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Abstract—We address the problem of quantifying the number
of samples that can be obtained through a level crossing sampling
procedure for applications to mobile systems. We specially
investigate the link between the smoothness properties of the
signal and the number of samples, both from a theoretical and
a numerical point of view.

I. INTRODUCTION

An important issue in the design of mobile systems is to

increase their autonomy and/or reduce their size and weight.

This can be achieved by reducing their power consumption

by processing signal with a smaller number of samples. For

a large class of signals, especially sporadic signals, non-

uniform sampling leads to a reduced number of samples,

compared to a Nyquist sampling [7], [9], [10], [13]. A way

to obtain such samples is to use specific system architectures

(e.g. event-driven). These architectures take samples each time

some specific event occurs, typically specific voltage levels

are crossed. We can therefore design simple analog circuits,

with low power consumption, to acquire information, possibly

at high speed. Here we consider a system where amplitudes

are selected thanks a M -bit asynchronous analog-to-digital

converter (AADC) and 2M levels are predefined in the voltage

range.

In this article we want to understand on which signal charac-

teristics the number of samples depend. An intuitive look at the

problem indicates that the more the signal is oscillating locally

the higher the number of samples is. The number of samples

at the neighborhood of some point may then be related to the

local smoothness of the signal, that is to its so–called Hölder

regularity. To put in evidence this relationship, we consider toy

models of signals whose smoothness properties are perfectly

known at each point. We then perform numerical simulations

and link the sample reduction rate with this regularity. The

next step, which will be the purpose of a forthcoming paper,

will then be to consider signals whose regularity may change

from point to point such as multifractional or multifractal

signals. We then intend to apply our results to biological

signals such as EEG signals or fMRI data which are well-

known to be both highly irregular and non stationary signals,

and which provide interesting ranges of application for non-

uniform signal processing.

II. ALGORITHM

In the event-driven systems, the signals are not sampled

at totally arbitrary times. Indeed there are local clocks that

measure the time elapsed since the previous sample was taken.

Therefore we can consider that the samples are taken at some

multiples of some basis time tb. The mathematical algorithm

that is used to mimic the AADC is the following:

• Step 1: generate uniform samples on [0, 1] with sampling

interval tb;

• Step 2: for each sample replace the amplitude by the

value of the level just below;

• Step 3: decimate the samples so as to keep only one (the

last) sample when consecutive samples have the same

amplitude.

III. MATHEMATICAL INTERPRETATION

Up to some time re-scaling we suppose that the precision

of the local clock that measures time delays is tb = 2−j , for

j ∈ N. At best we only know the function f by its samples

at times k2−j , k ∈ Z. At scale 2−j , we define the intervals

Ij,k = [k2−j , (k + 1)2−j [.

A. Faber–Schauder hierarchical basis

We define the Faber–Schauder hierarchical basis as defined

in [5]. Let Vj be the space of continuous functions, which

are affine on intervals Ij,k, k ∈ Z. We can uniquely define

the linear interpolation fj of f at scale 2−j by fj(k2
−j) =

f(k2−j), for all k ∈ Z. Let ϕ(x) = max{0, 1−|x|}. A natural

basis for Vj is given by the functions ϕj,k = ϕ(2j ·−k), k ∈ Z.

In this basis, we have the unique representation

fj =
∑

k∈Z

f(k2−j)ϕj,k.

B. Interpretation

We now suppose that f is compactly supported in [0, 1]. In

the previous notations we will only need k = 0, . . . , 2j − 1.

We assume that levels are uniformly spaced by some quan-

tum 2−M . The level crossing algorithm can be described as

follows.

Step 1: approximation in Vj . We only know fj(k2
−j) =

f(k2−j).



Step 2: level crossing. We denote ⌊x⌋ the integer part of x,

namely ⌊x⌋ = inf{n ∈ N, x ≤ n}. We then define

f̃j =
∑

k∈Z

2−M
⌊

2Mf(k2−j)
⌋

ϕj,k.

Step 3: decimation of f̃j . We only keep a subsequence of

k = 0, . . . , 2j − 1, defined by induction: k0 = 0 and

ki+1 = min{k ≥ 1 + ki/
⌊

2Mf(k2−j)
⌋

6=
⌊

2Mf(ki2
−j)

⌋

}.

To be able to reconstruct f̃j , we only store the couples (δti, ai)
where δti = (ki − ki−1)2

−j , i ≥ 1 is the delay since the last

sample, and ai = 2−M
⌊

2Mf(ki2
−j)

⌋

) is the amplitude of

the sample. There is no approximation in Step 3, we only do

not store redundant data.

IV. MATHEMATICAL PROPERTIES

We now want to illustrate through numerical experiments

that the properties of our algorithm can be related to smooth-

ness properties of the sampled signal.

A. MonoHölderian functions

Definition 1 (Hölder space Cα): Let α ∈ (0, 1). The func-

tion f belongs to the Hölder space Cα([0, 1]) if there exists a

constant C such that for all (x, y) ∈ [0, 1]2,

|f(x)− f(y)| ≤ C|x− y|α .

The following definition has been introduced in [12].

Definition 2 (Anti-Hölderian functions): Let α ∈ (0, 1).
The function f is said to be uniformly anti-Hölderian with

exponent α, if there exists a constant C such that for all

(x, y) ∈ [0, 1]2,

sup
(u,v)∈[x,y]2

|f(u)− f(v)| ≥ C|x− y|α .

The set of uniformly anti-Hölderian functions is denoted

Iα([0, 1]).
Definition 3: Let α ∈ (0, 1). If the function f both belongs

to Cα([0, 1]) and Iα([0, 1]) then f is said to be monoHölderian

with exponent α.

B. Approximation properties

As already mentioned, only step 1 and 2 lead to approxima-

tions. If f ∈ Cα([0, 1]), it is well–known [6], [11] that there

exists a constant C (which depends on f but not on the scale

j) such that

‖f − fj‖L∞ ≤ C2−jα,

whereas, if the function f is assumed to be uniformly

monoHölderian, one deduces from [4] that there exists a

constant C (which depends on f but not on the scale j) such

that for any ǫ > 0

‖f − fj‖L∞ ≥ Cj−(2α+ǫ)2−jα.

Note that the last condition is much weaker than uniform anti–

Hölderianity (see [4]) since it involves the modulus of continu-

ity of f − fj on the whole interval [0, 1], whereas oscillations

of uniformly anti-Hölderian functions can be bounded from

below at any point. The approximation made at step 2 clearly

does not depend on the regularity of function f , and we have

‖fj − f̃j‖L∞ ≤ 2−M .

C. Theoretical number of samples in the case of a monotonous

function

If f is a monoHölderian function with exponent α, by

definition there exists C1, C2 > 0 and for any scale j ≥ 0
and 0 ≤ k ≤ 2j − 1

C12
−jα ≤ sup

(u,v)∈[k/2j ,(k+1)/2j ]2
|f(u)− f(v)| ≤ C22

−jα.

If the function is additionally supposed to be monotonous, we

have further that

sup
(u,v)∈[k/2j ,(k+1)/2j ]2

|f(u)−f(v)| = |f((k+1)/2j)−f(k/2j)|.

Hence

C12
j(1−α) ≤ |f(1)− f(0)|

=

2j−1
∑

k=0

|f(
k + 1

2j
)− f(

k

2j
)| ≤ C22

j(1−α).

Such a signal crosses equi-spaced levels with quantum 2−M

at most C2M+(1−α)j times. With our algorithm, we also take

at most 2j samples (since we use the initial samples). For

large values of M (or small values of α), we indeed keep

almost all the 2j samples. Otherwise we can expect some

reduction of the number of samples. For C = 1, the threshold

is M ≃ αj. Observe that the proof is based on the fact, that

in the monotonous, we can estimate in a very simple way the

oscillations

sup
(u,v)∈[k/2j ,(k+1)/2j ]2

|f(u)− f(v)|

of the function. Of course in the general case, the situation

can be much more complicated. Nevertheless, generic results

in the sense of prevalence as stated in [2] are expected to hold.

In what follows, we illustrate through numerical simulations

what may happens.

D. Numerical simulations

1) Test functions: We test level crossing on two toy models:

sample paths of fractional Brownian motion BH and the

Weierstrass function WH . Here H ∈]0, 1[ is called the Hurst

index. In each of these two cases, the smoothness properties

of the function are well–known and related to the Hurst index.

The fractional Brownian motion (fBm) BH is the unique

Gaussian H–self-similar process with stationary increments.

It can be defined from its covariance function

E
[

BH(x)BH(y)
]

= 1
2

(

|x|2H + |y|2H − |x− y|2H
)

for all (x, y) ∈ [0, 1]2. For H = 1/2, we recover the

classical Brownian motion. We recall that the sample paths

of fBm are well-known to be almost surely continuous.

Further, the Hurst index H of fBm is directly related to the

roughness of its sample paths. More precisely, almost surely,



Fig. 1. Three realizations of fractional Brownian motions for H = 0.5 (blue
plot), H = 0.7 (red plot), H = 0.9 (green plot)

Fig. 2. The Weierstrass function for H = 0.5 (blue plot), H = 0.7 (red
plot), H = 0.9 (green plot)

BH ∈ CH−ε([0, 1])∩IH+ε([0, 1]) (classical law of the iterated

logarithm). Roughly speaking, a.s. for all (x, y) ∈ [0, 1]2,

sup(u,v)∈[x,y]2 |BH(u)−BH(v)| ∼ |x−y|H . Figure 1 presents

three realizations of sample paths of fractional Brownian

motions for H = 0.5, H = 0.7, H = 0.9 and 1024 samples

(j = 10).

We also use the Weierstrass function defined as

WH(x) =

∞
∑

j=0

2−jH cos(2jx).

The Weierstrass function WH is a classical example of

monoHölderian function with exponent H as proved in [8].

Hence for all (x, y) ∈ [0, 1]2, sup(u,v)∈[x,y]2 |WH(u) −

WH(v)| ∼ |x − y|H . Figure 2 present some graphs of

Weierstrass functions for H = 0.5, H = 0.7, H = 0.9 and

1024 samples (j = 10).

Fig. 3. Average number n of samples in terms of the Hurst number in the
log scale (log

2
(n) is represented on the y-axis). Four cases are plotted (solid

lines) corresponding to j = 10 and 13 and M = 4 and 5. The dotted lines
correspond to the worst case M + (1−H)j.

M = 4 M = 5
j = 10 0.4 0.5

j = 13 ∼ 0.3 ∼ 0.4

TABLE I
“CRITICAL” VALUES OF THE HURST NUMBER.

2) Test cases: The tests are performed within the SPASS

Matlab toolbox [1]. To generate fractional Brownian motions,

we make use of the genFBMJFC.m function [3].

We use two values of j (10 and 13) and two values of

M (4 and 5). These small values of M are sufficient for most

mobile applications. Our output is the number of samples after

decimation (Step 3). For the fractional Brownian motion, we

perform 1000 realizations and average the number of samples

obtained for each realization to obtain an average number n.

We perform this for values of the Hurst number H in the

]0, 1[ range and obtain the curves in Figure 3. We also plot the

number of samples computed in the worst case (monotonous

function i.e. maximum total variation) for C = 1: 2M+(1−H)j .

The plots are given in the semi-log scale: log2(n) and M +
(1 − H)j. This allows to distinguish the two regimes below

some value of the Hurst number H ∼ M/j the algorithm

more or less keeps all the original samples, above this value

the decimation is efficient and yields a significant reduction

of the number of samples.

For the different curves these “critical” values of H are

given in Table I.

We perform the same tests on the Weierstrass function. The

plots associated to fBm are much more regular because there

are obtained by an averaging procedure. We expect that the

critical value of M holds in an asymptotical way. Our results

are then expected to improve when j tends to infinity.



Fig. 4. Number of samples in terms of the Hurst number in the log scale
(log

2
(n) is represented on the y-axis). Four cases are plotted (solid lines)

corresponding to j = 10 and 13 and M = 4 and 5. The dotted lines
correspond to the worst case M + (1−H)j.

V. CONCLUSION

We have first shown numerically that there is strong rela-

tionship between the smoothness properties of a signal and the

number of samples that can be obtained by the crossing level

algorithm presented in this paper. We also proved this result in

the case of monotonous monoHölderian functions. We intent

to address this problem in more general cases. It will be the

purpose of a forthcoming paper.
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