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We study general aspects of active motion with fluctuations in the speed and the direction of mo-
tion in two dimensions. We consider the case in which fluctuations in the speed are not correlated
to fluctuations in the direction of motion, and assume that both processes can be described by inde-
pendent characteristic time-scales. We show the occurrence of a complex transient that can exhibit
a series of alternating regimes of motion, for two different angular dynamics which correspond to
persistent and directed random walks. We also show additive corrections to the diffusion coefficient.
The characteristic time-scales are also exposed in the velocity autocorrelation, which is a sum of

exponential forms.

PACS numbers: 05.40.J¢,87.17.Jj

The study of cell movement on surfaces can shed light
on the processes that underly cell motility [1]. In vitro ex-
periments that characterize cell movement include wound
closure assays and individual cell tracking to determine
cell trajectories ﬂi E, @, B] To interpret and understand
such experiments it is necessary to rely on a phenomeno-
logical description of the motion, providing expressions
that allow to fit the experimental observations and com-
pute motility indexes [4, l6].

Persistent motion subject to fluctuations has been de-
scribed by a class of stochastic process known as per-
sistent random walk ﬂ, , @, @, |,L_1|] In such processes
the direction of motion fluctuates, but on short time-
scales a persistence to move in the current direction is
observed. Formally, the velocity autocorrelation func-
tion (v(t) - v(0)) exhibits a finite decay time, giving rise
to a ballistic regime (x2(t)) ~ t? for short times and
a crossover to a diffusive regime (x2(t)) ~ t for long
times [7, |4, ld)].

A related problem is that of the directed motion of self-
propelled particles driven by an external field. Single cells
can be directed by external signals in the form of molecule
gradients, as in the case of fibroblasts ﬂﬁ] or the amoebae
D. discoideum HE] Directed motion with fluctuations
can be described by another broad class of stochastic
process known as the directed random walk B, ], which
displays a diffusive regime for short times followed by a
ballistic regime for long times ﬂﬁ, |ﬂ]

In previous works either fluctuations in the speed and
direction of motion were considered to occur simulta-
neously, or fluctuations of the speed were simply ne-
glected ﬂ, , @, , , , , ﬁ] In this paper, we
study two dimensional stochastic motion with uncorre-
lated fluctuations of the speed and the direction of mo-
tion, assuming that both processes can be described by
independent characteristic time-scales. We investigate
persistent and directed random walks, and derive exact
expressions for the mean squared displacement and the
asymptotic diffusion coefficient for arbitrary speed and

angular stationary distributions.

General aspects. We consider self-propelled particles that
move in two dimensions. The velocity v(t) at time ¢
is represented by an angle 6(t), and a modulus —the
speed— v(t). The dynamics of the velocity v(t) is given
by a stochastic process which for the moment we do not
specify. We introduce d(0,t), the total distance covered
by the particle moving along the direction 6 since the
beginning of the trajectory at ¢t = 0. Given a particular
trajectory characterized by 6(t) and ©(t), we can express
this distance as

d(9,t) = /0 dt’ /OOO dvvd(v—o(t'))s(0 — 6(t)).

The ensemble average of this distance is

(d(8,1)) :/0 dt’ /OOO dvvp(0,v,t), (1)

where we have introduced the probability density to find
the particle moving in the direction 6 with speed v at
time t, p(0,v,t) = (5(v — 0(t))5(0 — A(t))) [18]. Here
we denote ensemble averages by (...). The correlations
(d(0',t)d(08",t)) between the distances can be written in
terms of the joint probability distribution. We first ex-
press these correlations in terms of the ensemble aver-
age of delta distributions, and use p(8’,v’,t’; 0", 0", ") =

(6(v—(t"))d(v—(t"))5(0 —6('))5(0 — H(t"))) to obtain
¢ ¢

(0’ 1)d(8", 1)) = / ' / " @)
0 0

/OO dvl /OO dvllv/v// p(el UI t/_e// UI/ t”).
0 O 3 3 ) 3 )
We can use the distance d(#,t) to express the posi-
tion of the particle at time ¢ as x(t) = ["_d(6,t)7(6)df,

where 7(0) = cos(0)Z + sin(f)y is the unit vector along
the direction #. Then the mean value of the position is

ity = | " (6. 1))7(0)d0 3)
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and the mean square displacement
(1)) = / / 40'd0" (d(O', ) (0", ) (@) - #(0"). (4)

Egs. @) to ) provide a general way to calculate the
mean value of the position and the mean square displace-
ment, which so far does not involve any assumptions.
In the following, we consider the special case in which
the fluctuations in the speed v are not correlated with
the fluctuations in the direction 6. As a consequence,
p(f,v,t) = p(0,t)p(v,t) and p(d,0' ;0" 0" ¢") =
p(0,¢; 6", t")p(v', ;0" t"). Such a situation could natu-
rally arise if fluctuations of the speed are endogenous and
produced by an irregular engine, while fluctuations of the
direction of motion are produced by random changes in
the environment. In the following, we further assume
that the speed fluctuations are in the stationary state
with an arbitrary speed distribution p(v,t) = p(v), and
the joint probability is given by

P 50" ) = p(u")o(W! —v")em T (5)

+ p(")p(v') (1= e A=)

This expression for the joint probability distribution im-
plies that the speed correlations decay exponentially as
(w(t)v(0)) — (v)? = ((v?) — (v)?)e Pt Eq. (@) describes
particles that keep on moving with roughly the same
speed for a characteristic time 37!, while for larger times
the values of the speed become uncorrelated. An exam-
ple of a stochastic process which generates such statis-
tics is given by wv(t) = 7(t), where the value of 7(t)
is taken from a distribution p(v) with waiting times
given by a Poisson process of rate 3. The evolution Eq.
for the probability density p(v,t) can be expressed as
Op(v,t) = —Bp(v,t) + Bp(v), leading to the conditional
probability given by Eq. (&l).

Under these assumptions Eqgs. (Il) and (@) can now be
simplified performing the integrals on the speed:

(d(0, 1)) = (v) / dt'p(0,1') (6)

t
(', £)d(0", 1)) = (v)? / / arde"p(0' 150", 1"y (7)
0
t
+((v?) = (1)) / / av'dt"p(0' ;0" ¢ e Pl
0

Persistent random walk. As a first application, we con-
sider the case of a persistent random walk. We study
a problem in which the angular probability distribu-
tion function obeys a diffusion equation characterized
by the diffusion constant x. An example of a stochas-
tic process described by such an equation is given by
(t) = n(t), where n(t) is an uncorrelated white noise.

We assume that particles start moving from the ori-
gin in all possible directions with equal probability, so
p(0,t) = 1/27 for all times and (x(t)) = 0. However
a given particle starts moving along a particular direc-
tion and smoothly explores other directions, so a char-
acteristic time must elapse before we can find this par-
ticle pointing with equal probability in any direction.
This is described by the conditional probability distri-
bution p(#’,¢'|6”,¢"), which obeys the diffusion equation
8t/p(9/,t/|9”,t”) = Iiaglglp(el,tlwn,t”), with the initial
condition p(#',¢'|0”,t') = (6’ — 0"”). To warrant the
conservation of the probability we impose the periodic
boundary condition p(m,t'|¢”,t") = p(—m,¢'|0",t") and
Ogrp(m,t')0",t") = Ogrp(—m,t'10"”,¢"). The solution for
the conditional probability is

//‘

11 :
p(b, 416", 8") = 5—+— 3 cos [m(6' —8")] e~
™ T

m=1
(8)
As |t/ —t""| — oo the information about the direction of
motion at time ¢” is completely lost, and the conditional
probability approaches the asymptotic value 1/27. The
slowest mode m = 1 sets the characteristic time-scale
x~! that describes the duration of the transient.
Recalling that p(0',t';60" t") = p(6',t'|6",t")p(0",t")
and using Eq. () in Eq. (@), we obtain from Eq. (@) that
2 _ ﬁ _ —kt
(x2(t)) = 2 (kt —14e") (9)

v
K2

2 2
+ 2% ((m—i—ﬁ)t 1 +e_(”+5)t) .
In the absence of speed fluctuations, the speed variance
0? = (v?) — (v)? vanishes and Eq. (@) reduces to the
well known result for persistent Brownian particles [1],
which exhibits a single crossover at t ~ £, see thin solid
red line in Fig. [l When fluctuations become relevant, a
previous crossover from a quadratic to a linear regime
occurs at t ~ (k+ ()71 If the separation of time-scales
allows it another crossover can be observed between these
two, when the linear regime of the second term turns into
the quadratic regime of the first one, see the thick solid
black line in Fig. [

In order to unveil the different regimes that Eq. (@) per-
mits, we introduce non-dimensional variables £ = zx/(v)
and 7 = kt, and parameters = o/(v) and v = 3/k. For
v < 1 there is a single crossover at 7 ~ 1, see dashed
green line in Fig. [[I For larger values of v, solutions lie
between the dashed green line and thin solid red line.
For 7 < (1 +v)~! we observe (€2) ~ (1 + u?)72. A first
crossover occurs at 7 ~ (1+v) 1. For larger times, if the
separation of time-scales is such that (1 +7) ! <7< 1
then (¢2) ~ 72 + 2427 /(1+ 7). Provided that u? is suffi-
ciently large, a second crossover occurs at 7o ~ 2u%/(1 +
v) separating a transient linear regime from a second
quadratic regime. Finally, for 7 > 1 the asymptotic dif-
fusive regime emerges with (£2) ~ 2(1+u2/(1+7))7, after
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FIG. 1: Scaled mean squared position as a function of scaled
time for persistent random walks. The lines correspond to
Eq. @) for rescaled variables. The thin solid red line cor-
responds to g = 0, and g = 100 for the other curves, with
v = 1072 (dashed green line), v = 10 (dotted blue line) and
v = 10° (thick solid black line).

the third crossover at 73 ~ 1. Such asymptotic regime
can be described in terms of an effective diffusion coeffi-
cient, defined as D = lim; . ((x?(¢)) — (x(¢))?)/2¢t. From
Eq. @) we obtain D = (v)2x ™+ ((v?) — (v)?)(k + 8)~*.
Speed fluctuations introduce an additive correction to the
well known diffusion coefficient for constant speed [9],
and can lead up to four consecutive regimes of motion
separated by three crossovers, see Fig. [l In the absence
of speed fluctuations only one crossover is found [§, |9].

In Fig. [ we use a large speed variance and plot (x?(t))
over a huge range to illustrate all the features of Eq. ().
Below we discuss experimental constraints in the obser-
vation of the phenomena described here.

Directed persistent random walk. As a second exam-
ple we consider the directed random walk, in which the
particles have some preferred direction of motion. This
could be the case for particles moving in a symmetry-
breaking field or gradient. We assume that angular fluc-
tuations are in the stationary state p(0,t) = p(6). We
describe the presence of an external field by assuming

that f:ﬁ% p(0)df > 1/2 together with the symmetry re-
quirement p(—0) = p(0), setting a preferred direction of
motion along # = 0. Time correlations decay exponen-

tially with a characteristic time a !

p(el/)é(el . 9//)6—a|t'—t”\ (10)

e*&”’*i”‘) '

A realization of such stochastic process is 0(t) = n(t),
where the value of the noise 7(t) is taken from a distri-
bution p(#) at times given by a Poisson process of rate
«. Using this expressions for the angular probability dis-
tributions together with Eqgs. (@) and (7)) in Egs. (@) and
@) we arrive at the following expressions for the mean
value of the position, (x(t)) = v/c¢(v)t&, and the mean

p(elj t/7 9//7t1/) —
+ p0")p(0") (1~

10
A
1041 / 2|
A ~T
0
Qp 1077 1
T2
10741 T i
~T2 /
10—8 T L L L ]
10 10° 10%

T

FIG. 2: Scaled mean squared position as a function of scaled
time for directed random walks. The lines correspond to
Eq. () for the rescaled variables, with ¢ = 10~*. The thin
solid red line corresponds to p = 0. The other curves corre-
spond to . = 100, with v = 1073 (dashed green line), v = 103
(dotted blue line) and v = 10°® (thick solid black line).

square displacement

(x*(t)) = (0)? [et? +2(1 = )pa(t)] (11)
+ 2((v*) = (0)*) [(1 = O)parp(t) + cpp(t)]

where ¢ = (cosf)? and ¢, (t) = a2 [at — (1 —e ).
The effective diffusion coefficient D as defined above also
exhibits an additive correction, D = (1 — ¢)(v)2a™t +
((v2) — (WH)[(1 —¢)(a+B)"t +cB71]. Speed fluctuations
introduce a new time-scale which together with the in-
dependent time-scale of angular fluctuations can lead up
to five alternating regimes of motion separated by four
crossovers, see Fig. In the absence of speed fluctua-
tions the second line in Eq. (1)) vanishes and the mean
square displacement exhibits only two regimes [17].

Concluding remarks. The interplay of speed and angular
fluctuations gives rise to a sequence of regimes, revealing
a complex transient not observed when speed fluctua-
tions are absent. The occurrence of such a complex tran-
sient can wreck the interpretation of experimental obser-
vations, due to the constrains imposed by resolution and
finite size limitations. Particle size —or a fluctuating cell
shape— sets the smallest accessible length-scale, while
the field of the experimental setup sets the largest. The
temporal window is similarly bounded. If the window
of observation is limited to a part of the complex tran-
sient, anomalous diffusion could be wrongly interpreted.
Superdiffusion has been repeatedly reported from exper-
imental data [21, 22]. However, distinguishing true su-
perdiffusion from a persistent or directed random walk is
a subtle task [23]. Our results suggest that in some cases
the observed anomalous behavior could be related to one
or more of the reported crossovers. In Fig. Bl (a) we dis-
play D(1) = ({(€2(1)) — (&(7))?)/27 for a persistent ran-
dom walk, using time and space ranges which are reason-
able for current experimental setups [2, 4]. Furthermore,
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FIG. 3: (a) Re-scaled mean squared displacement and (b)
velocity autocorrelation as a function of scaled time for per-
sistent random walks. The lines in (b) correspond to Eq. ([I2])
for rescaled variables. In both panels, the solid red line cor-
responds to p = 0. For the other curves p = 1.31, with
v = 10"" (dashed green line) and v = 10 (dotted blue line).
Dots correspond to numerical simulations as described in the
text.

we choose = 1.31 according to data reported in [4], and
values of v within experimental ranges. The solid red line
is the result without speed fluctuations. Dots correspond
to numerical simulations performed with ¢ = 1.31 and
~ = 10. In the simulations speeds are chosen at a rate
B = 4.0 h=! from a speed distribution p(v) ~ v=3/2 for
v € [1,v.] and zero otherwise, with v, such that p = 1.31.
Angles are chosen at a rate 9.6 h™! from a uniform dis-
tribution of width 1 rad centered around the direction of
motion, and so yielding x = 0.4 h~'. Error bars are the
standard deviation from the mean value obtained for 100
realizations with 100 particles each. This means that a
particular 100 particles experiment should fall within the
range of such error bars.

The two characteristic time-scales of the system are
also exposed in the velocity autocorrelation function,
which is given by a sum of two exponentials

(v(t) - v(0)) = (v)” ™ + ((v) — (1)) e P*I. (12)

Autocorrelations of similar functional form have been
observed in cell motility experiments, but the micro-
scopic origin of the two time-scales has not been es-
tablished [4]. Here we show that independent fluctu-
ations in speed and direction could produce such au-
tocorrelations, see Fig. Bl (b). Fast intracellular pro-
cesses could give rise to such fluctuations in speed with
small characteristic time-scales [19,20]. The simulations
suggest that fluctuations in speed as the ones observed
in experiments might be enough to cause visible devi-
ations from the classical result |7]. In the case of di-
rected motion, the presence of an external field decou-
ples the time-scale of speed fluctuations and the velocity
autocorrelation results in a sum of three exponentials:

4

(v(t) - v(0)) = ()2 + o2e ) [c + (1 — c)e~ . In this
case we are not aware of experiments showing such auto-
correlations. While here we have considered the case in
which speed and angular fluctuations are not correlated,
the case in which they are is also of much interest and
deserves future attention.
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