
HAL Id: hal-00905219
https://hal.science/hal-00905219v1

Submitted on 18 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Directedness of Information Flow in Mobile Phone
Communication Networks
Fernando Peruani, Lionel Tabourier

To cite this version:
Fernando Peruani, Lionel Tabourier. Directedness of Information Flow in Mobile Phone Communica-
tion Networks. PLoS ONE, 2011, 6 (12), pp.e28860. �10.1371/journal.pone.0028860�. �hal-00905219�

https://hal.science/hal-00905219v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

30
2.

02
74

v1
  [

ph
ys

ic
s.

so
c-

ph
] 

 1
 F

eb
 2

01
3

1

Directedness of information flow in mobile phone
communication networks
Fernando Peruani1, Lionel Tabourier2

1 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
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Abstract

Without having direct access to the information that is being exchanged, traces of information flow can
be obtained by looking at temporal sequences of user interactions. These sequences can be represented
as causality trees whose statistics result from a complex interplay between the topology of the underlying
(social) network and the time correlations among the communications. Here, we study causality trees in
mobile-phone data, which can be represented as a dynamical directed network. This representation of
the data reveals the existence of super-spreaders and super-receivers. We show that the tree statistics,
respectively the information spreading process, are extremely sensitive to the in-out degree correlation
exhibited by the users. We also learn that a given information, e.g., a rumor, would require users to
retransmit it for more than 30 hours in order to cover a macroscopic fraction of the system. Our analysis
indicates that topological node-node correlations of the underlying social network, while allowing the
existence of information loops, they also promote information spreading. Temporal correlations, and
therefore causality effects, are only visible as local phenomena and during short time scales. These
results are obtained through a combination of theory and data analysis techniques.

Introduction

Phone call activity patterns are a manifestation of our complex social dynamics. Several aspects of our
social behavior are reflected in these communication patterns, like day-night cycles, high activity at the
end of working hours, or even our mobility patterns [1–9]. Mobile phone data provides an excellent
ground to study several interesting social processes such as, for instance, the spreading of news and
rumors, which is the focus of this work. We start out by asking ourselves whether such phenomenon
really occurs through the mobile phone network. A phone call certainly involves information exchange
between two individuals, but is there information propagation involving more than a single phone call?
Is it possible to answer this question without having access to the content of conversations?

Mobile phone log data consists in who calls whom and when, see Fig. 1A. A natural way of representing
this data is through the use of directed edges. For example, let us use i → j to represent that user i has
called user j. In addition, we have to associate to each directed edge a time series that symbolizes when
(and how many times) this action took place. This procedure provides us with a representation of log
data in terms of a directed network.

Due to privacy issues we cannot know which information is exchanged during phone calls. This
constraint forces us to adopt a hypothesis regarding how information flows on the network. It has
been argued that depending on the nature of the information, its propagation dynamics is different [10].
For example, a political opinion, a fad, a rumor, or a gossip, are supposed to involve, each of them,
a different kind of human interaction dynamics which results in a different and particular propagation
mechanism [10]. Here, we assume that the information that is exchanged is either a rumor or news.

The spreading of rumors and news is believed to resemble the spreading of an infectious disease [11],
which implies the existence of a “pass-along” dynamics, as the one observed in email chain letters.
Rumor spreading models [12–15] assume that there are two categories of users, those who are informed
and those who are not. Among informed users, there are in turn two sub-categories: users that are
actively broadcasting the rumor, and users that become inactive. Several mechanisms for switching from

http://arxiv.org/abs/1302.0274v1


2

active to inactive spreading behavior have been proposed [10,12–15]. Given the lack of empirical evidence
to support a particular switching mechanism, here we adopt the simplest possible assumption already
proposed for infectious disease [11]: there is a characteristic time τ after which an active spreader turns
into inactive. There is, however, a deeper reason to use such a switching mechanism. According to this
description, we can represent the sequence of events that propagates the infection as a causality tree. Our
goal is to study causality trees as a proxy to understand information spreading, and for this we need a
characteristic time scale which can be easily controlled. The parameter τ , which we refer to as monitoring

time, serves this purpose.
The mobile phone data, particularly the existence of directed edges, poses the question whether during

a phone call the information exchange exhibits a favored flow direction. Clearly, the information can flow
from the caller to the callee, from the callee to the caller, or in both direction. If we think of a rumor
being spread on the mobile phone network, and a phone call that involves an informed and an ignorant
user, we can imagine that after the communication, both users are informed. This picture implies that
non intentional spreading of the rumor can occur: if the caller is the ignorant user and get the information
from the callee, then the phone call was not intended to propagate the rumor. This would mean that
rumor spreading does not involve causality and it occurs without “intentionality”. A different scenario
is one in which the spreading is exclusively active and intentional, and phone calls made by informed
individuals are intended to propagate the information. In this scenario, information propagates through
active broadcasting, and involves causality. A user can get informed exclusively if he/she is called by an
informed individual. Thus, in this framework, causality trees describe information flow.

At this point we would like to mention two very recent works on information spreading on mobile
phone networks that are particularly related to our study [5, 8]. Karsai et al. [5] studied flooding of
information in a mobile phone network. They assumed that users retransmit constantly the information
they receive, and estimated the time required to inform everybody in the system. They concluded that
the presence of community structures, i.e., topological correlations, and bursty phone call activity slow
down the spreading of information. In [8], Miritello et al. studied the propagation of information that
obeys a Susceptible-Infected-Removed (SIR) epidemic dynamics. They assumed that during a phone call
information flows in both direction and made use of Newman’s theory for disease spreading on undirected
complex networks [16] to interpret their results 1. They exclusively focused on the average size of the
outbreaks, and confirmed the results obtained in [5].

Here, our main goal is to explore the possibility of intentional propagation of information with a
“pass-along” dynamics, e.g., a rumor. This intentionality implies that the information flow is expected
to be given by the directed edges. Nevertheless, for completeness and comparison purposes we also
consider the possibility that information flows in both directions along edges. We focus on the topological
properties of the causality trees resulting from the above described dynamics. We point out that we aim
at characterizing the spreading properties of the system, but not at identifying particular events. Such
a task would require the exploration of the mobile phone data both, forward and backward in time, as
explained in [17]. We find that the existence of super-spreaders and super-receivers makes the spreading
process extremely sensitive to the in-out degree correlation of the users. We make use of a simple tree
theory to prove this fact. We also observe that time correlations do not play a significant role on the
statistics of sizes and depths of trees. On the other hand, we observe that at short time-scales, i.e., small
τ values, the spreading dynamics, respectively the tree statistics, is not sensitive to topological node-
node correlations and can be described simply in terms of the out degree distribution of the underlying
social network. Only at large time scales these node-node correlations become dominant, enhancing the
spreading of information and allowing the circulation of information in (closed) loops. Time-correlations,
while they do not have a significant impact on information spreading, promote the existence of local
information loops. It is only at this level that we observe genuine causality effects.

1For computational purposes, they analyzed the data using directed edges for information transmission, but assuming

that transmission in directed and undirected networks is comparable.
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Results

Causality trees

For a given τ , we build the “causality” trees, which we also refer to as cascades, in the following way.
We pick up at random a phone call from the database and monitor the activity of the receiver - e.g. user
a - for a period τ . We register all phone calls user a makes during this period, and monitor the activity
of all users who have been called by user a during a period τ . We repeat this process for every new user
until the cascade gets extinguished. This occurs when all users in the tree have exceeded the monitoring
time τ and there is no new user to monitor. Figs. 1A and 1B illustrate this procedure, which has been
also applied in [8]. Notice that the proposed method is equivalent to inoculate a Susceptible-Infected-
Recovered (SIR) disease to user a and wait for the infection outbreak to get extinguished. This dynamics
is similar to the one proposed for rumor spreading as defined in [14]. Susceptible (i.e., uninformed) users
only get infected by receiving a phone call from an already infected user, i.e., phone calls imply directed
links. Finally, the transition from the infected to recovered state occurs after a time τ .

We focus on two features of the trees: their size s and their depth d. The tree size s is simply the
number of users forming the tree. We use the term depth to refer to the distance (in terms of nodes) to
the initial node, with d defined as the maximum depth of the tree, see Fig. 1C.

A simple transmission theory

Gaining intuition - a basic mean-field

To gain insight into the statistics of the causality trees, we first propose a simple transmission theory
relying on the following assumptions. a) There exists an underlying social network which is static. Though
we know that at large time scales, e.g., years, the underlying social network is necessarily dynamic, we
assume that at short time scales of the order of hours to few days the static approximation provides
a reasonable description. b) Given a couple of nodes i and j, there is a directed link from i to j if i
called j at least once in the database, i.e, if the directed link is present in the underlying social network.
This directed link is associated to a time series: the timestamps at which i has contacted j. For every
i → j link we can define a communication rate ρi→j that indicates the rate at which the link is active
to transmit information. This is simply the number of phone calls i → j that occurred in the database,
divided by the total time t∞. c) We define causality trees as sequences of consecutive phone calls where
the time difference between consecutive phone calls is always less or equal to our observation time τ .

In this introductory subsection, we aim at gaining some intuition on the spreading process by reducing
all the complexity of the social network topology to its average degree, and all the complexity associated
to the temporal phone call dynamics to the average phone call rate per edge. We focus initially only
on the average tree size. In the next subsection we will include more complex features such as in- and
out-degree distributions, in-out degree correlations, etc, and focus on more interesting measurements as
the size and depth distributions of the trees. For the moment, nevertheless, we study this oversimplified
dynamics since it allows us to understand in very simple terms that there is a competition between the
monitoring time τ and the phone call frequency. This competition determines the critical monitoring
time τc above which a phase transition occurs. The mean-field associated with this simplified process
reads:

Ṡ = −〈ρ〉〈ko〉∞SI , İ = 〈ρ〉〈ko〉∞SI − I
τ
, Ṙ = I

τ
, (1)

where the dots indicate time derivatives, S refers to the fraction of individuals that are uninformed at
time t, I to those that are informed and retransmitting the information, and R to those that got the
information and stop retransmitting, 〈ρ〉 is the average ρi→j , and 〈ko〉∞ the average (out-)degree. Notice
that for directed networks, the average in- and out-degree are the same.
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The average cascade size 〈s〉 is the average number of individuals that got the information once the
process is extinguished , i.e., when there is no more users retransmitting the information and I = 0. It

is easy to realize from Eq. (1) that S(t) = exp
[

−〈ρ〉〈ko〉∞
∫ t

0
I(t′)dt′

]

, and τ R(t) =
∫ t

0
I(t′)dt′. Using

the fact that S + I + R = 1 and I(t → ∞) = 0, we obtain that the number of users that once got the
information, i.e., the average tree size, 〈s〉 = NR(t → ∞), reads:

〈s〉/N = 1− exp [−〈ρ〉〈ko〉∞τ〈s〉/N ] , (2)

where N is the number of users in the system. Eq. (2) defines a self-consistency equation for 〈s〉. From
this expression we can derive the critical monitoring time τc required to observe infinite tree sizes:

τc =
1

〈ρ〉〈ko〉∞
. (3)

This means that if nodes retransmit the information that they get for a period τ > τc the resulting trees
can be arbitrarily large. It is important to make the distinction between the duration of cascade events,
i.e., the time elapsed between the first and last phone call of the tree, and the monitoring time τ . For
instance, when τ ∼ τc only a small fraction of the cascades percolates and consequently the average
tree duration is shorter than τc. Notice that the monitoring time τ refers (and controls) the individual
behavior of users as callers. In fact, we are asking ourselves how the individual behavior of users should
be in order to allow a rumor to take over a macroscopic fraction of the system. We will come back to
this point later on and look for an interpretation of this relevant quantity.

Now let us consider the other hypothesis mentioned in the introduction, i.e., let us imagine that
information travels in both directions of the directed edges. In this case, we can still use Eq. (2) to
describe the spreading process, but parameters have a different meaning. The average rate activity 〈ρ̃〉
now represents the activity of an undirected edge, i.e., it is the average of ρ̃i,j = ρi→j +ρj→i. Finally, the
average out-degree 〈ko〉∞ has to be replaced by the average (undirected) degree 〈k〉∞, since now edges
are undirected. Thus Eq. (3) becomes: τc = 1/(〈ρ̃〉(〈k〉∞ − 1)).

Taking into account topological features - in-out degree distributions

In the following, we move a step further and take into account the in- and out-degree distributions, as
well as the in-out degree correlations of the underlying static social network, and the time distribution
of phone calls. Our goal is to obtain an expression for the probability p(ki, ko; τ) of finding a user with
in-degree ki and out-degree ko for a given τ . The in-degree ki represents the number of different users
that have called the user during τ . Similarly, ko denotes the number of different users that the user has
called during the monitoring time τ . This means that we are considering that there is an underlying static
network whose directed links are switched on and off — this dynamics defines a (directed) dynamical
network.

In order to compute p(ki, ko; τ), we need to know the probability that an edge is activated within
a period τ . More precisely, we need to know for a node that has in-degree k′i and out-degree k′o, the
probability per in-edge Ti(k

′

i, τ) and per out-edge To(k
′

o, τ) of being used within a period τ . Then,
if for instance k′i = 3, the probability that two of the three in-edges are used while one is not, is
(

3
2

)

Ti(3, τ)
2(1− Ti(3, τ)).

We denote the probability of finding a node with in-degree ki and out-degree ko: p∞(ki, ko) =
p(ki, ko; τ → ∞). The probability p∞(ki, ko) refers to the static underlying network that contains all
connections that have occurred in the whole database. Thus, assuming that the in-degree of a node is
uncorrelated with the out-degree of other nodes, we can express p(ki, ko; τ) as:
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p(ki, ko; τ) =

∞
∑

k′

i
=ki;k′

o
=ko

p∞(k′i, k
′

o) (4)

×

(

k′i
ki

)

Ti(k
′

i, τ)
ki (1− Ti(k

′

i, τ))
k′

i
−ki

×

(

k′o
ko

)

To(k
′

o, τ)
ko (1− To(k

′

o, τ))
k′

o
−ko ,

where we have also assumed that the activity of an edge is independent of the activity of the other edges,
and used the binomial distribution approximation explained above.

To simplify Eq. (4), we make another assumption: the edge activity is independent of the in- or out-
degree of the node, i.e. Ti(k, τ) = To(k, τ) = T (τ). Edges exhibit a heterogeneous distribution p(ρ) of
communication rates ρ. Let us recall that ρ is the rate at which an edge is used within τ , i.e., the number
of phone calls through the edge divided the total time t∞. We need an estimate for the probability
T (τ) that the edge is used during τ . Knowing ρ and assuming a Poissonian process, the probability that
the edge is used is 1 − exp(−ρτ) [16]. Though this assumption is a strong simplification of the actual
process at the level of edge usage, it does not imply that we are assuming that users exhibit a Poissonian
phone call activity. Moreover, since we consider the activity of a user proportional to its out-degree,
if the out-degree distribution is heavy-tail distributed, so is the user activity distribution. Under these
assumptions T (τ) can be estimated as:

T (τ) =

∫

dρ p(ρ)
(

1− e−ρτ
)

. (5)

If now we consider that information travels in both direction of the edges, we need to take into
account the undirected degree distribution exhibited by the nodes. Along similar lines, we can express
the probability p(k; τ) of finding a user of undirected degree k for a given τ as:

p(k; τ) =
∞
∑

k′=k

p∞(k′) (6)

×

(

k′

k

)

T̃ (k′, τ)k(1− T̃ (k′, τ))k
′
−k ,

where p∞(k′) refers to the degree distribution of the undirected static social network, and T̃ (k′, τ) is the
probability that an edge connected to a node of degree k′ is used during τ .

Critical monitoring time τc

We now look for an expression of the critical monitoring time τc, which is sensitive to the topological
structure of the underlying static network. As before, we start by assuming that the underlying static
network is directed — below we address the alternative case where information travels in both direction
on edges. To derive the percolation threshold from Eq. (4), we look for the associated generating function
g(x, y; τ) =

∑

j

∑

k x
jykp(j, k; τ). After exchanging the order of the sums in order to use the binomial

expansion, we obtain:

g(x, y, τ) =
∑

k′

i
,k′

o

p∞(k′i, k
′

o) (1 + (x− 1)T (τ))
k′

i

× (1 + (y − 1)T (τ))
k′

o . (7)
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The process described here corresponds to a situation where, for a given τ , some edges are activated
while others remain silent. We want to know whether the (directed) network of activated edges contains
giant trees. As explained in [18], the condition for having infinite clusters in (static) directed networks is
〈ki ko〉/〈ko〉 ≥ 1. We can evaluate this condition for our dynamical network using Eq.(7), and recalling
that 〈kiko〉(τ) = xy∂2g/∂xy|x,y=1, and 〈ki〉(τ) = 〈ko〉(τ) = x∂2g/∂x|x,y=1. The evaluation of the above
mentioned condition leads to:

T (τ) ≥
〈ko〉∞
〈kiko〉∞

, (8)

where 〈kiko〉∞ =
∑

ki,ko
kikop∞(ki, ko) and 〈ko〉∞ =

∑

ko
kop∞(ko). Notice that if the underlying network

does not exhibit a giant component for t → ∞, condition (8) cannot be fulfilled for any τ .
To gain some intuition, let us assume that ρτc << 1, so that from Eq. (5) we can approximate T (τ)

as T (τ) ∼ 〈ρ〉τ so that:

τc =
〈ko〉∞

〈ρ〉〈kiko〉∞
. (9)

Let us now consider the following two extreme cases: a) a fully in-out degree correlated underlying
static network, where ki = ko, for which we get

τc =
〈ko〉∞

〈ρ〉〈k2o〉∞
, (10)

and b) a fully in-out degree uncorrelated underlying static network, i.e., p∞(ki, ko) = p∞(ki)p∞(ko),
where we find that

τc =
1

〈ρ〉〈ko〉∞
, (11)

which is exactly the mean-field prediction given by Eq. (3).
In Fig. 2 we compare the average tree size obtained from the data with the above discussed theoretical

arguments. The vertical lines correspond to the predictions given by Eqs. (9), (10), and (11). In order
to evaluate Eq. (9), we have measured 〈ko〉∞ and 〈kiko〉∞ using the underlying static network, and
estimated the average edge activity 〈ρ〉 from the log data. For Eq. (10), we have computed in addition
〈k2o〉∞. Finally, for Eq. (11), since we assume uncorrelated in-out degree, we only need to know 〈ko〉∞
which has been already measured to estimate Eq. (9) (let us recall that directed networks are such that
〈ko〉 = 〈ki〉). The in- and out-degree distributions of the underlying static network are shown in Fig. 3A,
while the in-out correlation matrix, which is characterized by a Pearson’s coefficient [19] of ∼ 0.58, is
shown in Fig. 3B. Fig. 2 shows that there is large difference between the thresholds corresponding to
the extreme cases given by Eqs. (9) and (10), more than 35 hours, which indicates that the spreading
process strongly depends on the in-out degree correlations. How can we understand that correlations
have such an important effect on the spreading process? If we look at either the in- or the out-degree
distribution of the underlying static network, we observe that both of these distributions exhibit fat
tails, see Fig. 3A. The heterogeneity of user degree implies the presence of super-spreaders as well as
super-receivers. Though the relevance of super-spreaders have been well identified and understood since
many years [20], the existence and role of super-receivers have remained relatively unexplored, except for
a few noticeable works where the relevance of in-out degree correlations were acknowledged [18, 21, 22].
We notice that for an undirected network, the degree of a node plays both roles, being its in- as well
as its out-degree (and consequently, a high degree node is both a super-spreader and a super-receiver).
On the contrary, for a directed network, the difference between the in- and out-degree of a node, as we
will see, is key to understand the role of the node on the spreading process. A super-receiver is a node
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that is highly susceptible to get the information, since it can be contacted by a large number of different
users. On the other hand, a super-spreader is a node that once informed can potentially retransmit the
information to many different users. If a node is a super-receiver but not a super-spreader, it can easily
get the information but it cannot contribute much in the spreading process. On the other hand, a node
that is a super-spreader but not a super-receiver, while it can potentially retransmit the information to
many different users, it will rarely get the information. Consequently, these nodes rarely help to the
spreading process of the information. In summary, only those nodes that are both, super-spreader and
super-receiver, play a significantly role on the spreading process.

For fully in-out correlated networks (see Eq. (10)), nodes exhibit the same in- and out-degree. This
implies that all super-receivers are also super-spreaders. Thus, each super-spreader has a high probability
of getting the information and subsequently retransmit it. Fig. 2 shows that for ki = ko – Eq. (10) –
we would observe arbitrarily large trees for τ values larger than 12 hours. In general, we expect larger
trees for a fully correlated network with the same number of super-spreaders (and super-receivers) as in
the original network. Positive in-out degree correlations clearly facilitates information spreading. On the
other hand, we expect fully in-out uncorrelated networks to exhibit smaller trees, since it is very difficult
to find a node that is both, super-spreader as well as super-receiver. Fig. 2 indicates that for fully in-out
uncorrelated networks – Eq. (11) – arbitrarily large trees would only emerge for τ values larger than 55
hours, though again the network contains as many super-spreaders and super-receivers as in the original
network. Clearly, the absence of in-out correlations makes difficult the spreading of information.

Notice that in the actual underlying static network, though there is an important fraction of nodes
that are simultaneously super-spreaders and super-receivers (see diagonal in Fig. 3B), there are also many
nodes that are either super-spreader or super-receivers, but not both (off-diagonal elements in Fig. 3B).
This explain why we observe in Fig. 2 that the actual dynamics falls in between these two extreme cases,
i.e., in between the fully correlated and fully uncorrelated underlying static network.

If information travels in both direction on edges, we have to make use of Eq. (6). Its associated
generating function reads:

g̃(x, τ) =
∑

k′

p∞(k′)
(

1 + (x− 1)T̃ (τ)
)k′

, (12)

where as explained above, p∞(k′) refers to the degree distribution of the undirected underlying network
and T̃ (τ) to the probability that an undirected edge is used during τ . To obtain τc, we make use of the
well-known percolation criterion for uncorrelated undirected networks, 〈k2〉/〈k〉 ≥ 2 [23]. As before, if
we assume that T̃ (τ) ∼ 〈ρ̃〉τ , then:

τc =
〈k〉∞

〈ρ̃〉(〈k2〉∞ − 〈k〉∞)
. (13)

This result has been derived by Newman in [16] and recently used in the context of a mobile phone
network by Miritello et al. in [8]. The estimated value for τc using Eq. (13) is 12.29 hours. We recall that
if the information travels along the direction given by the directed edges, the critical τc corresponds to
Eq. (9). The prediction given by Eq. (13) is close to that obtained from Eq. (10), which corresponds the
fully correlated scenario discussed above, see Fig. 2. Notice that Eq. (9) never reduces to Eq. (13). This
indicates that that directed, that is to say, intentional or active information propagation is qualitatively
different from unintentional information spreading, i.e., when information travels in both direction along
edges. For instance, while for unintentional spreading τc depends always on the second moment of the
degree distribution, for intentional spreading it may not depend on it, if the network is in-out degree
uncorrelated.
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Size of trees

In the following we focus on the statistical features of the trees. We start out by estimating the size
distribution p(s, τ) under the assumption that information travels in the direction of the (directed) edges.
In order to get an analytical estimate of p(s, τ), we neglect node-node correlations in the underlying static
network as well as temporal correlations among nodes. It will be clear that node-node (topological)
correlations can be ignored for τ < τc, while temporal correlations are always too weak to impact the
spreading dynamics (see below). We further assume that trees are fully determined by the out-degree
p(ko; τ), but as we will see, the assumption breaks down as we approach τc.

These simplifications allow us to estimate the probability p(s = 1; τ) of finding a tree of size one as
the probability that the root node has out-degree 0, i.e., p(s = 1; τ) = p(ko = 0; τ). The probability
p(s = 2; τ) of finding a tree of size two has to be equal to the probability that the root node has out-degree
1 while simultaneously its unique branch has to lead to a sub-cascade of size 1, i.e., p(s = 2; τ) = p(ko =
1; τ).p(s = 1; τ). More generally, p(s; τ) is related to p(s′; τ) with s′ < s. This relation can be expressed
in a compact and elegant way in term of the generating function G(z, τ) =

∑

s=1
p(s, τ)zs which obeys

the following self-consistency equation [24]:

G(z; τ) = z g(1, G(z; τ); τ) , (14)

where g(1, y; τ) is the generating function of the out-degree distribution p(ko, τ) that is defined as:

g(1, y; τ) =
∑

ko

p(ko; τ) y
ko . (15)

The cascade size distribution can be obtained from the derivatives of G(z; τ) as

p(s, τ) =
1

n!

∂nG(z; τ)

∂zn
|z=0 . (16)

In summary, Eq.(14) provides us with a method to derive p(s; τ) under the assumption that the tree
statistics is given by a Galton-Watson (GW) process [24] that is fully determined by p(ko; τ). Notice
that for a given τ , the out-degree distribution p(ko; τ) can be approximated using Eq. (7) as indicated
by Eq. (15). This approximation starts to fail for large values of τ due to the non-homogenous activity
of node over time. Alternatively, p(ko; τ) can be directly measured from the data for each τ .

Depth of trees

Now we look for an estimate of the depth distribution p(d, t) under the same assumptions, i.e., the tree
statistics is given by a GW process fully determined by p(ko; τ). We define gn+1(y; τ) = g1(gn(y; τ); τ),
with g1(y; τ) = g(1, y; τ). We look for the probability Ed(τ) that a tree gets extinguished at depth less
or equal than d. The probability Ed(τ) obeys Ed(τ) = p(0, τ) + p(1, τ)Ed−1(τ) + p(2, τ)Ed−1(τ)

2 + . . .+
p(ko, τ)Ed−1(τ)

ko + . . .. Using a more compact notation [24], this relation reads:

Ed(τ) = g1(Ed−1(τ); τ) . (17)

On the other hand, the probability that a tree gets extinguished at d = 1 is directly the probability that
a node does not make phone any phone call in a period τ , i.e., E1(τ) = p(ko = 0, τ). Thus, using the
above given definition of gn(y; τ), we rephrase Eq.(17) as:

Ed(τ) = gd(0; τ) . (18)

We can draw the probability p(d; τ) from Ed(τ), as:

p(d; τ) = Ed(τ)− Ed−1(τ) = gd(0; τ)− gd−1(0; τ) . (19)
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If we assume that information can flow in both direction of the edges, the above depicted GW process
for a directed underlying network can be easily adapted to an undirected network, the main difference
being that the GW process is now fully determined by the (undirected) degree distribution p(k; τ) — see
Eq. (6). Except for this, the computations of p(s; τ) and p(d; τ) follows similar lines, taking into account
that a node of degree k can contribute at most with k − 1 new nodes to the growing tree.

Comparison between theory, original data, and randomized data

Fig. 4 shows a comparison between Eq. (14) (analyt.), simulations of the proposed GW process (GW
synt.), and the tree statistics obtained from mobile phone data (data). The figure indicates that as long
as τ < τc, the proposed theory provides a good estimate for the tree statistics. As τ → τc (and still
for τ < τc), the theory, that neglects (topological) node-node correlations as well as causality effects,
systematically underestimates the probability of observing large trees. The origin of this discrepancy
can be rooted either in the presence of node-node correlations in the underlying network, or in strong
causality effects arising from temporal correlations.

In order to solve this issue, we perform the same tree analysis on two databases that are copies of the
original database, where in one we have reshuffled the time stamp phone calls, which we refer to as RT
data or data with RT, and another where we have reshuffled the order of the phone calls of each user,
referred to as RC data or data with RC, see Fig. 5 and 6. More details are provided in the Material and

methods section. The use of randomized data is a powerful technique used to define “null models” where
typically some correlations present in the original data are removed by the randomization procedure. This
procedure has been already applied in the context of mobile phone databases [5, 8]. In the RT data, for
instance, the topology of the underlying static network is preserved, as well as the activity edge rate, i.e.
p(ρ), day-night and weekly cycles, and in general the global activity patterns, while the bursty activity
of users and sender-receiver temporal correlations are washed out. RC data is even closer to the original
data, exhibiting even the same bursty activity per user, but where sender-receiver temporal correlations
are absent.

Figs. 4 and 5 reveals that the discrepancy between the proposed theoretical model and the tree
statistics obtained from the (original) database, particularly evident for large values of τ , is mainly
due to the fact that the theory neglects topological node-node correlations on the underlying static
network. Trees obtained from the RT data should exhibit statistical features as the ones predicted by our
theoretical model, except that RT data contains node-node (topological) correlations, e.g., degree-degree
correlations. In other words, any difference between RT data trees and those predicted by the theory has
to be connected to the presence of node-node correlations in the RT data. The comparison of Figs. 4
and 5 indicates that RT data trees exhibit larger sizes than what the theory predicts as τ → τc and above
τc. From this observation we conclude that topological node-node correlations promote bigger and longer
trees. As the discrepancy between the theory and RT data increases as we approach τc, we learn that
these these topological correlations become dominant for large values of τ , particularly above τc. On the
other hand, for small τ values, the theory provides a reasonable description of the tree statistics. This
means that at short time scales we can get a rough picture of the tree dynamics ignoring topological as
well as temporal node-node correlations.

According to what we said above, it is clear that predictions derived from the theory are at best
equal to the statistics obtained from the RT data. On the other hand, the tree statistics obtained from
RT data, as shown in Fig. 5 , is remarkably similar to statistics of the original data. However, if we
observe carefully at very short time scales, the tree statistics corresponding to RT data and original data
exhibit a small discrepancy, see Fig. 6. The observed difference cannot be related to topological but to
temporal correlations. The question here is whether these temporal correlations are due to either the
bursty activity of users or to sender-receiver temporal correlations. To answer this question we compare
the tree statistics computed using RT and RC data, see Fig. 6. All time correlation have been removed in
RT data. On the contrary, RC data exhibit the same bursty activity of users present in the original data,
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while temporal sender-receiver correlations have been washed out. Fig. 6 shows an excellent matching
between real and RC data which indicates that the discrepancy between RT and real data is due to the
absence of bursty activity of user in the former.

In summary, these findings indicate that temporal correlations do not have a significant impact on
the tree statistics, respectively on the information spreading statistics. It is only the temporal correlation
coming from the bursty activity of users that affect the tree statistics. However, the effect of these
temporal correlation is very weak and only observable at very small values of τ . In short, temporal
sender-receiver correlations seem to play no role. Thus, we can safely conclude that there is no “large-
scale” causality effects among phone calls, i.e., second neighbor correlations seems to be rare, while
third neighbor correlations and so on are virtually nonexistent. Does this imply the absence of causality
effects? Our findings only indicate that causality effects cannot be large-scale and affecting the spreading
of information, but they may still occur at the local level.

Causality loops

In the following we explore the possibility of local causality effects in the form of causality loops. Closed
causality patterns do not contribute to the spreading of the information and are not visible at the level
of the tree statistics, since they do not involve the addition of new informed users to the set of informed
ones. We consider two types of patterns: the first pattern involves a three-node chain, where user i calls
user j at time t1 and user j calls user k at some later time t2, with t2 − t1 ≤ τ . We define the reciprocity
coefficient CR(τ) as the fraction of three-node chains where k = i, Fig. 7A. Along similar lines, we define
the dynamical clustering coefficient CC(τ) as the fraction of four-node chains where the first and last
node are the same, see Fig. 7B.

Fig. 8 shows that CR(τ) and CC(τ) converge for τ → ∞ to an asymptotic value for both the original
and RT data. Though the number of three-node and four-node chains increase monotonically with τ , the
fractions CR(τ) and CC(τ), corresponding to closed loops, reach asymptotic values, which indicates that
closed chains grow at the same rate with τ . The curves CR(τ) and CC(τ) for RT data corresponds to
the fraction of cycles, involving two and three nodes, respectively, expected in absence of causality effects
and induced by the topology of the underlying static network and edge activity rate p(ρ). We observe
that at short time scales the values of CR(τ) and CC(τ) obtained from the original data are well above
those obtained from RT data. The abundance of causality loops in the original data with respect to RT
data, reveals that at short time scales the original data exhibits strong causality effects. Interestingly,
the asymptotic CR(τ) value for the original and RT data do not coincide, being always larger for the
original than for RT data. This indicates that for any value of τ the number of reciprocal phone calls in
the original data is larger than what is expected in the absence of time correlations. This finding is likely
to be related to the typical message-reply dynamics observed for instance in email data [25, 26]. On the
contrary, the number of three-node loops in the original data seems to converge asymptotically with τ
to the expected value in the absence of correlations. Finally, we point out that here we have studied the
behavior of two particular temporal motifs with τ , but certainly more complex motifs are present in the
data, see for instance [17].

Discussion

We have shown that the mobile phone data (as many other communication data) can be represented by
a directed (dynamical) network, and argued that intentional information spreading requires information
to flow in the direction given by the directed edges. We have explored this possibility and studied the
topological properties of causality trees, such as size and depth, as a proxy to understand information
propagation. We have introduced a time-scale in the system, the monitoring time τ , which provides a
tolerance time that allows us to relate two phone calls as causally linked. The properties of the causality
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trees have been studied as function of this time-scale τ . Our first observation is that the representation of
the data in terms of directed edges reveals the existence of super-spreaders and super-receivers. We have
shown that the tree statistics, respectively the information spreading process, are extremely sensitive
to the in-out degree correlation of the users. Moreover, we have clearly pointed out that the spreading
dynamics under the assumption of intentional spreading is qualitatively different from that obtained under
the assumption of unintentional spreading, i.e., when information flows in both direction along edges (see
Eqs. (9), (10), (11), and (13), and discussion below these equations). The good matching at short time-
scales between the tree statistics obtained from the original data and the theoretical predictions that
neglect time correlations and topological node-node correlations has allowed us to conclude that none of
these correlations have a strong effect on the tree statistics. This means that at short time-scales trees
can be roughly described as a simple GW process. However, at larger time-scales the tree statistics can
no longer be explained in terms of this simple theory. The tree statistics obtained from randomized time-
stamp data indicates that topological node-node correlations, present in the original data but neglected in
the theory, dominate the spreading dynamics at these time-scales. Moreover, we have learned that these
topological correlations promote bigger trees. Time correlations, on the other hand, do not seem to play
a significant role on the statistics of tree size and depth at any time-scale. Only time correlations coming
from the bursty activity of users have an impact on the tree statistics, but this effect is very weak and
only visible at very short τ values. On the other hand, temporal sender-receiver correlations do not affect
the tree statistics. These findings together with the observation that a given information, e.g., a rumor,
would require users to retransmit it for more than 30 hours in order to cover a macroscopic fraction of
the system, suggest that there is no intentional broadcasting of information. In fact, the very idea that
there is information spreading beyond nearest and second-nearest neighbors, i.e., beyond a small vicinity,
is called into question. At the local level, however, we have observed that time correlations enhance the
number of dynamical closed patterns, an effect particularly evident at short time scales. It is only at this
level that genuine causality effects, and consequently intentional information propagation, are detectable.
Nevertheless we stress that these observations apply exclusively to local information circulation.

The analysis performed here can be applied to other communication network data like blog and email
data [25–30] , as well as mobile phone data in the presence of exceptional events like natural disasters [9],
where different tree structures, and consequently tree statistics, are likely to emerge. Finally, the cascade
theory we have implemented here applies to directed networks in the absence of node-node (topological)
correlations. Generalizations to account for node-node correlations along the lines of [21] should be
possible.

Materials and Methods

Mobile phone dataset

The mobile phone data we have analyzed corresponds to one month of phone calls from a European
mobile phone provider. To guarantee confidentiality, phone numbers were anonymized. This represents
1.044.397 users, that form a connected component, and 13.983.433 phone calls among these users. Since
our goal has been to study information transmission, we have constrained ourselves to the study of
“successful” phone calls — i.e., those where the receiver has answered the phone call. There is an average
activity of 5.2 phone calls per second, which leads to an average of 1.7 10−6 phone calls per second per
directed edge. The underlying static network is characterized by 〈ki〉∞ = 〈ko〉∞ = 2.86, 〈k2i 〉∞ = 28.4
and 〈k2o〉∞ = 17.3. Using undirected edges we obtain 〈k〉∞ = 4.24 and 〈k2〉∞ = 45.05, and average edge
activity 〈ρ̃〉 = 2.35 10−6 phone calls per second. Some aspects of this dataset have been described in [6],
and some features of the underlying static network has been analyzed in [31].
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Random data – Null models

We have performed the data analysis on three datasets: the original data set and two copies of it, one
where we have reshuffled the time stamps of the phone calls, which we refer to as RT data, and another
where we have randomized the order to the phone calls of every user, which we refer to as RC data. The
RT dataset is an exact copy of the original data set, where source and destination of every phone call
remains the same, but the time-stamp of phone calls are randomly exchanged. The new dataset is then
ordered according to the new time-stamps. As result of this procedure, every node exhibits the same
in- and out-degree as in the original data set. Moreover, the activity rate per (directed) edge and user
remain the same, as well as the global activity rate of the dataset (day-night and weekly cycles, etc). The
RC dataset is even closer to the original data set. Here we take for every user the vector: (time-stamp,
id of callee) generated by the user and reshuffled within this vector the callee id. In other words, we have
randomized the order of the phone calls done by each user. In the RC dataset users exhibit the same
bursty (calling) activity as in the original dataset.
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Figure Legends

A B

C

Figure 1. Mobile phone data and causality trees. The mobile phone data, A, is processed for a
given time-scale τ (here τ = 150) to obtain causality trees, B. An example of a real tree of size s = 11
and depth d = 5 is shown in C.

Figure 2. Average cascade size as function of the observation time τ . The transition towards
arbitrarily large cascade sizes can be estimated theoretically using Eq. (8). The vertical lines correspond
to various assumptions on the underlying social network, particularly on the in-out degree correlation
matrix: fully correlated, fully uncorrelated, and the actual situation, see text.

Tables
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Figure 3. Statistics on the in- and out-degree of the underlying social static network. The
in- and out-degree distribution, p∞(ki) and p∞(ko), respectively, are shown in A, while in-out degree
correlations, i.e., p∞(ki, ko), in B, where the color scale corresponds to ln(p∞(ki, ko)).
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Figure 4. Comparison between the tree statistics obtained from the transmission theory
and real data for short time-scales. The theory provides a reasonable estimate for the size
distribution p(s; τ), A, and depth distribution p(d; τ), B. Notice the systematic deviation exhibited by
the theory as τ → τC . The discrepancy can be attributed to the absence of topological node-node
correlations in the theory.
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Figure 5. Comparison between tree statistics obtained from real data and data with
randomized time labels (RT) for small (A and B) and large (C and D) values of τ . The
good matching between real and data w/ RT suggests that time correlations do not play a central role
on the tree statistics, respectively on the spreading process.
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Figure 6. Bursty activity of users vs. sender-receiver time-correlations. The difference
between real data and data with randomized time labels (RT) is mainly due to the absence of bursty
activity in RT data. This is evidenced by the good matching between real data and data with random
sender-receiver (temporal) correlations (RC). RC data exhibit the same bursty activity of users as the
real data.
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Figure 7. Causality loops involve an ordered sequence of phone calls. The computation of
coefficients CR(τ) and CC(τ) are illustrated in A and B, respectively.
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Figure 8. Causality loops vs τ . Reciprocity, A, and dynamical clustering, B, coefficient for real and
time-label randomized (RT) data. The difference between the curves is exclusively due to the presence
of time correlations in the real data.


