

j=1

[bj ]s
j)

([s1]s+[s0])
n∑

i=0

[ai]si+([r1]s+[r0])(1+
m∑

j=1

[bj ]sj)

(22)
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After developing (22), we obtain:

[Hcl](s, [p], [q]) =

1 +
e
∑

j=1

[qj ]s
j

r
∑

i=0

[pi]si
(23)

Where e = m+ 1 and r = n+ 1. The boxes of
interval parameters [p] and [q] are function of the
boxes [a], [b] and [θ].

3.2. Controller derivation

The main objective consists to find the set Θ
of the controller parameters vector for which robust
performances hold:

Θ := {θ ∈ [θ]|[Hcl](s, [p], [q]) ⊆ [H](s)} (24)

This computation of Θ is feasible if and only if
[Hcl](s, [p], [q]) has the same structure than [H](s),
i.e. their numerators have the same degree and the
same holds for their denominators. As the structure
of [Hcl](s, [p], [q]) is a priori fixed, we should adjust
the structure of [H](s) to satisfy such condition if
it was not yet the case. For that, first let us have
a look on the structure of [Hcl](s, [p], [q]) as in (23).
The degree of the numerator is (m+ 1) while it is
(n+ 1) for the denominator. Let us now adjust the
structure of [H](s) (see (18)) in order to have the
same structure by adding some zeros and poles far
away from the imaginary axe. Therefore, we use as
reference model:

[H](s) =
(1 + [τ ]

κ
s)m+1

1
[Ke]

.(1 + [τ ]s)(1 + [τ ]
κ
s)n

(25)

With κ ≫ 1.

After developping (25), we have:

[H](s, [w], [x]) =

1 +
m+1
∑

j=1

[xj ]s
j

n+1
∑

i=0

[wi]si
(26)

Where [xj ] and [wi] (for j = 1, ...,m+ 1 and i =
0, ..., n+ 1) are functions of the interval parameters
[Ke], [τ ] and the real number κ.

3.3. Inclusion condition

The research of parameter Θ in (24) of the
controller is done by using the inclusion [Hcl](s) ⊆
[H](s) (see Problem III.1). However, according
to Lemma II.1, such inclusion can be satisfied
by considering the inclusion of each parameter
of [Hcl](s) inside that of [H](s). Thus, by using
(23) and (26), the problem becomes the research
of the controller parameters under the following
constraint:

[qj ] ⊆ [xj ], ∀j = 1, ...,m+ 1
[pi] ⊆ [wi], ∀i = 0, ..., n+ 1

(27)

and therefore, the computation problem in (24)
of the set parameters Θ is reduced to the following
problem:

Θ :=

{

θ ∈ [θ]

∣

∣

∣

∣

[qj ]([θ]) ⊆ [xj ], ∀j = 1, ...,m+ 1
[pi]([θ]) ⊆ [wi], ∀i = 0, ..., n+ 1

}

(28)
This problem is known as a Set-Inversion

Problem which can be solved using interval
techniques [3, 14]. The set inversion operation
consists to compute the reciprocal image of a
compact set called subpaving. The set-inversion
algorithm SIVIA (more details are given in [3, 24])
allows to approximate with subpavings the set
solution Θ described in (28). This approximation
is realized with an inner and outer subpavings,
respectively Θ and Θ, such that Θ ⊆ Θ ⊆ Θ.
The subpaving Θ corresponds to the controller
parameter vector for which the problem (28) holds.
If Θ = ∅, then it is guaranteed that no solution
exists for (28).

We give in Fig. 2 a flow chart that describes
the recursive SIVIA algorithm allowing to solve
the problem (28) with guaranteed solutions. SIVIA
algorithm requires a search box [θ0] (possibly very
large) called initial box to which Θ is guaranteed
to belong. The inner and outer subpavings (Θ and
Θ) are initially empty.

Remark III.2 In the most cases, we are interested
to compute an inner subpaving Θ for which we
are sure that Θ is included in the set solution Θ,
i.e. Θ ⊆ Θ, but when no inner subpaving exists i.e.
Θ = ∅, it is possible to choose parameters inside the
outer subpaving, i.e. choose θ ∈ Θ.
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[p]([θ])    [w]=

U φ
[q]([θ])    [x]=

U φV

[p]([θ])    [w]

U

[q]([θ])    [x]

V

U

Θ = ΘU[θ]

Θ = ΘU[θ]

Θ = ΘΘ = Θ

width([θ]) <ε

Θ = ΘU[θ]

Θ = Θ

Compute          , 

Θ = ΘΘ = Θ and 

[p]([θ]) [q]([θ])

bisect      into

        and

[θ]
[θ ] [θ ]1 2

Θ = Θ = and 

[θ]=[θ ], [x], [w]

φ φ
0

Start

True

False

True

False

True

False

True

False
Θ = φ

The user must change

      and/or the order of 

the polynomials R,S,T

[θ ]0

Θ = ΘΘ = Θ

End

Apply the algorithm on and[θ ] [θ ]1 2

Fig. 2. Algorithm SIVIA used to solve the set-inversion
problem (28) [3, 24].

IV. Application to piezocantilevers

In this section, we apply the proposed
method to control the deflection of piezoelectric
actuators used in microgrippers. These micro-
grippers are widely used in micromanipulation
and microassembly tasks where the required
performances are sever (submicrometric accuracy,
tens of milliseconds of settling time, no overshoot,
etc.) [25]. More precisely, a microgripper is
based on two piezoelectric cantilevers also called
microactuators or piezocantilever [26, 27]. While
one piezocantilever is controlled on position
(deflection), the second one is controlled on force.
This allows to precisely position a manipulated
small object by controlling at the same time the
handling force. In this work, we focus our study
to the control of the position. The piezocantilever
used during the experiments is a unimorph
piezocantilever with rectangular cross-section. Such

cantilever is made up of one piezoelectric layer and
one passive layer. When a voltage U is applied to
the piezolayer, it contracts/expands accordingly to
the direction of the applied electric field. As the
piezolayer and the passive layer are glued, a global
deflection y of the structure is yielded (Fig. 3).

Due to their small sizes, piezocantilevers are
very sensitive to environment (thermal variation,
vibration, surrounding surface forces, etc.) and
to the manipulated objects. This high sensitivity
leads to a change of their behavior during
the tasks (manipulation, etc.). Unfortunately, the
change of the environment is hardly known and
hardly modelisable at the micro/nano-scale making
impossible the use of a kind of real-time adaptive
control law. Beyond, this difficulty is confirmed
by the lack of convenient sensors that can be
used to measure the environment variation at
this scale. This is why it is more attractive to
employ more simplified models and to synthesize
robust control laws for piezocantilevers. Classical
H∞ robust control laws have successfully been
used in our previous works [28], however the
orders of the derived controllers were high and
may not be convenient for embedded microsystems
such as embedded microgrippers. Controllers that
account eventual nonlinearities were also used
but they required the use of precise models
of these nonlinearities [29, 30] which finally
make complex the controller implementation. The
technique presented in this paper is thus used.
Its advantages are 1) the ease of modeling the
parametric uncertainties by just bounding them
with intervals, 2) and the derivation of a low order
controller since its structure is a priori fixed.

Usupport

passive layer

piezolayer
δ

Fig. 3. Principle of a unimorph piezocantilever.

An interval model can be buit using two
models with scalar parameters. These two point
models represents the bounds of the interval
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model. In our case, it is impossible to characterize
the model variation of a given piezocantilever
during its functioning. To derive an interval
model [G](s, [a], [b]) for piezocantilevers, we use the
following procedure :

We have a stock of piezocantilevers with
approximately the same dimensions. However, it
has been shown that the dynamical model repre-
senting the deflection behavior of piezocantilevers
respect to the voltage input depends on their
dimensional characteristics. Indeed, even if these
piezocantilevers have the same global dimensions,
there are always small differences of some microns
due to the imprecision of the microfabrication
process. These small differences yield non-negligible
differences on their behaviors and therefore on
their models parameters. For that, let us taken
any two piezocantilevers of the set of our stock.
The two models of the chosen piezocantilevers will
be used to derive the interval model [G](s, [a], [b]).
In order to include the most of the remaining
piezocantilevers models, the interval parameters
of [G](s, [a], [b]) must be expanded. Then, the
resulting interval model is used to compute a
controller ensuring performances for not only the
two used piezocantilevers but for a large set of
piezocantilevers.

4.1. Presentation of the setup

Fig. 4 presents the experimental setup. It is
composed of:

• two unimorph piezocantilevers. Each piezo-
cantilever is based on a PZT (lead zirconate
titanate) for the piezolayer and on copper
for the passive layer. The dimensions
of the cantilevers are approximately L×
b× h = 15mm× 2mm× 0.3mm, where the
thicknesses are 0.2mm and 0.1mm for the
PZT and for the Copper respectively,

• an optical sensor (Keyence LC-242) used to
measure the deflection of the piezocantilevers.
The sensor has 10nm of resolution,

• a computer-DSpace hardware combined with
the Matlab-Simulink software for the imple-
mentation of the controller and for data
acquisition,

• and a high voltage (HV: ±200V ) amplifier
used to amplify the input voltage from the
computer-DSpace material.

a
m

p
lif

ie
r

  
  

 H
V

p
ie

zo
e

le
ct

ri
c

ca
n

til
e

ve
r

(a)

(b)

 

o
p

tic
a

l 

se
n

so
r

piezoelectric

cantilevers

optical 

sensor

Fig. 4. The experimental setup: piezocantilever controlled
through computer DSpace material.

4.2. Modeling of the two piezocantilevers

The linear relation between the deflection at
the tip of the piezocantilever and the applied input
voltage U is:

δ = G(s)U (29)

To identify the two models G1(s) and G2(s)
corresponding to the two piezocantilevers, a step
response is used. A second order was chosen for
the model of each piezocantilever because of its
sufficiency to account the first resonance and its
simplicity (relatively low order). The identification
of the two models G1(s) and G2(s) was afterwards
performed using output error method and the
matlab software. We obtain:

G1(s) =
8.08× 10−8s2 + 1.809× 10−4s+ 1

8.753× 10−8s2 + 5.234× 10−6s+ 1.283

G2(s) =
6.992× 10−8s2 + 1.807× 10−4s+ 1

9.844× 10−8s2 + 5.37× 10−6s+ 1.448
(30)

4.3. Derivation of the interval model

Let us rewrite each model Gi(s) (i = 1, 2) as
follows:

Gi(s) =
b2is

2 + b1is+ 1

a2is2 + a1is+ a0i
(31)
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The interval model [G](s, [a], [b]) which repre-
sents a family of piezocantilever models is derived
using the two point models Gi(s). Considering
each parameter of G1(s) and the corresponding
parameter in G2(s) as an endpoint of the interval
parameter in [G](s, [a], [b]), we have:

[G](s, [a], [b]) =
[b2]s

2 + [b1]s+ 1

[a2]s2 + [a1]s+ [a0]
(32)

such as:

[b2] = [min(b21, b22),max(b21, b22)]
[b1] = [min(b11, b12),max(b11, b12)]
[a2] = [min(a21, a22),max(a21, a22)]
[a1] = [min(a11, a12),max(a11, a12)]
[a0] = [min(a01, a02),max(a01, a02)]

After computation, we obtain:

[b2] = [6.992, 8.08]× 10−8

[b1] = [1.807, 1.809]× 10−4

[a2] = [8.753, 9.844]× 10−8

[a1] = [5.234, 5.37]× 10−6

[a0] = [1.283, 1.448]

In order to increase the stability margin
of the closed-loop system and to include other
piezocantilever models, we propose to extend the
interval parameters of model (32). However, if the
widths of these interval parameters are too large,
it is difficult to find a controller that respects both
the stability and performances of the closed-loop.
After some trials of controller design, we choose to
expand the width of each interval parameter of (32)
by 10%. It represents a good compromise between
the extension of the width and the possibility to find
a robust controller. So, the extended parameters of
the interval model which will be used to compute
the controller are:

[b2] = [6.937, 8.134]× 10−8

[b1] = [1.8067, 1.809]× 10−4

[a2] = [8.698, 9.898]× 10−8

[a1] = [5.227, 5.376]× 10−6

[a0] = [1.274, 1.456]

(33)

4.4. Definition of the time specifications

Micromanipulation tasks generally require a
submicrometric accuracy and high repeatability.
Furthermore, the behavior of piezocantilevers
used in microassembly and micromanipulation is

often desired to be without overshoot to ensure
better quality tasks and to avoid destroying the
manipulated micro-object or conversely to avoid
the destruction of the actuators themselves. For all
that, we consider the following specifications that
correspond to the requirement in micropositioning
tasks for microassembly and micromanipulation
that use piezoelectric microgrippers:

• behavior without or with small overshoot,
• settling time tr5% < 30ms,
• static error allowed |ε| ≤ 1%.

4.5. Computation of the closed-loop

transfer

From the model [G](s, [a], [b]) in (32) and from
the RST controller in (19) to be designed, we derive
the closed-loop [Hcl](s, [a], [b], [θ]):

[Hcl] (s, [a], [b], [θ]) =
([t1]s+ 1)([b2]s

2 + [b1]s+ 1)

([s1]s+ [s0])([a2]s2 + [a1]s+ 1) + ([r1]s+ [r0])([b2]s2 + [b1]s+ 1)
(34)

After developing (34), the closed-loop can be
written as follows:

[Hcl](s, [p], [q]) =
[q3]s

3 + [q2]s
2 + [q1]s+ 1

[p3]s3 + [p2]s2 + [p1]s+ [p0]
(35)

Where the boxes [q], [p] depend on the boxes
[a] and [b] of the interval model and on the
interval parameters [θ] = [[t1], [r0], [r1], [s1], [s0]] of
the controller as follows:

[q3] = [t1][b2]

[q2] = [t1][b1] + [b2]

[q1] = [t1] + [b1]

[p3] = [s1][a2] + [r1][b2]

[p2] = [s1][a1] + [s0][a2] + [r1][b1] + [r0][b2]

[p1] = [s1][a0] + [s0][a1] + [r0][b1] + [r1]

[p0] = [s0][a0] + [r0]

(36)

4.6. Computation of the interval reference

model

Specifications that define the desired behavior
of the closed-loop can be easily described by means
of an interval reference model. According to the
required specifications given in Section 4.4 and
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according to the structure of the closed-loop (35),
the interval reference model (derived from (25))
must have n = m = 2. Thus:

[H](s) =
(1 + [τ ]

κ
s)3

1
[Ke]

.(1 + [τ ]s)(1 + [τ ]
κ
s)2

(37)

Such as [τ ] = [0, 10ms], [Ke] = [0.99, 1.01] and
κ = 10.

After developping (37), we obtain:

[H](s) =
[x3]s

3 + [x2]s
2 + [x1]s+ 1

[w3]s3 + [w2]s2 + [w1]s+ [w0]
(38)

Where the boxes [x] and [w] are function of the
box [[Ke], [τ ], [κ]] as follows:

[x3] =
τ3

κ3

[x2] =
3τ2

κ2

[x1] =
3τ

κ

[w3] =
τ3

κ2Ke

[w2] =
(1 + 2κ)τ2

κ2Ke

[w1] =
(κ+ 2)τ

κKe

[w0] =
1

Ke

(39)

4.7. Derivation of the controller

The derivation of the controller consists to
find the set (or subset) of the interval parameters
[θ] = [[t1], [r0], [r1], [s1], [s0]] for which specifications
hold, i.e. find [Θ] such as:

Θ :=

{

θ ∈ [θ]

∣

∣

∣

∣

[qj ]([θ]) ⊆ [xj ], ∀j = 1, ..., 3
[pi]([θ]) ⊆ [wi], ∀i = 0, ..., 3

}

(40)
where [[pi], [qj ]] and [[wi], [xj ]] (for i = 0...3 and

j = 1...3) are defined in (36) and (39) respectively.

Remark IV.1 The number of unknown parame-
ters (see (19)) are 5 while the number of inclusions
(40) is 7. Therefore, there are more inclusions
than unknown variables. So, the set solution Θ is
given by the intersection of the set solution of each
inclusion in (40) as follows:

Θ =
7
⋂

i=1

(set sol)i

such as: (set sol)i is the set solution of the ith

inclusion.

SIVIA algorithm is applied to solve the
problem (40) and to characterize the set solution
Θ. However, the computation time increases
exponentially with the number of the parameters
making difficult to solve such problem with
multiple parameters. Since our objective is not to
compute all possible controllers RST that ensure
specifications, but to find a set (or subset) of
controllers RST satisfying desired behaviors of the
closed-loop (see Section 4.4). For that, we choose
to solve the problem (40) not through SIVIA
alone but also through some hand-tuning prior the
algorithmic solution of SIVIA. The procedure of
hand-tuning consists to adjuste some parameters
(fixed as a scalar or as an interval), then to compute
the set solution of the remaining parameters thanks
to SIVIA.

The three first inclusions [qj ] ⊆ [xj ] for j = 1...3
depend only of the parameter [t1], so they can
be solved independently. These inclusions represent
nonlinear system equations with one parameter
which can be solved using SIVIA algorithm. After
Application of SIVIA, we obtain the following
solution:

[t1] = [0, 2.81× 10−3] (41)

Now, it remains to solve the second part of
the inclusions (40), i.e. the inclusions [pi] ⊆ [wi]
for i = 0, ..., 3. In order to cancel the static error,
i.e. [p0] = p0 = 1, the parameters [s0] and [r0] are
manually adjusted as follows:

{

[s0] = s0 = 0

[r0] = r0 = 1
(42)

which confirms that the last inclusion [p0] ⊆
[w0] is respected.

Finally, we have to solve the following problem
with two parameters [s1] and [r1]:

[s1][a2] + [r1][b2] ⊆
τ3

κ2Ke

[s1][a1] + [r1][b1] + [b2] ⊆
1 + 2κ

κ2

τ2

Ke

[s1][a0] + [b1] + [r1] ⊆
κ+ 2

κ

τ

Ke

(43)
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To characterize the set solution Ss1r1 of
the parameters [s1] and [r1], we apply SIVIA
algorithm for the second time to the problem of
linear system equations (43). We choose an initial
box [s10]× [r10] = [0.01× 10−3, 10× 10−3]× [0.01×
10−3, 10× 10−3] and accuracy of ǫ = 0.1× 10−3.
The obtained subpaving is given in Fig. 5.

The area in blue corresponds to the inner
subpaving Ss1r1

i.e. the set solution [s1]× [r1] of
the linear system equations (43). The area in
white correponds to the outer subpaving Ss1r1 , it
contains the boxes for which no decision on the
test of inclusion in (43) can be taken. Ss1r1 can be
minimized by increasing the computation accuracy.
The boxes in red correspond to the parameters [s1]
and [r1] for which the inclusions (43) do not hold,
i.e. the intersection between the left and right terms
of (43) is empty. A controller with the parameters
t1 ∈ [0, 2.8× 10−3], s0 = 0, r0 = 1 and any choice of
s1, r1 in the blue colored area Ss1r1

satisfies the
required performances specified in Section 4.4 for
the interval system (uncertain system) [G](s, [a], [b])
with parameters given in (33).

Note that the set Ss1r1
does not represent

the set of all possible controllers that satisfy
the required performances but a subset of these
controllers. Therefore, any change in the values of
the parameters [s0] and [r0] leads to a change in
the subset Ss1r1

. Thus, a choice of the parameters
s1 and r1 inside the red area (non-solution set) may
satisfy the desired performances because this non-
solution set corresponds to the parameters s1 and
r1 for which the conditions (43) do not hold.

The searched inner subpaving Θ is defined as
follows:

Θ :=

{

θ ∈ [θ]|t1 ∈ [0, 2.8× 10−3],

r1 = 1, s0 = 0, {s1, r1} ∈ S
−

s1r1

}

(44)

For the implementation, we choose the
following polynomials for the RST controller:

R(s) = 0.5× 10−3s+ 1

S(s) = 5× 10−3s

T (s) = 1× 10−5s+ 1

(45)

s1

r 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Ss r1  1

Ss r
1 1

non-solution set

x10
-3

x10
-3

Fig. 5. Resulting subpaving [s1]× [r1]

V. Controller implementation and

experimental results

5.1. Controller implementation

This part consists to apply the RST controller
(45) to control the deflection of the piezocantilevers.
For that, the closed-loop control structure in Fig. 1
is transformed as in Fig. 6 to have a causal
controller:

U

 

+- [G](s,[a],[b])
S(s)cy y
R(s)εT(s)

R(s) d
y

Fig. 6. Loop control with RST.

5.2. Experimental result

Fig. 7 presents the experimental results when
a step reference input yc = 20µm is applied. As
shown on Fig. 7, the computed controller has played
its role. Indeed the experimental behavior of the
closed-loop (tested on the two piezocantilevers)
is without overshoot, with settling times tr1 =
19.5ms ≤ 30ms, tr2 = 21.5ms ≤ 30ms respectively
for the piezocantilevers 1 and 2 and finally the static
errors remain bounded by the specified interval.
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Fig. 7. Step responses envelope compared with the experimen-
tal results.

VI. Closed-loop stability analysis

In this section, we present a robust stability
result of the closed-loop systems with the designed
RST controller (Fig. 6). This analysis stability is
done analytically and graphically. As the computed

transfer T (s)
R(s) is stable, the check the robust stability

of the looped interval system with the implemented
RST controller can be reduced to the check of the
stability of the the interval transfert that relates
the output y to the input signal yd.

The stability analysis of an interval system is
based on the roots of the so-called characteristic
polynomial. This polynomial corresponds to the
denominator of the interval closed-loop system. The
interval closed-loop system is stable if and only if
all the roots of the characteristic polynomial are in
the left part C− of the complex plane, i.e. thay have
strictly negative parts.

The characteristic polynomial of the transfert
from the input signal yd to the output y is defined
as follows :

[P ](s) = [p3]s
3 + [p2]s

2 + [p1]s+ 1 (46)

Such as: [p3] = [a2]s1 + [b2]r1, [p2] = [b2] +
[a1]s1 + r1[b1], [p1] = [b1] + r1 + [a0]s1.

r1 = 0.5× 10−3 and s1 = 5× 10−3 are the
parameters of the implemented polynomials R(s)
and S(s) (45).

According to the Routh’s criterion, all the
roots of the interval polynomial [P ](s) are in the

left part C− if and only if the following conditions
are satisfied:

[p3] > 0
[p2] > 0

[p1] > 0

[p2][p1]− [p3] > 0

(47)

After computation, we obtain:

[p3] = [4.696, 5.355]× 10−10 > 0
[p2] = [1.597, 1.7418]× 10−7 > 0

[p1] = [7.054, 7.962]× 10−3 > 0

[p2][p1]− [p3] = [5.951, 8.981]× 10−10 > 0

(48)

As all the terms in (48) are strictly positive, the
implemented controller ensure the robust stability
whatever a given system G including in the interval
system [G](s, [a], [b]), i.e. ∀G ∈ [G](s, [a], [b]).

It is also possible to study the δ-stability of
our feedback interval systems. The check of the δ-
stability can be defined by the check of the usual
stability but instead of the Laplace variable s, we
use s− δ (δ > 0). The interval polynomial [P ](s)
is δ-stability if and only if all its roots are in the
part Γδ of complex plane located on the left of
the vertical line Re(s) = −δ. For that, we compute
the maximal δ for which the implemented RST
controller ensures the δ-stability for the interval
system [G](s, [a], [b]). We can rewrite [P ](s− δ) as
follows:

[P ](s− δ) = α3s
3 + α2s

2 + α1s+ α0 (49)

where:
α3 = [p3], α2 = [p2]− 3δ[p3], α1 = [p1]−

2δ[p2]− 3δ2[p3] and α0 = 1− δ[p1] + δ2[p2] +
3δ3[p3].

The polynomial [P ](s− δ) is stable if and only
if:

[α3] > 0
[α2] > 0

[α1] > 0

[α2][α1]− [α3][α0] > 0

(50)

The resolution of this nonlinear inequalities
problem leads to the admissible values of δ that
satisfy the inequalities (50). After computation, we
obtain the set interval of the parameter δ:
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δ = [0, 30.493] (51)

Finally, we can conclude that the implemented
RST controller ensures the δ-stability for the
interval system whatever δ less than 30.493.

In order to assess the stability margins, we
study the Black-Nichols diagram of the open-loop
system [L](s) (Fig. 6) defined by:

[L](s) =
R(s)

S(s)
[G](s, [a], [b]) (52)

Indeed, a stability margin is a quantity that
characterizes the distance of the curve of Black-
Nichols from the critical point (−180, 0dB). The
stability margins analysis allows to study the
robustness of an enslavement or of a controller.
This analysis is based on two parameters: gain and
phase margins which are measures of stability for a
feedback system.

Fig. 8 presents the Black-Nichols diagram
of the open-loop system [L](s) and that of the
controlled system [G](s, [a], [b]).

−100 −80 −60 −40 −20 0 20 40 60 80 100
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in

[L](s)

[G](s,[a],[b])
w

w

Fig. 8. Black-Nichols diagrams of the open-loop system [L](s)
and the interval system [G](s, [a], [b]).

As seen on the figure, the obtained phase and
gain margins with the implemented RST controller
are Mϕ ≈ 95 (at a pulsation about 150Hz) and
MG = ∞ respectively. The obtained results on
the stability analysis in this section prove the
robustness of the RST controller and the efficiency
of the proposed method to design robust controller.

VII. Conclusion

In this paper, a method to design robust
controllers for systems with uncertain parameters
has been proposed. While the uncertain param-
eters are described by intervals, the controller
structure is given a priori (a fixed-order RST
controller). The main advantages of the proposed
approach are therefore the natural way to
model the uncertainties and the derivation of
a low order controller. Starting from specified
performances, the calculation of the controller
parameters is formulated as a set-inversion problem
that can be solved using existing algorithm.
Experimental tests of the proposed method
were carried out on piezoelectric actuators.
The experimental results showed its efficiency.
A stability analysis of the closed-loop system
confirms the robustness of the computed controller.
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