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We study the spreading of excitations in 2D systems of mobile agents where the excitation is
transmitted when a quiescent agent keeps contact with an excited one during a non-vanishing
time. We show that the steady states strongly depend on the spatial agent dynamics. Moreover,
the coupling between exposition time (ω) and agent-agent contact rate (CR) becomes crucial to
understand the excitation dynamics, which exhibits three regimes with CR: no excitation for low
CR, an excited regime in which the number of quiescent agents (S) is inversely proportional to CR,
and for high CR, a novel third regime, model dependent, where S scales with an exponent ξ − 1,
with ξ being the scaling exponent of ω with CR.

PACS numbers: 87.23.Cc, 87.19.Xx, 02.50.-r, 87.18.Bb

The understanding of information propagation
through a system of moving agents is crucial for many
applications, ranging from chemical reactions to epi-
demic spreading [1]. A particular example of such a
process is the propagation of an excitation through a
system of mobile agents. In an excitable system, agents
typically have three states, quiescent, excited, and
refractory, and pass through them in such a way that
once excited become first refractory, and then quiescent
again. A classical example of an excitable system is
the forest-fire [2]. In this case, the immobility of the
agents is well justified. Another example of excitable
system is a disease in which agents undergo a cycle by
which an infected agent becomes first recovered and then
susceptible (SIRS dynamics). Though in the spreading
of diseases the mobility of the agent has been for a long
time ignored [3, 4], its importance has been recently
recognized [5, 6, 7, 8, 9]. The first attempt to incorporate
interactions among individuals was through the study of
disease spreading on complex networks which typically
represent social structures [10, 11, 12, 13, 14, 15, 16, 17].
The next step was to incorporate the actual motion
of individuals across subpopulation structures where
nodes represent containers of individuals such as urban
areas or just communities [5, 6, 7, 8, 9]. Despite
the fact that complex networks can describe realistic
social interactions or traffic networks, these models
constitute frozen pictures where edges do not exhibit
any dynamics. Gonzalez et al. in [18] showed that
the degree distribution and clustering coefficient of
empirical social networks can be described by a systems
of off-lattice mobile agents, provided the agent density is
appropriately chosen. Interestingly, in this model agents
are constantly moving and the underlying agent-agent
contact network is highly dynamical.

While agent motion may be central to informa-
tion/excitation spreading, however, it poses questions
that are not easy to answer. How does the spatial agent

FIG. 1: (a) simulation snapshot. Number of agents N = 1024.
Colors indicate agent states: quiescent/susceptible (green),
excited/infected (red) and refractory/recovered (blue). A
short segment indicates the active direction of motion. (b)
amplification of the area indicated in (a). (c) temporal evo-
lution of the populations.

dynamics affect the excitation spreading? In a SIRS-
dynamics, is the agent-agent contact rate (CR) the key
parameter that controls the the epidemic dynamics?

In classical epidemiological models [3, 4] as well as in
previous mobile agent models [10, 11, 12, 13], it is as-
sumed that the mean number of neighbors 〈κ〉 (directly
associated to CR) and the effective infection probability
λ are independent. Consequently, for either a SIRS or
SIS dynamics there are only two regimes with CR, resp.
〈κ〉. For low CR the system remains in the epidemic ex-

tinction regime, while for CR above a critical value the
disease propagates such that the number of susceptible
agents is inversely proportional to CR.

In this paper we study for the first time an excitable
mobile agent system where the excitation is transmitted
by keeping physical contact for a finite time (see Fig.
1). We derive expressions for the threshold and steady
states of the excitation dynamics, which highly depend on
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the spatial agent dynamics, and show that the coupling
between exposition time (which directly affects λ) and
CR (resp. 〈κ〉) is crucial to understand the evolution of
the excitation. In particular, we show that due to this
coupling the excitation dynamics exhibits three regimes
with the CR. These results applied to epidemic spreading
suggests that, contrary to what classical epidemiological
models state, the epidemic dynamics exhibits more than
two regimes with CR.

Spatial agent dynamics.— We assume agents are self-
propelled disks which, in absence of interactions, move at
constant speed in a box with periodic boundary condi-
tion and change their direction of motion at Poissonian
distributed times. The equation of motion of the i-th
agent can be expressed in the following way:

ẋi(t) =
Fi

ζ
+

1

ζ

∑

j 6=i

∇U(xi(t),xj(t)) (1)

where Fi/ζ is the active velocity of the agent and ζ de-
notes a friction coefficient. As mentioned above, the
active direction of motion follows a Poisson process by
which an agent changes the direction of Fi with a rate α
while keeping constant the active speed υ = |Fi| /ζ [19].

As example of agent-agent interaction we have chosen
a repulsive soft-core two-body potential that penalizes
agent overlapping:

U(x,x′) =











γ
[

|x − x
′|−β − (2r)

−β
]

if |x − x
′| < 2r

0 if |x − x
′| ≥ 2r

(2)

where r is the radius of the agents, β is a constant, and
γ is a function of υ such that the maximum overlap-
ping area between two agents is independent of υ [19].
The collision between two or more agents is a relatively
slow process in which agents keep physical contact for a
non-vanishing time. Notice that while the implemented
dynamics is suitable to describe migration of some micro-
organisms [20], it becomes unrealistic as a model for hu-
man mobility.

Excitation dynamics.— Without lack of generality we
use as excitation dynamics a SIRS dynamics. A suscep-
tible agent gets the disease by keeping physical contact
with an infected one for certain time. The transmission
of the infection (=excitation) is modeled by a Poisso-
nian process whose characteristic time is τT . Once in-
fected, an agent carries the infection for a certain period
of time, after which gets recovered and remains immune
to the disease for another period of time, to finally be-
come susceptible of being infected. The transitions from
infected to recovered, and from recovered to susceptible
are modeled by Poisson processes characterized by the
characteristic times τI and τR, respectively.

Low density.— At low density the agents do not form
large clusters and we can reduce the dynamics to a much

FIG. 2: Populations of agents at the steady state vs. linear
system size L. Simulations performed with the parameters
given in [19] and υ = 0.1. Full black lines corresponds to Eqs.
(6), (7), and (8) while the open symbols to SHD

st , IHD

st and
RHD

st . The vertical line corresponds to Lc.

simpler one in which we consider only binary collisions.
In this gas-like phase we describe the time evolution of
the populations of susceptible, infected, and recovered
agents by the following mean-field equations:

Ṡ =
R

τR
−

(

1 − e−ω/τT

)

υσ0ρIS (3)

İ =
(

1 − e−ω/τT

)

υσ0ρIS −
I

τI
(4)

Ṙ =
I

τI
−

R

τR
(5)

where S, I and R are defined as S = NS/N , I = NI/N
and R = NR/N , with N being the total number of agents
in the system, and NS , NI , and NR being the number of
susceptible, infected and recovered agents, respectively.
Here, σ0 represents the scattering cross section of the
agents, defined as σ0 = 4r, ρ is the density (ρ = N/V ),
and ω denotes the mean duration of the collision event.
The exact dependency of ω with υ depends on the par-
ticular agent-agent interaction rule. Since in general, for
υ → ∞, ω has to vanish, while for υ → 0, ω → ∞, and
considering to the Buckingham π theorem [21], we con-

clude that ω takes the functional form ω (υ) = K (r/υ)ξ,
where ξ is a positive constant and K a dimensional func-
tion of the interaction rule parameters. We choose values
of K and ξ that best fit simulation data of ω vs. υ [19].
In consequence,

(

1 − e−ω/τT

)

represents the probability
per contact event (of mean duration ω) of transmitting
the disease, while υσ0ρ in Eqs. (3) and (4) represents the
agent-agent contact rate (CR).

From Eqs. (3)-(5), we obtain the two steady states of
the system: i) S = 1, I = 0, and R = 0, corresponding



3

to the epidemic extinction, and ii)

Sst = R−1
0 (6)

Ist = (1 − Sst)
τI

τI + τR
(7)

Rst = (1 − Sst)
τR

τI + τR
, (8)

corresponding to the endemic state, where R0 =
(

1 − e−ω/τT

)

υσ0ρτI denotes the basic reproductive num-

ber. Recall that R0 > 1 corresponds to the endemic state,
while R0 < 1 to epidemic extinction. It is instructive to
represent R0 as R0 = λ〈κ〉, where 〈κ〉 denotes the mean
number of individuals in contact with an infected agent
per time unit, i.e., 〈κ〉 = υσ0ρτI , while λ refers to the
probability for a susceptible individual to contract the
disease during a contact event with an infected one, i.e.,
λ =

(

1 − e−ω/τT

)

. Notice that though λ and 〈κ〉 are
typically independent model parameters, for the current
mobile agent-based model, they are coupled. This cou-
pling has proved to be essential to understand the disease
spreading dynamics.

Fig. 2 shows a comparison of Eqs. (6)-(8) and agent-
based simulations. For large values of L, there is a good
agreement between simulations and theory. For small
values of L, spatial correlations become important and
multiple collisions and shielding effects take place. How-
ever, since the spatial dynamics is faster than the exci-
tation dynamics, the mean-field approach still approxi-
mates the simulation data as observed in Fig. 2. Clearly,
the smaller L, the worse the approximation becomes. No-
tice that the critical system size Lc that separates the
endemic from the epidemic extinction regime takes the

form: Lc =
[

N
(

1 − e−ω/τT

)

υσ0τI

]1/2
(dashed vertical

line in Fig. 2).

High density.— At high enough densities, agents form
percolating clusters and agent mobility is strongly re-
duced, though exchange of neighbors still takes place.
The maximum conceivable density, ρM , corresponds to
the one associated to the maximum packing fraction
of disks, ηM = ρMa, where a is the area of a sin-
gle agent. ηM is 0.91 and corresponds to an hexago-
nal lattice. At densities close to this limit, the system
can be reduced to a regular lattice of agents through
which a SIRS dynamics evolves. Since we assume that
locally there is still some mixing of particles, we ne-
glect correlations between nodes, and express the tem-
poral evolution of agent-populations in terms of a sim-
ple mean-field which yields the following endemic states:
SHD

st = τT / (τIκ), IHD
st = (1 − Sst) (τI/ (τI + τR)), and

RHD
st = (1 − Sst) (τR/ (τI + τR)), where κ denotes the

mean number of neighbors. These values are shown in
Fig. 2 as open symbols and represent a rough estimate
for the system behavior at densities close to ρM . Bet-
ter estimates can be obtained by considering spacial cor-
relations through the two-point probability function as

FIG. 3: Populations of agents at the steady state vs. agent
active speed υ. Simulations performed with the parameters
given in [19] and L = 150. Full black lines corresponds to
Eqs. (6)-(8)). The vertical lines correspond to υm and υc,
while dashed, dotted, and dash-dotted curves correspond to
different values of ξ, see text.

indicated in [15]. Notice that κ is constrained to the
structure of the lattice and that SHD

st > 0.
The role of the active speed.— The active speed of the

agents υ is a control parameter which directly regulates
the degree of interaction among agents. Particularly, CR
is directly proportional to υ. The values of the epidemic

steady state, as indicated by Eqs. (6)-(8) and confirmed
by agent-based simulations, exhibit a non-trivial behav-
ior with υ (see Fig. 3). For low enough density, we expect
to observe the epidemic extinction state in the limit of υ
going to zero. This implies that to observe the endemic

state, υ has to be larger than a threshold value υm. From
Eq. (6) we can estimate the minimum speed required by
the disease to survive. This is set by the condition Sst = 1
from which we get the following transcendental equation
for the minimum speed υm:

e
−ω(υm)

τT = 1 −
1

υmσ0ρτI
. (9)

By solving numerically Eq. (9) for the parameters used
in Fig. 3, we obtain υm = 0.027 (dashed vertical line).
Note that the expression for R0 predicts a crossover at
ω(υc) = τT (dash-dotted vertical line).

As shown in Fig. 3, there are three regimes with the
agent active speed υ. For υ < υm, the mean time be-
tween subsequent collisions is larger than the infection
period τI , and so the disease can not spread and gets ex-
tinguished. On the contrary, for υm < υ < υc, the mean
time between subsequent collisions is smaller than τI and
the system ends up in an endemic state. In this range
of υ, the mean collision time is such that ω(υ) ≫ τT ,
and thus the probability of transmitting the disease in a
collision event is very high. As a consequence, the epi-
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demic size increases with the CR leading to Sst ∼ υ−1.
Notice that in the limiting case of τT → 0, this regime
is valid for all υ > υm. However, any realistic disease
has some non-vanishing characteristic transmission time,
and consequently, a third regime, ignored so far, emerges
for υ > υc, i.e., for larger values of CR. In this case,
ω(υ) < τT and the mean collision time is not enough
to assure the disease transmission in each collision event.
The interplay between CR and the transmission probabil-
ity per collision event determines the third regime which,
contrary to the second one, is model dependent and such
that Sst ∼ υξ−1. In consequence, there are three possible
behaviors depending on the interaction rule, resp. ξ. If
ξ = 1, in the limit of υ → ∞ the epidemic size reaches an
asymptotic value S∞ = τT / [Krσ0τIρ] > 0. For ξ > 1,
the disease spreading exhibits a non-monotonic behavior
with υ and in the limit of υ → ∞ the systems reaches the
epidemic extinction regime. Thus, an increase in υ, resp.
CR, leads to a reduction of the epidemic size. Finally, for
0 < ξ < 1 and in the limit of υ → ∞, Sst goes to zero,
which indicates that the epidemic size at low density and
for large enough values of υ can become larger that the
bounded epidemic size corresponding to SHD

st . Note that
simulations performed with the specific agent-agent in-
teraction rule given by Eq. (2) fall into this case, with
ξ = 0.91.

Concluding remarks.— We have shown that in mo-
bile agent systems the coupling between mean exposi-
tion time and CR is crucial to understand the excita-
tion dynamics, which generically exhibits three regimes
with CR: excitation extinction for low CR, an excited

regime where the excitation is such that the number of
quiescent agents is inversely proportional to CR, and a
third regime, for high CR, where the number of quiescent
agents scales with an exponent ξ − 1, with ξ being the
scaling exponent of the mean exposition time with CR.
The novel third regime is clearly model dependent and
opens, in the context of epidemic spreading, the counter-
intuitive possibility of ”curing” by increasing CR, which
can be achieved in simulations by modifying the interac-
tion rule among agents such that ξ > 1.

At the experimental level, the introduced mobile agent
model might help to understand spatial distribution (and
levels) of gene expression induced by cell-cell signaling as
observed in some bacterial colonies [22]. It also might
shed some light on disease spreading on bacteria [23, 24]
and also on competing strain bacteria experiments [25].
Clearly, the current agent model is not suitable to de-
scribe disease spreading on structured populations, i.e.,
when the disease moves across metapopulations, as in
humans. Further improvements to account for struc-
tured communities might include preferred interacting
partners, which can be modeled by a long-range poten-
tial acting among members of a community, as well as by
dividing the space into several connected compartments.
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