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We study the growth of bipartite networks in which the number of nodes in one of the partitions is kept fixed while the other partition is allowed to grow. We study random and preferential attachment as well as combination of both. We derive the exact analytical expression for the degree-distribution of all these different types of attachments while assuming that edges are incorporated sequentially, i.e., a single edge is added to the growing network in a time step. We also provide an approximate expression for the case when more than one edge are added in a time step. We show that depending on the relative weight between random and preferential attachment, the degree-distribution of this type of network falls into one of four possible regimes which range from a binomial distribution for pure random attachment to an u-shaped distribution for dominant preferential attachment.

A bipartite network is a graph which connects two distinct sets (or partitions) of nodes, which we will refer to as the top and the bottom set. An edge in the network runs between a pair of a top and a bottom node but never between a pair of top or a pair of bottom nodes (see Fig. 1). Typical examples of this type of networks include collaboration networks such as the movie-actor [1][2][3][4][5][START_REF] Amaral | Proc. Natl. Acad. Sci[END_REF], articleauthor [START_REF] Newman | [END_REF][8][9][10][11], and board-director [12,13] network. In the movie-actor network, for instance, the movies and actors are the elements of the top and the bottom set respectively, and an edge between an actor a and a movie m indicates that a has acted in m. The actors a and a ′ are collaborators if both have participated in the same movie, i.e., if both are connected to the same node m ′ . The concept of collaboration can be extended to include so diverse phenomena represented by bipartite networks as the citypeople network [14], in which an edge between a person and a city indicates that the person has visited that particular city, the word-sentence [15,16], bank-company [17] or donor-acceptor network, which accounts for injection and merging of magnetic field lines [18].

Several models have been proposed to synthesize the structure of bipartite networks when both partitions grow unboundedly over time [1][2][3][4]16]. It has been found that for such growth models when each incoming top node con-nects through preferential attachment to bottom nodes the emergent degree distribution of bottom nodes follows a power-law [1]. Another important property of bipartite networks is that the clustering coefficient cannot be measured in the standard way [2], and has to be measured as a cycle of four connections [19].

On the other hand, bipartite networks, where one of the partitions remains fixed over time (i.e., the number of bottom nodes are constant), have received comparatively much less attention. Recently it was shown through numerical simulations that restrictions in the growth rate of the partitions can lead to non-scaling degree distribution highly sensitive to the parameters of the growth model [20]. However, there is still no systematic and analytical study of this kind of networks. Realizations of this type of bipartite networks include numerous relevant systems such as the interaction between the codons and genes as well as amino acids and proteins in biology and elements and compounds in chemistry. We can also include in this group those networks in which one partition can be considered to be in a pseudo-steady state while the other one keeps on growing at a much faster rate. For instance, it is reasonable to assume that for the city-people network [14], the city growth rate is zero compared with the population growth rate. Other examples of this type of networks could be the phoneme-language [START_REF] Choudhury | Proceedings of COLING-ACL[END_REF][START_REF] Mukherjee | [END_REF], in linguistics, or train-station [START_REF] Sen | [END_REF]24] in logistics.

In this work, we study the growth of bipartite networks in which the number of nodes in one of the partitions is kept fixed. We explore random and preferential attachment as well as a combination of both. We obtain an exact analytical expression for the degree distribution of the bottom nodes assuming that the attachment is sequential, i.e., a single edge is added to the network in one time step. We also present an approximate solution for the case of parallel attachment, i.e., when more than one edge are incorporated into the network in a given time step. We show that, depending on the relative weight of random to preferential attachment, the degree-distribution of this type of network falls into one of four possible regimes which range from a binomial distribution for pure random attachment to an u-shaped distribution for dominant preferential attachment. For combinations of random and preferential attachment the degree-distribution asymptotically tends to beta-distribution with time.

The growth model. -We consider the case in which the top partition grows with time while the number of nodes in the bottom partition N is kept constant. We grow the network in the following way. At each time step a new node is incorporated to the top set. Then, µ edges are connected from the new node to the nodes in the bottom set (see Fig. 1). The probability of attaching a new edge to the bottom node i is A(k t i ), where k t i refers to the degree of the bottom node i at time t. We refer to A(k t i ) as the attachment kernel and define it as:

A(k t i ) = γk t i + 1 N j=1 (γk t j + 1) (1) 
where the sum in the denominator runs over all bottom nodes, and γ is a model parameter which controls the relative weight of random to preferential attachment. γ can be thought of as γ = 1/α, where α is a positive constant known in previous models as initial attractiveness [START_REF] Dorogovtsev | Evolution of Networks: From Biological Nets to the Internet and WWW[END_REF].

There is a subtlety related to the attachment kernel and µ that is worth to mention. The stochastic process can be performed in such a way that the attachment of the µ incoming nodes is done sequentially, i.e., one edge is attached per time step. This implies that the denominator of A(k t i ) has to be updated for each incoming node (and hence an edge), and that t refers to the event of incorporating a new edge to the bottom set. Alternatively, the attachment of the µ new edges can be done in parallel. This implies that the new µ edges have all the same probability of attaching to bottom node i. In this case, t refers to the event of incorporating a new node to the top set.

There are two significant limits to consider: γ = 0 and γ -→ ∞. For γ = 0, Eq. ( 1) reduces to A(k t i ) = 1/N , which implies that all bottom nodes have the same probability of being selected by an incoming edge. This limit corresponds to pure random attachment. For γ -→ ∞ Eq. ( 1) reduces to A(

k t i ) = k t i / N j=1 (k t j )
, which means that higher degree bottom nodes have higher probability of being selected. This case corresponds to pure preferential attachment.

Stochastic simulations have been performed with the initial condition where all bottom nodes at time t = 0 have zero degree, i.e., initially no edges are connected to the bottom nodes.

Evolution equation for sequential attachment. -Now we aim to derive an evolution equation for the degree distribution of the bottom nodes. We focus on sequential attachment. Let p k,t be the probability of finding a randomly chosen bottom node with degree k at time t. We recall that t refers to the t-edge attachment event. p k,t can be defined as p k,t = n k,t /N , where n k,t refers to the number of nodes in the bottom set with degree k at time t, and ... denotes ensemble average, i.e. average over realizations of the stochastic process described above. We express the evolution of p k,t in the following way:

p k,t+1 = (1 -A(k, t))p k,t + A(k -1, t)p k-1,t (2) 
where A(k, t) refers to the probability that the incoming edge lands on a bottom node of degree k. A(k, t) can be easily derived from Eq. ( 1) and takes the form:

A(k, t) = γk + 1 γt + N (3) 
The reasoning behind Eq. ( 2) is the following. The probability of finding a bottom node with degree k at time t + 1 decreases due to the number of nodes, which have a degree k at time t and receive an edge at time t + 1 therefore acquiring degree k + 1, i.e., A(k, t)p k,t . Similarly, this probability increases due to the number of nodes that at time t have degree k -1 and receives an edge at time t + 1 to have a degree k, i.e., A(k -1, t)p k-1,t . Hence the net increase in the probability can be expressed as in Eq. ( 2).

According to what was done in the stochastic simulations, we assume that at time t = 0 all bottom nodes have zero degree, which implies the initial condition p k,t=0 = δ k,0 , where δ k,0 is the Kronecker delta function.

Exact solution for sequential attachment. -We look for the exact analytical solution of sequential attachment. For this purpose we express Eq. (2) as:

p t+1 = M t p t = t τ =0 M τ p 0 ( 4 
)
where p t denotes the degree distribution at time t and is defined as p t = [p 0,t p 1,t p 2,t . . .] T , p 0 is the initial condition expressed as p 0 = [1 0 0 . . .] T , and M τ is the evolution matrix at time τ which is defined as:

M τ =      1 -A(0, τ ) 0 0 0 . . . A(0, τ ) 1 -A(1, τ ) 0 0 . . . 0 A(1, τ ) 1 -A(2, τ ) 0 . . . . . . . . . . . . . . . . . .     
(5) Since our initial condition is a vector with zeros in all position except in the first one, all the relevant information, i.e., the degree distribution of the bottom nodes, is in the first column of t τ =0 M τ . A close inspection to the evolution of this column, explicitly using Eq. ( 3), reveals that the k-th element of it, which corresponds to p k,t , can be expressed as:

p k,t = t k k-1 i=0 (γi + 1) t-1-k j=0 (N -1 + γj) t-1 m=0 (γm + N ) (6) 
for k ≤ t, and p k,t = 0 for k > t, and where we have defined -1 i=0 (...) = 1, and

t k refers to the combina- torial number t!/[(t -k)!k!].
Eq. ( 6) is the exact solution of Eq. ( 2) using as initial condition p k,t=0 = δ k,0 , i.e., the analytical expression of the degree distribution of the bottom nodes when sequential attachment is applied.

In the limit of γ = 0 Eq. ( 6) reduces to:

p k,t = t k 1 N k 1 - 1 N t-k (7) 
for k ≤ t, and p k,t = 0 for k > t. In other words, Eq. ( 7) is the solution of the sequential problem when pure random attachment is applied.

Parallel attachment. -We focus on parallel attachment, i.e., when more than one edge are added per time step. We do not aim to derive an exact analytical expression for the degree distribution of this problem but provide a reasonable approximation. We recall that for parallel attachment t refers to the event of incorporating a new top node. We assume that µ ≪ N and expect Eq. ( 2) to be a good approximation of the process after replacing A(k, t) with A p (k, t). We define A p (k, t) as The term µ in the denominator appears since in this case the total degree of the bottom nodes at any point in time is µt rather than t as in Eq. ( 3). The numerator contains a µ since at each time step there are µ edges that are being incorporated into the network rather than a single edge.

A p (k, t) = (γk + 1) µ γµt + N . ( 8 
)
It is important to mention here that Eq. ( 2) cannot exactly represent the stochastic parallel attachment because it explicitly assumes that in one time step a node of degree k can only get converted to a node of degree k +1. Clearly, the incorporation of µ edges in parallel allows the possibility for a node of degree k to get converted to a node of degree k + µ. The correct expression for the evolution of p k,t reads:

p k,t+1 = (1 - µ i=1 A(k, i, t))p k,t + µ i=1 A(k -i, i, t)p k-i,t (9) 
where A(k, i, t) represents the probability at time t of a node of degree k of receiving i new edges in the next time step. We expect Eq. ( 2) to be a good approximation of Eq. ( 9) when A(k, 1, t) ≫ A(k, i, t) where i > 1.

The solution of Eq. ( 2) with the attachment kernel given by Eq. ( 8) reads:

p k,t = t k k-1 i=0 (γi + 1) t-1-k j=0 N µ -1 + γj t-1 m=0 γm + N µ ( 10 
)
We expect Eq. ( 10) to approximate the degree distribu-tion of the stochastic process with parallel attachment for µ ≪ N . This means that we cannot expect the approximation to hold for large values of γ or µ/N . In the limit of random attachment, i.e., γ = 0, Eq. ( 10)

becomes p k,t = t k µ N k 1 -µ N t-k .
Figs. 2(a)-(c) and 3(a)-(b) show a comparison between stochastic simulations and Eq.( 10) and prove that Eq. ( 10) is a good approximation for µ ≪ N and relative low values of γ. For large values of γ, as said above, the approximation fails. However, for µ = 1 Eq. ( 10) reduces to Eq. ( 6), which in this case is the exact solution, and then the theory works for all values of γ (see Figs. 2(d) and 3(c)).

From random to preferential attachment. -Fig. 2 shows that there is a clear transition from random to preferential attachment. At γ = 0 (see Fig. 2(a)) we observe that p k,t is centered around the maximum (mode of the distribution) which shifts with time at a speed of µ/N per time step, while the width of the distribution also spreads with time. This behavior corresponds to a situation in which all bottom nodes receive roughly the same amount of edges with time. The well defined maximum tells us about the average number of edges each bottom node has, while the variance of the distribution indicates the presence of fluctuations around that mean value which increases with time.

For 0 < γ < 1 the distribution is not longer symmetric (see Fig. 2(b)). Bottom nodes having small degree rarely receive an edge, and so p k,t decays slowly for small value of k. However the distribution still exhibits a maximum, mode of the distribution, which shifts with time (see Fig. 3(a)).

For 1 ≤ γ ≤ (N/µ)-1 the distribution looses the (local) maximum and becomes monotonically decreasing (see Fig. 2(c)). We can always find a bottom node with small degree because small degree nodes hardly get an edge. On the other hand, there are very few nodes with high degree, and these ones receive almost all incoming edges. The temporal evolution of the distribution for this range of γ is shown in Fig. 3(b).

For γ > (N/µ)-1 the distribution described by Eq. ( 10) exhibits an u-shape. As said above, we cannot expect Eq. (10) to approximate the stochastic process for such large values of γ. Stochastic simulations performed in this range of γ for µ > 1 are very noisy and the u-shape cannot be obtained by averaging over few simulations. However, for µ = 1 we can illustrate the u-shaped distribution in a clear way, see Fig. 2(d). As in the previous case, we still can find a bottom node with small degree because small degree nodes hardly get an edge (see maximum at k = 0). But on the other hand, we can be sure that there is at least one node with very large degree, because the node with the largest degree at time t -1 very likely is going to get an edge at time t, in an effect like "winner takes all" (see peak at k = t). The node with largest degree keeps on increasing its degree with time, and so p k,t has two peaks, one located at k = 0 and the other one at k = t (see Fig.

3(c)).

Beta Distribution. -In the following we offer a quantitative analysis of the transition by showing that p k,t behaves asymptotically with time as a beta-distribution for γ > 0.

For t ≫ η, where η = N/(γµ), we can approximate the products in Eq. ( 10) by gamma-functions and apply Stirling's approximation. After some algebra we obtain:

p k,t ≃ C -1 (k/t) γ -1 -1 (1 -k/t) η-γ -1 -1 (11) 
where C is a normalization constant defined by 3 shows a comparison between stochastic simulations (circles), the theoretical solution given by Eq. ( 10) (black dashed curve), and the approximation given by Eq. ( 11) (red solid curve) for two different values of γ at various times. In Fig. 3 it can be observed that p k,t approaches asymptotically to Eq. ( 11) (compare the black dashed and the red solid curves). Notice that Eq. ( 11) does not have any fitting parameter and represents a betadistribution f (x; α, β) of the variable x = k/t and fixed parameters α = γ -1 and β = η -γ -1 .

C = t 0 (k ′ /t) γ -1 -1 (1 -k ′ /t) η-γ -1 -1 dk ′ . Fig.
For 0 < γ < 1, α > 1 and β > 1 the mode of the distribution is given by (α -1)/(α + β -2) = ((γ -1 ) -1)/(η -2). This can be easily verified by taking the first derivative of Eq. ( 11) equal to zero. From this we learn that in this range of γ the maximum of the distribution k max is located at k max = t((γ -1 ) -1)/(η -2) (see Fig. 3(a)). In the limit of γ -→ 0 we retrieve the behavior of k max observed for pure random attachment, i.e., k max = t(µ/N ).

At γ = 1, α = 1 and β > 0, the moving peak is no longer found, i.e., the mode of the distribution is located for all times at k max = 0 (see Fig. 3(b)). This condition also holds for 1 < γ ≤ (N/µ) -1.

For γ > (N/µ)-1, there is another regime for the degree distribution. For α < 1 and β < 1, p k,t becomes u-shaped with a peak fixed at k = 0 and the other one shifting with t. For µ = 1 the additional peak is located at k = t (see Fig. 3(c)).

Concluding remarks. -We have studied the growth of bipartite networks in which the number of nodes in the bottom set is kept fixed. We consider random and preferential node attachment as well as the combination of both. We have derived the degree distribution evolution equation for sequential and parallel attachment of nodes. For sequential attachment we have provided the exact analytical solution of the problem. For parallel attachment we have obtained an approximate expression for the degree distribution. Through simulations we have provided numerical evidence which shows that the approximation for parallel attachment is reasonable when µ ≪ N and γ is small. Finally, we have shown that for both, sequential and parallel attachment, the degree-distribution falls into one of four possible regimes: a) γ = 0, a binomial distribution whose mode shifts with time, b) 0 < γ < 1, a skewed distribution which exhibits a mode that shifts with time, c) 1 ≤ γ ≤ (N/µ) -1, a monotonically decreasing distribution with the mode frozen at k = 0, and d) γ > (N/µ) -1, an u-shaped distribution with peaks at k = 0 and k = t.

Our results might be useful to explain the dynamical growth of various systems like the speech sound inventories of the world's languages, which can be rendered a bipartite structure as explained through the phoneme-language network in [START_REF] Choudhury | Proceedings of COLING-ACL[END_REF][START_REF] Mukherjee | [END_REF]. A detailed study of the parameter γ leading to the degree distribution of the network can then shed some light on the amount of randomness/preference that has gone into shaping the evolution of such a system.
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 1 Fig. 1: Scheme of a growing bipartite network. In the example, the number of fixed bottom nodes is N = 4. Each top nodes arrives with µ = 2 edges. The top node D represents a new incoming node.

Fig. 2 :

 2 Fig. 2: The four possible degree distributions depending on γ. Symbols represent average over 5000, in (a)-(c), and 50000, in (d), stochastic simulations. The dashed curve is the theory given by Eq. (10). From (a) to (c), t0 = 1000, N = 1000 and µ = 20. (a) at γ = 0, p(k, t) becomes a binomial distribution. (b) γ = 0.5, the distribution exhibits a maximum which shifts with time for 0 ≤ γ < 1. (c) γ = 1, p(k, t) does not longer exhibit a shifting maximum and the distribution is a monotonically decreasing function of k for 1 ≤ γ ≤ (N/µ) -1. (d) γ = 2500, t0 = 100, N = 1000 and µ = 1. p(k, t) becomes an u-shaped curve for γ > (N/µ) -1.

Fig. 3 :

 3 Fig. 3: Temporal evolution of p(k, t) for various values of γ. Symbols represent average over 5000, in (a)-(b), and 50000, in (c), stochastic simulations. The black dashed curve is the theory, represented through Eq. (10). The red solid curves correspond to the approximation given by the beta-distribution, Eq. (11). (a) γ = 0.5, and (b) γ = 1. N = 1000 and µ = 20. Compare with Fig. 2(b) and (c). (c) γ = 2500, N = 1000 and µ = 1, see Fig. 2(d).
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